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Abstract. The effects of sediment characteristics and geo- 
chemical fractions on the biological availability of cadmium 
to estuarine animals were studied. Grass shrimp (Palae- 
monetes pugio), blue mussels (Mytilus edulis) and a p01y- 
chaete (Nereis virens) were exposed to Cd-treated sediment 
for 14 days. The test populations were evaluated for mortali- 
ties, oxygen consumption (except N. virens), and bioaccu- 
mulation of Cd. Sediment Cd was extracted sequentially to 
determine the exchangeable (EP), easily reducible (ERP), 
organic-sulfide (OSP), moderately reducible (MRP), and 
acid extractable (AEP) geochemical phases. 

The shrimp displayed significant respiration effects; the 
shrimp and mussels bioaccumulated Cd, particularly in the 
Cd-sand treatments. The polychaete did not bioaccumulate 
Cd. The OSP contained the greatest concentrations of Cd in 
all treatments. The Cd-sands were characterized by rela- 
tively higher levels of EP and ERP than for silts or clays. A 
statistical model was developed that describes the bioaccu- 
mulation of Cd as a function of EP and ERP geochemical 
fractions of sediment Cd for M. edulis. 

When contaminants such as heavy metals are introduced 
into estuarine ecosystems, they often accumulate in the sed- 
iments (Lyons and Fitzgerald 1980; Santschi et al. 1980; Ray 
t984). As a result, ecosystems such as seaports or other in- 
dustrialized coastal areas that have chronic inputs of metals 
have highly contaminated sediments. This characteristic has 
led to concerns over the ecological effects that may be asso- 
ciated with sediment quality. Of particular concern are toxic 
effects and the potential for bioaccumulation of metals in 
biota exposed to the sediments. Since Cd is a toxic element 
found in many industrial effluents, considerable interest and 
research has been generated concerning its flux in the 
water-sediment-biota system (Ray 1984). Although or- 
ganisms can accumulate Cd from sediments, the mecha- 
nisms controlling bioavailability are poorly understood (Ray 
1984; Ray and McLeese 1987). Few studies have demon- 
strated strong correlations between sediment metal concen- 
trations and toxicity or bioaccumulation potential (Neff et 
al. 1978; Rule 1985). In a study of 136 combinations (sedi- 
ments-invertebrates-metals-salinities), only 36% of these 

showed a significant relationship between metal concentra- 
tions extracted from the sediments and in the tissues of the 
exposed organisms (Neff et al. 1978). These and other 
workers have generally used the total (or bulk) metal sedi- 
ment content or a hot, concentrated acid extraction for sedi- 
ment metals (Kersten and Forstner 1987; Rubinstein et al. 
1983), so the lack of correlation does not seem surprising. 
Studies of dredged material have suggested that metals may 
be more biologically available in coarse sediments that dis- 
play relatively low acid extractable concentrations than in 
finer textured sediments with greater extractable concentra- 
tions (Alden et al. 1988; Butt et al. 1985; Rule 1985). 

Cadmium and Hg uptake by Mytilus edulis and Mytilus 
demissus was related to the amounts in a dilute HC1 extract 
and total organic matter from sediments consisting mostly of 
sand with detritus or estuarine peat (Breteler and Saksa 
1985). The major chemically active sediment form in these 
studies was the organic matter and its relationship with up- 
take was found as expected. 

The uptake of heavy metals (including Cd) is related to the 
geochemical sediment phase in model, single phase systems. 
Cooke et al. (1979) and Davies-Colley et al. (1984), mea- 
sured bioaccumulation from aerobic systems containing 
only iron oxide, manganese oxide, inorganic CaCO3, bio- 
genic CaCO3, or a silicate clay mineral. These authors have 
given insight into binding/desorption and bioavailability 
from specific mineral phases but have not addressed multi- 
phase systems in which these different mineral forms will 
compete for metals (Luoma & Bryan t98l) or anaerobic sed- 
iments where metal sulfides will constitute a major phase 
(Davies-Colley et al. 1984). 

In order to further explore the relationship between sedi- 
ment Cd and its uptake by estuarine organisms, a laboratory 
study was conducted to determine the biological availability 
of Cd to grass shrimp (Palaemonetes pugio), blue mussel 
(Mytilus edulis) and the polychaete worm (Nereis virens). 
The objectives of the study were to (1) determine the effects 
of sediment type, sediment Cd concentration, and their in- 
teraction on mortalities, respiration rates, and Cd bioaccu- 
mulation in the test species, (2) determine if added Cd af- 
fected the body burdens of Cu, Fe, Mn, Ni, Pb, or Zn, and 
(3) determine the relationship between the geochemical frac- 
tionation of Cd in the sediments and mortality, respiration 
and bioaccumulation. 
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Sand, silt, and clay textured sediments were taken from the Lynn- 
haven Estuary, Virginia Beach, VA (Figure 1). This system is rela- 
tively free of direct industrial inputs, is surrounded by residential 
areas, and drains directly into the Chesapeake Bay. Each sediment 
was wet sieved through a 4 mm plastic mesh, thoroughly mixed, and 
the percent solids determined. Within 24 hr after collection, 2.5 L 
portions of sediments were placed in 4-L plastic jars and an appro- 
priate amount of 1,000 mg/ml Cd standard solution was added to 
give 0 mg/kg (background), 5 mg/kg, and 10 mg/kg concentrations 
(dry weight basis) for each sediment type. After shaking for 24 hr 
the samples were placed in 30-L aquaria with 20 ppt salinity artifi- 
cial sea water. After a 24-hr settling period, a plastic screen divider 
was placed in the center of each aquarium and an aerator/circulator 
was added to each end of the tank (Figure 2). The test animals were 
introduced to the aquaria 48 hr after the circulating systems were 
started. Each 30-L aquarium contained two test populations which 
were exposed to separate plots of sediments in independent circula- 
tion cells of water flow. Preliminary statistical evaluations were 

conducted on the biological and geochemical data in order to deter- 
mine whether the communication of water through the screen (pri- 
marily via diffusion) affected the "within aquarium" replicates rela- 
tive to the "between aquarium" replicates. Neither means or vari- 
ances were significantly different between the "within" and the 
"be tween"  effects for any of the treatments, so a tota! of six repli- 
cates were considered for each treatment. 

The grass shrimp were collected in the same area as the test sedi- 
ments; the blue mussels at the Chesapeake Light tower, east of the 
Chesapeake Bay mouth, and the polychaetes were purchased from 
a commercial aquaculture firm. All organisms were acclimated for 
seven days at the test conditions of 20~ and 20 ppt salinity before 
the experiments. Ten each of the grass shrimp and blue mussels and 
five each of the polychaetes were added to each half of the aquaria. 
Organisms were taken at this stage for background metal concen- 
trations and prepared for analysis as described below. 

The 14-day experiments  followed the solid phase bioassay 
methods described by the US EPA and COE (1978). Seventy-five 
percent of the water was changed every other day and the or- 
ganisms were not fed during the experiments. 

At the end of the 14-day exposure, the respiration rates of the 
shrimp and mussels were measured, using aquaria water and a 
flow-through respiration system that has been successfully used in 
previous tests of the sublethal effects of dredged materials (Alden et 
al. 1988). Live/dead counts were made and all live organisms were 
dupurated for 24 hr in freshly prepared 20 ppt salinity water  to purge 
sediments from their guts. Palaemonetes pugio and N. virens were 
rinsed quickly with deionized water, blotted, frozen for 48 hr, and 
dried at 60~ M. edulis was washed with deionized water, frozen 
for 48 hr, shucked, and the tissue and fluids dried at 60~ The dry 
tissue was stored less than one month before digestion. Organisms 
were digested in 22.4 M redistilled HNO 3 + 30% HzO v 

Sediment samples were collected at the beginning and at the end 
of the experiment. Samples were collected from three random loca- 
tions in each half of each aquarium and composited to form two 
replicate samples per tank. The samples were centrifuged to remove 
excess water, remixed and subsampled for moisture determination. 
A sequential selective extraction series (modified from Brannon et 
al. 1976) was conducted as shown in Figure 3. Wet sediments (5 g 
dry wt) were subjected to the sequential extraction series in Figure 
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Fig. 3. Selective extraction scheme 

3. Volumes of extractant were 50 or 60 ml for the different reagents. 
Details and discussion of the procedure can be obtained from the 
authors. 

Sand, silt, and clay distribution in the sediments was determined 
by sieve and pipette methods after removal of soluble salts and dis- 
persion with sodium hexametaphosphate (Gee and Bauder 1986). 
Sediment organic carbon was measured by a wet dichromate oxida- 
tion technique (Nelson and Sommers 1982). 

All metals (Cd, Cu, Fe, Mn, Ni, Pb, and Zn) were determined by 
atomic absorption spectrophotometry (AAS), using a Perkin-Elmer 
Model 603 and deuterium background correction. Standards were 
prepared in the appropriate matrix for the various extracts. Quality 
control materials were SRM 1566 (Oyster Tissue) from the National 
Bureau of Standards and WP-386 concentrate from the US EPA for 
spiking the selective extraction matrices. All QC results were within 
the acceptable limits for all of the materials and matrices. 

The biological data were analyzed by a 2-way ANOVA and 
Duncan's Range Test and, if indicated, by a regression-based 
ANOVA of main effects and interactions. A stepwise regression was 
utilized to determine relationships between the Cd body burdens 
and the geochemical fractions, and sediment characteristics of the 
treatments. All statistical analyses were conducted with the SAS 
statistical package (SAS 1985). 

Results and Discussion 

Although there was a relatively high sand content of all sedi- 
ment types (Table 1), the very fine size of the sand in the 
"si l t"  and "clay" types yielded field characteristics of these 
textures. Grain size in the "sand"  texture was mostly in the 
coarsest (1-2 ram) range. Organic carbon content increased 
with decreasing particle size. 

In the majority of the native sediments, Cd was in the acid 
extractable phase (AEP) and organic sulfide phase (OSP) 
(Figure 4A). The Cd in the AEP is interpreted to be bound 
by the most resistant oxides and structurally in other resis- 
tant minerals. Cadmium in the OSP was most likely in the 
form of sulfides (Davies-Colley et al. 1984; Gardiner 1974; 
Lee and Kittrick 1984). No correlation of Cd with organic 
carbon was found for any of the sediment-treatment-extrac- 
tion combinations. The large majority of applied Cd resided 
in the OSP, with the second greatest amount in the easily 
reducible phase (ERP) (Figure 4B, C). There were similar 
amounts of Cd in the ERP of the respective sediments for 
both the 5 and 10 mg/kg treatments, indicating that the 
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Table I. Mean values of sedimentological characteristics of test 
sediments. Standard errors of the means are in parenthesis (n = 18) 

Sediment % Organic 
type % Sand % Silt % Clay carbon 

Sand 95.9 (0.4) 1.2 (0.3) 2.4 (0.2) 0.2 (0.03) 
Silt 74.5 (0.9) 19.3 (0.6) 6.9 (0.3) 1.2 (0.08) 
Clay 59.6 (1.4) 19.4 (1.0) 11.0 (0.4) 1.7 (0.09) 

binding capacity of this phase was met or exceeded with 5 
mg/kg of added Cd. The form of Cd in this phase is uncer- 
tain; this is commonly defined as the Mn-oxide phase but the 
concentration of extractable Mn was very low (<1 mg/kg). 
Significant amounts of Fe (>100 mg/kg) were extracted in 
the ERP and it is possible that the Cd was associated with 
the easily reducible forms of Fe. Cadmium in the exchange- 
able phase (EP) was detected only in the sand (avg. of 0.04 
_ 0.005 mg/kg for treated sands). Equivalent, low levels of 
Cd were found in the AEP of 5 and 10 mg/kg treatments for 
the respective sediment types, indicating little reactivity (Cd 
binding) of this phase. 

Mortalities of the test species were low (<15%) and not 
significantly related to sediment type (TRT1), Cd concentra- 
tion (TRT2), or their interaction. Body burdens of Cu, Fe, 
Mn, Ni, Pb, or Zn showed no significant difference for any 
test organisms from any of the Cd treatments (Table 2). The 
initial postulate that added Cd might affect the uptake of 
these metals was not valid. Cadmium content of N.  virens 
did not vary with the sediment type or Cd treatment, unlike 
the results of Ray et al. (1980). An average body burden of 
1.04 mg/kg (dry wt) was obtained in this test species. 

The ANOVA and Duncan's tests indicated that the Cd 
concentrations in the shrimp from the 5 and 10 mg/kg treat- 
ments were significantly higher (p < 0.05) than the controls 
(Figure 5) but the sediment effects were not significant (p = 
0.2). The body burdens of blue mussels were directly related 
to the added Cd, with pronounced effects in the sand treat- 
meats (Figure 6). 

Respiration rates of the blue mussels did not display sig- 
nificant relationships to the Cd treatments or sediment 
types. Gilfdlan et al. (1985) reported that respiration rates of 
M. edulis were not significantly related to body burdens of 
Cd, even though some of the mussels in their study were 
taken from contaminated areas and the "scope for growth" 
indices of the populations were indirectly correlated with 
tissue cadmium levels. Therefore, respiration does not ap- 
pear to be an effective condition index for mussels exposed 
to sublethal levels of Cd. 

In a review of the literature, Eisler (1985) reported that 
cadmium causes respiratory disruption in certain marine 
species. The disruption manifested itself as a reduction in 
respiration in crustaceans (Vernberg et aI. 1974) and an in- 
crease in respiration in fish gill and tissue (Calabrese et aL 
1975). In the present study, significant disruption was ob- 
served to occur in both directions: significantly elevated res- 
piration rates for shrimp populations exposed to the 5 mg/kg 
treatments and significantly depressed rates for those in the 
10 mg/kg treatments, particularly those involving the sandier 
sediments (Figure 7). This pattern follows the "general ad- 
aptation syndrome" (Selye 1976; Sinderman 1985): an in- 
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crease in metabolism in response to the stress of moderate 
levels of a contaminant; and a decrease in metabolism when 
the exposure period and/or the concentration is sufficient to 
cause a collapse in the respiratory compensation response. 
Similar responses have been observed for grass shrimp ex- 
posed to various types of contaminants (Cantelmo et aI, 
1978; Rao et aL 1979; Dillon 1981; Alden et aL 1988). 

Since the 10 mg&g treatment in the sands produced the 
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Table 2. Grand means (mg/kg dry wt) and standard error of the means for elemental analysis of exposed organisms. Numbers in parenthesis 
are the number of observations 

Element M. edulis P. pugio N. virens 

(59) (59) (44) 
Cd 6.18 • 0.62 1.19 • 0.04 1.04 • 3.9 
Cu 11.30 • 0.68 121.31 • 0.97 8.98 • 0.18 
Fe 903 • 260 44.0 • 2.5 304 • 7 
Mn 10.60 • 1.6 7.70 • 0.44 4.20 +-- 73 
Ni 23.80 • 1.1 5.55 -+ 0.21 1.49 • 0.17 
Pb 8.35 • 0.46 9.79 • 0.22 4.06 • 2.49 
Zn 204 • 20 96.5 • 1,6 121 • 14 
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greatest respiration effects and Cd bioaccumulation, a dis- 
criminant analysis was performed to determine how this 
treatment differed from the others in terms of geochemical 
fractionation of Cd. The Cd-10 sand was characterized by 
the highest Cd concentrations in the EP and ERP (Figure 8). 
A second discriminant analysis was run on residuals from a 
MANOVA designed to account for the effects of the Cd 
treatment for all test sediments (i.e., to analyze texture ef- 
fects). Sands had higher Cd levels in the EP and ERP, re- 
gardless of treatment; silts and clays had higher Cd levels in 
the AEP; and silts had the only detectable Cd-MRP (0.03 +- 
0.03 mg/kg for Cd-5) (Figure 9). 

From a geochemical interpretation, the EP and ERP are 
the phases most likely to contain bioavailable elements. 
Metals in these fractions are the most weakly bound and 
should be most available to the water column and/or or- 
ganism uptake. Research suggests that Cd accumulation by 
some organisms is a function of the amount in the aqueous 
phase which, in turn, depends upon the amount and leach- 
ability of the element in the sediment phase (Ray 1984; Ray 
et al. 1980; Ray and McLeese 1983). 

Stepwise regression of the body burden data versus the 
geochemical fractions and sedimentological characteristics 
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Cd, but body burden was also significantly related to the EP 
and ERP (p = 0.005; R z = 0.14; Figure 10B). The 95% pre- 
diction limit is shown for each regression line. All other 
fractions were poorly related, ff at all, to the bioaccumula- 
tion of Cd. The body burden of mussel Cd is described by 
the relationship: 

CdM. eautis = 2.59 + 6.98 [EP + ERP]. 

This equation represents a successful bioaccumulation 
model using selective sequential geochemical extraction of 
estuarine sediments. The regression equation can be slightly 
refined for each of the sediment types but the above general 
equation gives very satisfactory results. The major compo- 
nent of the equation is the ERP Cd which accounts for the 
large majority of the bioavailable Cd. 

indicated that the EP and ERP fractions were the most bio- 
logically available, These two fractions combined were sig- 
nificantly related to the Cd content of M. edulis (p > 0.0001; 
R 2 = 0.73; Figure 10A). The shrimp accumulated far less 

Summary and Conclusions 

The respiration rates of grass shrimp were significantly af- 
fected by the cadmium levels with an interaction between 
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the sediment type and Cd treatment (i.e., most elevated 
rates in the sand-5 mg/kg treatment and, most depressed 
rates in the sand-10 mg/kg treatment) .  Cadmium body 
burdens of the test organisms were significantly higher in 
tanks with added Cd, particularly in the sand treatments. 
The sand treatments were geochemically characterized by 
higher EP and ERP fractions. The EP and ERP fractions of 
all sediments were directly related to the Cd body burdens 
of the test species. Despite the fact that the major portion of 
the added Cd entered the organic/sulfide fraction, the EP 
and ERP fractions that characterized the sands appeared to 
be the most biologically available. 

There appeared to be a finite amount of Cd which could 
be incorporated into the ERP, since these concentrations 
were very similar for both treatment levels and most of the 
additional Cd in the Cd-10 treatment partitioned into the 
OSP. Therefore, analytical protocols focusing upon these 
easily extractable fractions will provide a more ecologically 
realistic picture of the significance of metals contamination 
than will bulk sediment analyses or those using strong ex- 
traction techniques. 
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