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CONTROL OVER LINEAR PULSE SYSTEMS 

M. U. Akhmetov, N. A. Perestyuk, and M. A. Tleubergenova UDC 517.911 

Rank conditions for control of linear pulse systems are established. The Pontryagin maximum principle 
is obtained in sufficient form. An example of control synthesis in a problem for linear pulse systems is 
given. 

In [1, 2], a method was suggested for solving problems of  control over linear systems based on the normal 
solvability of  boundary-value problems. A similar approach was given in [3]. In the present paper, we develop 
these ideas for pulse systems. 

Let us fix real numbers ct, 13 E R, tx < 13, and integer numbers r > 0, p > 0. We denote the set of  square 

integrable functions (p: [~,13]---~R r by L2[tx, 13], and these t  of sequences ~i ~ R r, i = l , p ,  by Dr[1--,p]. Let 
r /" us construct the space 17/, = L 2 x D r, denote its elements by { tp, { }, and define a scalar product in it as follows: 

{ w , v } )  = 
13 p 

I ( (p ,w)d t  + , ~ (~ i ,  vi) ,  
i=l 

where ( , )  is a scalar product in R r. 
Consider the pulse system 

d x  

dt 
= A ( t ) x  + C ( t ) u ( t )  + f ( t ) ,  t r  ti, 

Axl t=t i  = B i x  + Divi  + li  (1) 

with the boundary condition 

x ( ~ )  = a, x(13) = b. (2) 

Here, x ~ R n, A and C are n x n and n x m matrices, respectively, with elements from L~[ct, 13], B i and Di 

are constant n x n and n x m matrices, respectively, ti, i = 1, p ,  is a sequence strictly ordered in the interval 

] ct, 13 [. We  also set det (E  + Bi)  ~ O, i = 1, p.  The solutions of system (1) are functions absolutely continuous in 

each interval [ix, ti], ] ti, ti+p], i = 1, p -  1, ] tp, ~ ]. 
n We say that the control problem I is solvable if, for any {f,  I }  ~ l ip  and any a, b ~ R n, there exists {u, 

m v} ~ l ip  for which the boundary-value problem (1), (2) has a solution. 

Parallel with problem (1), (2), we consider system (1) with the boundary condition x ( tx )  = x(13) = 0, which is 

called the control problem II. 
By analogy with [2], one can check that control problems I and II are simultaneously solvable. 

Let 

- ~ - f /  

- "  = A ( t ) x ,  t ~ t i ,  Axl t=t i  = B i x  (3) 
dt  
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be the system corresponding to (1), and let 

d--Z-Y =-AT( t )y ,  te t i ,  
dt 

Ay It=,, = - ( e  + B[) -1BTy 

361 

(4) 

be the system adjoint to (3). Here, T denotes transposition. 

In what follows, we denote by {9, (P} an element {(p(t), tp(ti)} of the space Hp for an arbitrary function 

D1 -+R  r. 
The validity of the following statement can be verified similarly to the proof of Theorem 19.2 from [4]: 

n Lemma 1. Let { F, V} ~ rip. Then the boundary-value problem 

dx 
d t  = A(t)x  + F(t), t~ti ,  Axlt=t i = Bix+ Vi, 

(5) 

= x ( 1 3 )  = 0 

is solvable if and only if, for any solution of the system (4), the following relation holds: 

({ F, V}, { y, y }) = 0. (6) 

The theorem below allows one to prove all the further statements. 

Theorem 1. The control problem II is solvable if and only if the trivial solution of Eq. (4) is the only solution 
satisfying the condition 

({Cu, D v } , { y , y } )  = O, V { u , v } ~  l ip.  (7) 

Proof. Sufficiency. Let Y(t)= (Yl, Y2 . . . . .  Yn) be a fundamental matrix of solution of system (4), c e R n 

According to the condition of the theorem, the infinite system of equations 

(8) 

admits only the trivial solution 

which the matrix 

({Yc, Yc} ,{Cu,  Dv})  =0,  V { u , v } e  Hp 

C = 0. Let us show the existence of h elements 

N = (({yj, yj}, {Cuk, Dvk}))j k 

m {u k,v k}~ r ip,  k =  1-~, for 

Without loss of generality, we can assume that the last row of the matrix N linearly 

Denoteby C C* = a nontrivial solution of the system 

is nondegenerate. 
Assume the contrary. 

depends on the other rows. 

({Yc, Yc},ICuk,  Dvk}) = 0, k = l , n - 1 .  (9) 

m Since, for any { u, v } E l ip ,  there exist constants gk for which the equality 
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({yj ,  yj}, {Cu, D v } )  
n-1 
~ g k  ({Yj, Yj}, { Cuk, Dvk} )  
k=l 

is true, it follows from (9) that equality (8) holds for the nonzero vector C = C*. 
nondegenerate. 

Let us now consider the boundary-value problem 

Hence, the matrix N is 

n 

d._.x.x = A (t)x + f ( t )  - C(t) 2 ck nk(t)' 
dt k=l 

n 

Axlt=t i = Bix+ Ii - Di~aCkVi k, 
k=l 

x ( a )  = x ( ~ )  = o, 

t ~ ti, 

m where {u k, v k} are the elements of l ip defined above. By virtue of Lemma 1, for the solvability of this problem, 

it suffices that there exist solutions of the system 

n 

2 ({YJ'YJ}' { C u k ' D v k } ) c k =  ({YJ'YJ}' {f'  I}) '  
k=l 

m 

j =  1, n, 

which is true due to the nondegeneracy of the matrix N. 

Necessity. Assume the contrary. The control problem II is solvable, and there exists a nontrivial solution of 

Eq. (4) that satisfies condition (7). It is easy to show that there exists {f, I} e lip for which the relation ({f,  1}, 

{ y, y }) ~e 0 is true. Let us fix this element. Then by adding the last inequality to relation (7), we get ({ y, y }, 

{ Cu +f, Dv  + I} )  ~ O, which contradicts the criterion of the existence of a solution of the boundary-value prob- 
lem. The theorem is proved. 

The following statement is a corollary of Theorem 1. 

Theorem 2. The control problem I is solvable if and only if, for any t ~ [ t~, 6 ] and i = 1, p, the following 
relations hold: 

det (cT(t)Y(t)) , O, det (DfY(ti)) ,~ O. (10) 

This theorem can be used to prove the Kalman criterion in the solution of the problem of control over pulse 

systems. 
Consider the system with constant matrix of coefficients 

d x  
m = A x  + C u  + f ( t ) ,  t ~ ti, 
dt 

Axlt=ti = Dui + li, (11) 

x(~)=a,  x(lS)=b. 
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Here, the matrices A, C, and D are constant. Expressions (10) allow one to prove the validity of the following 
theorem: 

Theorem 3. In order that the control problem I in the case of  system (11) be solvable, it is necessary and 
sufficient that the rank of  the matrix 

( C, A C  . . . . .  An-I C, D, AD . . . . .  An-ID)  

be equal to n. 

Let us formulate one more criterion of the solvability of the control problem I which is a consequence of the 
theorems given above. 

~ C T ,DrYi}, j l, Let F be the Gram matrix for the system of elements "t Y i = n. 

Theorem 4. In order that the control problem I be solvable, it is necessary and sufficient that the Gram 
matrix F be nondegenerate. 

Let us construct the solving control for the control problem I. 

Theorem 5. I f  the control problem I is solvable, then the control calculated by the formulas 

U ( t )  = cT(t)Y(t)F-I[ YT(~)b- YT(oQa- ~ YT(t)f(t)dt ' ] 
+ Z , 

i=1 

W i = DIyT(ti)I'-l[yT(~)b - YT((I)a- ~ yT(t)f(t) dt ' ] + ~. Yr(ti)Ii 
i=i 

(12) 

is the solving control. 

Proof. Let us change the variables x = z  + rp(t) in the boundary-value problem I. Here, q) is an arbitrary 

function continuous with its derivatives and satisfying the boundary conditions of problem I, i.e., q0(a)= a, 

(p(13) = b, and the conditions qo(ti)= 0, i = 1,--p. Such a function can easily be constructed. For instance, as q0, 
one can take the Lagrange polynomial. 

After the change of  variables, we obtain the control problem II in the form 

dz 
- -  = A(t)Z + C(t)u + f ( t )  + [(p(t)-A(t)cp(t)],  t~ t i ,  
dt 

Az[t=ti = B i z -  Divi+ Ii, z (a)  = z(~) = O. 

By virtue of Lemma 1, for the solvability of this problem it is necessary and sufficient that the conditions 

1~ p 13 
yT( t ) [C( t )u ( t )+ f ( t ) ]  dt  + ~ .  YT(ti)[Diu,+Ii] = ~ yT(t)[ O ( t ) - A ( t ) ~ ( t ) ] d t ,  

i=1 cc 

m V{u,v}~- lIp 

be satisfied. 

(13) 
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Let Yk be the kth column of the matrix Y(r). Integrating by parts, we obtain 

(Yk, (p)dt = (Yk(~), q~(~)) - (Yk((X), (P(O0) - I (Yk, (p)dt. 

From this and (13), we conclude that the validity of the relation 

p 

f yT ( t ) [C( t )u ( t )+ f ( t ) Jd t  + 2 yT(ti)[Diui+Ii] = YT(f j )b-YT((z)a  
tX i=l 

(14) 

is the necessary and sufficient condition of solvability of the control problem I. 
By substituting the expressions 

U = CT(t)Y(t)c, Wi = DTy(ti)c (15) 

into (14), we obtain a system of linear equations with respect to the vector c. Substituting the solutions of this 
system into (15), we get expressions (12). The theorem is proved. 

The solving control (12) allows one to describe the entire set of solving controls of problem I. In order that { u, 

v } be a solving control for the problem, it is necessary and sufficient for it to be representable in the form u = 
m U + ~, U i = W i +Vi where {~, v } is an element of the space lip which ~s orthogonal to all pairs of the form 

{ cryk ,DTyk} ,  k= F,n. Moreover, the following condition is satisfied: ({ U, W}, { ~, v }) = 0. 

Let us introduce the norm II u, v lira = ({u, V}, {u, v}) 1/2 in the space YI~. 

By analogy with [5], one can show that the control {U, W} defined by formulas (12) has the smallest norm in 
m 1-Ip among all solving controls of the control problem I. 

By using the results obtained above, we now consider the problem of fast response for linear pulse systems. 
Similar problem was studied earlier in [6] in the general case. 

Consider the boundary-value problem 

d x  
- -  = A(t)x + C(t)u + f( t) ,  t~ t i ,  
dt 

A z l t = t  i = B i x -  D i v i +  Ii,  (16) 

x(0) = a, x(~)  = b, 

any 

satisfies the Pontryagin condition if this control provides in this set the maximum for 

cryr ( t )  • C(t)u(t) for almost all t ~ [0, 13] and the maximum for the expressions cToYr(ti)Divi, 

where A and C are defined for any time t > 0, Bi and Di are bounded sequences, and the final time [3 > 0 is ar- 

bitrary. Let us define the space-product Ilp(13 ) = L~[0, 13] x D r [ l ~ ]  for which ti, i = 1, p, are points of discon- 

tinuity of functions from L~ [0, ~], which form the ordered sequence in the interval (0, ~). 

We assume that the control { u, v } can be chosen only from the bounded set A x A' c YI~(I~), 13 > 0. 

The problem of fast response is to find, by using a given element {f,  I} belonging to the space I-lp([3) for 

> 0, the control { u, v } that solves problem (15) in the shortest time. 

Let us fix a positive number 13. We say that a control { u, v } with vector c = co in the domain A x A' 
the expression 

i = t , p .  
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Theorem 6. Let the control { u, v } solve the control problem for system (16) for time g > O, ~let it satisfy 
the Pontryagin condition for some vector c = co in the domain A • A'. Suppose that the expressio~ c~Y(t)• 

[C( t )u( t )+f( t )+A(t )b]  is positive for almost all t e  [0, [3], and the numbers c~yT(ti)[Divi +Ii+ 

B i(E + B i)-lb] are positive for all i = 1,--'p. Then the control { u, v ) and trajectory corresponding to it are 

optimal in the sense of fast response. 

Proof According to (14), we have 

S yT(t)[C(t)u( t)+f( t )]dt  + s 
a 0<ti<[~ 

Yr(ti)[Div~§ Ii] = YT(~)b-  YT(O)a. (17) 

The fundamental system of solutions of the adjoint equation (4) satisfies the equality [4] 

B 
Y([5) = Y(O)-  ~ AT(t)Y(t)dt - ~.~ (E+B~)-IBTY(ti). 

0 O<ti <9 

Substituting this equality into (17), carrying out the transposition, and assuming that Y(0) = E, we get 

rT(t)[C(t)u(t)  +f(t)  +A(t)b] dt + Z yT(t i )[Divi+li+Bi(E+Bi )-lb] = b - a .  (18) 
0<ti<~ 

Assume the contrary, i.e., that there exists the control {u, v} which transfers the point x(0) = a into position 

x ( , )  = b at the time x < [3. Then 

S c~yT(t)[C(t)u(t)  +f( t )  + A(t)b] dt + 
0 

s cTyT(ti)[Divi+Ii + Bi(E+Bi)-lb] = cT(b -a ) .  
0<ti<7; 

Subtracting the last equality termwise from (18) multiplied by the vector c0 r,  we get 

d t  + c~Yr(t)[C(t)u(t)+f(t)+A(t)b] dt + 
o o 

+ ,y_., c'~Yr(ti)Di[vi-vi(t)] + ~ croYr(ti)[Divi+Ii + Bi(E+Bi)qb] = O. 
O<t i <'~ "~<t i <~ 

By virtue of the conditions of the theorem, the first and third terms in the last equality are nonnegative, while 
the second and fourth ones are positive. The contradiction obtained proves the theorem. 

Corollary. Suppose that the conditions of Theorem 6 are satisfied, and x(t) is the optimal trajectory 
connecting points x(O)= a and x(~)= b. Then any part of this trajectory which connects points x( t l )  and 
x(t2), O < tl <- t2 <- ~, is also the optimal trajectory. 

Let us now apply Theorem 6 and its corollary for the synthesis of the optimal control in the fast-response sense. 
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Example. Let x = colon (xb x2). We consider the system of differential equations with pulse action at points 
t = i with i being integers, which has the form 

= x +  u, t~i ,  A X I t =  i = v i. (19) 
dt 0 1 

Here, the function u and the sequence v take values in R, I u I < 1, and [ v i [ < 1. 

Let us consider the problem of fast response in the case where x(0)  is an arbitrary point of the plane Oxlx2 
and x(13) = 0 is the origin. 

Comparing (19) and (11), we find that the sufficiency conditions for the controllability which are determined by 
Theorem 3, are satisfied because the following equality is valid: 

rank(C, AC, D, AD) = ra 0 0 = 2. 

The fundamental matrix of solutions of the system dy ~dr = - A  ry is equal to 

Using this matrix, we conclude, by virtue of Theorem 6, that the conditions of optimal control { u, v } take the form 

ktu = minktg ,  kivi = minkig i, (20) 

ktu < 0, kivi < 0, (21) 

where k is a real number, t > 0 and i > 0. 

Consider the cases k > 0 and k < 0. 

1. Let k > 0. Then it follows from (20) and (21) that the optimal control is equal to { u, v } = ( -  1, - 1 } 

and system (19) has the form 

= x +  , t~ i ,  A x l t =  i = . 
dt 0 

2. Let k < 0. In this case, the optimal control is equal to { u, v } = { 1, 1 } and Eq. (19) can be written in 

the form 

dx  (~ 11 I~i  (~1 = x + t~ i ,  A x [ t = i  = . (23) 
dt 0 ' 

Let us denote by L '  the set which is symmetrical to L with respect to the origin. Let E = L U L'. The set 

is a figure on the plane Ox lx2 which divides it into two parts, the "lower" and "upper" ones. From an arbitrary 
point of the "lower" part one can get into the origin following the optimal trajectory with the switching on the figure 
L only. Until the switching the representative point moves according to Eq. (23). The switching occurs when the 
boundary point of the set L is reached. Below we describe the mechanism of switching. The following cases can 

be realized: 
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(a) The representative point meets the set L at t = "c in the point which belongs to an arc of a phase trajectory 

connecting points ~ ( i + ) a n d  ~ ( i + 1 ) ,  where ~ is asolut ionofsys tern(22) .  Moreover, thepoint  x ( '~ )can  

coincide with the point ~ (i +). The case x('c) = ~ (i + 1 ) is considered below. 

Then, the following movement will be realized along the trajectory of the solution ~(t) of system (22) for 

which ~(1 - .~2(i + 1) - x2(X)) = x('C). Thus, if the point ~(t) coincides with the point x = 0 at time t = "~ 1 then 

the optimal time equals topt = "c + Xl - 1 + ~2( i+  1 ) -x2(*) .  

(b) Let the trajectory which begins in the "lower" part, at the time t = % meet the boundary of the set L at the 

point which belongs to the interval connecting the points ~(i)  and ~ ( i + )  and which does not coincide with the 

point ~( i+) ,  i=  1, 2 . . . . .  
Then, applying the supplementary pulse of the strength g = ~2( i+)-  x2('c ), we can carry out the transition of 

the point x( '0  in the position ~(i+) .  

As a result, the movement will be realized along the trajectory of the solution ~(t) of Eq. (22) which satisfies 

the initial condition ~(0) = ~7 (i +) and gets of the initial position without a jump. 
Let us note that Eqs. (22) and (23), in contrast to similar systems for the control without pulses {7], are not 

autonomous, which complicates the synthesis of the optimal control. 
Since the phase portraits (22) and (23) are symmetrical with respect to the origin, it is obvious that it is 

sufficient to consider only one of the cases indicated. Let k > 0. 
First, let us describe the optimal trajectories which get into the origin without switching. This description will 

be based on the solutions which begin at the time t = 0, have first discontinuity at the point t = 1, and get into the 

origin at the times t = 1, 2, 3 . . . . .  The initial points of these solutions form a denumerable set and have the 
coordinates 

i 

X t = - ~ ( 2 j + I / 2 ) ,  x 2 = 2 i + 1 ,  i = 0 , 1 , 2  . . . . .  
j=o 

The phase trajectories of these solutions belong to the same curve, which we denote by l. Let us now select the 

solutions which go out from the point x 0 at the time t = 0 without a jump and which get into the origin at the time 

"c such that {'c} = a.  Here {. } denotes a fractional part of the variable. These are the solutions whose re- 

presentative point hits the arc Al of the curve l, contained between the points (0, 0) and ( 1 / 2, 1), at some time 

t = i and subsequently moves to the origin along the curve l. With a changing in the interval [ 0, 1 ], the phase 
trajectory of these solutions takes positions from the curve which is the plot of the function x2(xl)  with discon- 
tinuities of the first kind at points 

X I = 

i 

- ~  ( 2 j - 1 / 2 ) ,  
j = l  

until the curve I. 

Let us join all the phase trajectories into a set L. Moreover, we shall include in this set the vertical intervals 

connecting the points x(i) and x(i+) of the indicated trajectories. If ~(~1)=0 then the optimal time equals 

/opt = ' ~  + ' ~  1 . 

Remarks. 1. The boundary of the set L is given by a system of algebraic equations and inequalities. When 

investigating the latter together with the analytical expression for the solution x(t) of system (22), it :is useful to 
make the switching. 

2. Since ] F ] < 1, the supplementary control pulse ~, used in the case (b), completely satisfie,; the initial 
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condi t ions  o f  the problem. 
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