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Tree-Based Models for Random Distribution of Mass 
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A mathematical model for distribution of mass in d-dimensional space, based 
upon randomly embedding random trees into space, is introduced and studied. 
The model is a variant of the superBrownian motion process studied by mathe- 
maticians. We present calculations relating to (i) the distribution of position of 
a typical mass element, (ii) moments of the center of mass, (iii) large-deviation 
behavior, and (iv) a recursive self-similarity property. 

KEY WORDS: Spatial distribution; random tree; superBrownian process; 
large deviations; recursive self-similarity. 

1. I N T R O D U C T I O N  

To start with an analogy, it has long been accepted that the mathematical ly  
fundamental  model  for a quanti ty varying randomly  but cont inuously with 
time is (mathematical)  Brownian mot ion  (alternatively called the Wiener 
process or  integrated white noise). This arises in contexts as diverse as dif- 
fusion of particles, stock market  fluctuations, noise in electrical networks, 
and neutral  genetic theory. By contrast,  there is no accepted fundamental  
model  for r andom cont inuous "distribution of mass" in d-dimensional 
space. Such processes also arise in many  contexts: classical spatial 
statistics (5"18'28) deals with examples such as the distribution of the total 
popula t ion of a species over its geographical  range; physicists study 
randomly-growing aggregates of particles. (29'3~ We seek a model  for the 
cont inuous limit of  such processes, where we rescale the total number  of 
particles, popula t ion size, etc., to be 1 unit and refer to this as uni t  mass .  

Although many  models appear  in the books  cited above, these tend to be 
not  only specific to the particular phenomenon  under  study, but  also 

1 Department of Statistics, University of California, Berkeley, California 94720, U.S.A. E-mail: 
aldous@stat.berkeley.edu. 

625 

0022-4715/93/1100-0625507.00/0 �9 1993 Plenum Publishing Corporation 



626 Aldous 

difficult to analyze mathematically, except via Monte Carlo simulation. 
The purpose of this paper is to describe a model "ISE" which seems 
the most fundamental from the mathematical viewpoint. A direct and 
combinatorial description will be given in Section 2, emphasizing that 
apparently different discrete constructions have the same continuous limit 
process ISE. The main content of the paper is Section 3, in which we 
present calculations relating to (i) the distribution of position of a typical 
mass element, (ii) moments of the center of mass, (iii) large-deviation 
behavior, and (iv) a recursive self-similarity property. 

ISE is defined using random branching structures. There are many 
examples of naturally occurring high-density branching structures (a 
referee suggests lightning patterns, neural networks, river systems, human 
arterial networks). Unlike Brownian motion, ISE does not seem directly 
applicable as a realistic model of any specific such real-world phenomenon, 
but may prove useful as a theoretical building block for constructing more 
realistic models. 

As described in Section 4, our model may be considered as a variant 
of the superBrownian process which has been studied intensely by mathe- 
matical probabilists in recent years (ISE is an acronym for integrated 
superBrownian excursion). 

2. A B S T R A C T  TREES A N D  THEIR E M B E D D I N G S  INTO 
d -SPACE 

The material here concerning abstract trees is presented in greater 
detail in ref. 2. 

2.1. Discrete Trees 

A discrete tree consists of a finite number n of vertices and n - 1 edges, 
such that any pair of vertices is linked by a unique path of distinct edges. 
Regarding edges as having length 1, the distance d(x, y) between vertices x 
and y is the number of edges on the linking path. We often distinguish one 
vertex called the root. These are "abstract" trees, in that the vertices are not 
given positions in space. But we can embed a tree into d-space by sending 
the root to the origin 0 and either: (i) regarding each edge as a step of the 
form (0,..., 0,, +_ 1, 0,..., 0), so that each vertex is sent to a vertex of the 
lattice Za; or (ii) regarding each edge as a vector in R d of unit length, so 
that each vertex gets sent to a point in d-space R a. In either case, different 
vertices of the abstract tree may be sent to the same point in d-space. By 
putting mass 1In on each vertex of the abstract tree we get an abstract unit 
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mass distribution, and then an embedding gives a unit mass distribution in 
d-space. 

We now introduce randomness into both the abstract tree structure 
and the embedding. It is easy to specify the latter: for each edge we make 
an independent random choice, either [case (i)] uniformly over the 2d 
possible directions, or [case (ii)] uniformly over all directions in d-space. 
Below are three different (at first sight) models of random n-vertex abstract 
trees. 

Combinatorial models. Here we assume all n-vertex trees to be 
equally likely. Because there are different conventions about when two trees 
are to be regarded as "the same," and because we may impose restrictions 
on allowable degrees of vertices, there are quite a number of different 
models of this type. 

Conditioned branching processes. Consider a population process, 
starting with one individual, in which each individual has a random 
number of offspring (mean 1, variance 0 < r < oo). This process has some 
random total population size: conditional on this total population size 
being n, the family tree is a random n-vertex tree. 

Combinatorial aggregation. Start with n vertices and no edges. 
Repeatedly add an edge, chosen uniformly at random from the edges whose 
addition would not create a cycle. After n -  1 edges have been added, a 
random n-vertex tree has been created. 

Although these constructions look different, it is known that com- 
binatorial models (with certain conventions) are exactly the same as 
conditioned branching process models (with certain offspring distributions). 
See, e.g., ref. 2, Section 2.1. And there is compelling evidence (ref. 1 and an 
interchange-of-limits argument) that, in the n --* oo limits we are concerned 
with here, the combinatorial aggregation model coincides with the other 
models. 

2 .2 .  C o n t i n u u m  T r e e s  

The previous section described random discrete mass distributions in 
d-space, and our ISE model will be the continuous rescaled limit of 
these. But mathematically it is more useful to interchange the order of 
embedding/taking continuous limits. That is, we first describe an abstract 
"continuum random tree" (CRT) and then it is easy to describe how to 
embed it randomly into d-space. 

Figure 1 illustrates part of an abstract continuum tree (the reader 
should mentally add more and more shorter and shorter edges). In such a 
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tree, interior vertices are spread continuously along edges, and there is a 
unique path [of length d(x, y), say] between any pair x, y of certices. 
We also have "unit mass" spread around the vertices, with the mass 
concentrated on the leaves rather than the interior points of paths. 

The particular model of random continuum tree we use, the Brownian 
CRT, was discussed at length in ref. 2, and has several alternative descrip- 
tions and constructions. (Keep in mind it is an abstract tree.) Up to scaling 
constants discussed in Section 2.3, it is the limit of the random discrete 
abstract tree models of Section 2.1, when edges are scaled to have length 
n-1/2. An intrinsic description is via the spanning subtree N~ spanned by 
the root and (X1,...,Xk), where the (Xi) are independent uniform random 
vertices chosen from a realization of the Brownian CRT. See Fig. 2, 
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ignoring the y's for now. This tree has a "shape" i and 2 k -  1 edge length 
(li), and p.d.f. (probability density function) 

(2k-lli) exp (2k 1li)2/21 (1 
f( ' ;  ll '""12k-1)=\ i_-~l I - - ' ,  i--~l ) 

For discussion of this fundamental formula from the present viewpoint see 
ref. 2, Eq. (13), and ref. 3, Lemma21; see also ref. 16 for a different 
approach. The "shape" indicates which existing edge a new vertex and its 
edge are attached to. Since there are 2 j - 1  choices of edge to which the 
edge to x j+ 1 may be attached, the number of different shapes equals 

k 1 
1-[ ( 2 j -  1) (2) 

j=l 
We will use (1) as a starting point for calculations in Section 3. We men- 
tion that there are two other descriptions of the Brownian CRT: one gives 
a sequential procedure for growing the tree by adding branches to the 
existing tree, and the other is a construction in terms in Brownian excur- 
sion. Note that expression (1) really is a probability density, i.e., integrating 
over the (li) and summing over the i gives 1 exactly. Note also that (1) 
does not assert that the total edge length has Rayleigh density I exp(-12/2). 

To embed an abstract continuum tree into d-space, take a sequence of 
leaves (xl, x2,...) dense in the tree. For each k, the root and the leaves 
( X l , . . .  , Xk) determine k - 1  interior branch points (b I ..... b k _ l )  and 2 k - 1  
edges (ei) of lengths (l~), say. Embed the tree into d-space by sending the 
root to 0 and replacing each edge e~ with a Brownian motion sample path 
of duration l~. Figure 3 sketches the embedding of the leaves (x~ ..... xs) in 

Fig. 3 
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Fig. 1 (genuine two-dimensional Brownian motion is much more tangled 
than the sketch shows). 

The object of our study is the Brownian CRT, embedded into d-space 
as described above. The resulting random distribution of unit mass in 
d-space we call ISE and write as #//. Associated with ISE is its s u p p o r t  5#, 

the (random) smallest closed set containing all the unit mass (it turns out 
that 5 # is a connected set). Figure 4 shows two independent realizations of 
ISE, by picturing 1000 points sampled from each. Note that the tree 
structure is hardly visible in two dimensions. 

2.3 .  ISE as a L i m i t  o f  E m b e d d e d  D i s c r e t e  T rees  

ISE appears as a rescaled limit of embedded discrete trees, as follows. 
Consider the "conditioned branching process" model of random n-vertex 
abstract trees, with parameter  o .2 representing offspring variance. Embed 
into d-space, by making the edges become independent random vectors L 
with,mean 0 and covariance matrix O2Id, where Id is the identity matrix. 
Then the resulting mass distribution is asymptotically ISE, scaled by a 
factor 

Off - l / 2n  1/4 (3) 
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Note that the exponent of n is 1/4, not 1/2. Note also that in the simplest 
models of embedding mentioned in Section 2.1 we have 0 = d 1/2 Finally, 
note that the different models of random n-tree mentioned in Section 2.1 
will have the same behavior for the appropriate value of ~r. 

To explain (3), note first that scalling the abstract Brownian CRT by 
c is equivalent to scaling the embedded ISE by c m, by the usual Brownian 
scaling law. By ref. 3, Theorem 23, the abstract n-tree approximates the 
Brownian CRT scaled by • ~n 1/2, so that (in the case 0-- 1) the embedded 
discrete tree approximates the embedded continuum tree, which by the 
scaling property above is ISE scaled by (ff-1nl/2)l/2. The case of general 0 
follows by another use of Brownian scaling. 

3. M A T H E M A T I C A L  PROPERTIES 

3.1. Joint  Distr ibutions 

One starting point for mathematical analysis is an expression for the 
joint distribution of the positions (X (1) ..... X (k)) of k independent, 
randomly-picked mass elements from ISE. If these are at positions 
(xl ..... xk), there is an associated tree structure illustrated in Fig. 2. There 
is an abstract tree whose leaves are embedded at (xl ..... xk), and whose 
branch points are embedded somewhere: write (yi) for the embedded posi- 
tions of the leaves and branch points, and (l~) for the lengths of edges in 
the abstract tree, and i for the "shape" of the abstract tree. Combining (1) 
and the d-dimensional standard normal density gives the following joint 
p.d.f, for the shape, the abstract edge lengths, and the embedded positions 
of leaves and branch points: 

f ( t ;  l_,...,lzk_l; Y l  .. . . .  Y 2 k  1) 

=(2~)  (2k 1)d/2 I ~  e l(e)] 

1 2 (Ay(e))2~ (4) 
l(e) J 

Here for each edge e, l(e) denotes its length in the abstract tree and 
Ay(e) = ] y * - y * ]  is the distance between endpoints after embedding. Thus 
the joint density of (X ~1) ..... X (k)) at (xl,..., xk) can in principle be obtained 
by summing over i and integrating over the (/i; Yi) for which the positions 
of the leaves are (xi). 
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We first consider the case k = 1, i.e., the position X = (X~,..., Xa) of a 
single randomly-chosen mass element from ISE. Here (4) can be collapsed 
to 

X= H1/2Z (5) 

where H, the distance in the abstract tree from a randomly chosen vertex 
to the root, has p.d.f, f14(h)=he -h2/2, where Z has standard normal 
distribution in d dimensions, and where H and Z are independent. We now 
list some immediate consequences of (5). 

(a) Consistency between dimensions, i.e., the distribution of 
(X1,..., Xj) is the same for all d>>.j. 

(b) Xi and Xj are uncorrelated but not independent. 

(c) X~ has a symmetric distribution whose even moments are 

(d) 

EX~n=~ 1/223n/2F(n-I-~) [ ' ( ; +  

X has the spherically symmetric p.d.f. 

f o  [ l fx(x)  = (2n)-d/2 hi d/2 exp - 

1) ,  n>~l (6) 

We do not have any simple explicit formula for the integral in (7), even in 
the case d =  1 where the moments are given by (6). However, by Laplace's 
method (i.e., expanding the integrand about its maximum) we obtain the 
asymptotics 

fx(x)  ~ 2 (d+ 1)/331/27.C(1- d)/2 IX [ (2--d)/3 exp(-- 3" 2 -5/3 Ixl 4/3) as Ixl - - '  oo 

(8) 

As an illustration of calculations based upon (4), consider the center of 
mass S = ($1 ..... Sa) of ISE. (S is a random point in Ra). S has spherically 
symmetric distribution, and in principle we can compute even moments of 
$1. The second moment is more easily calculated by a symmetry argument 
[see (13) below]. The fourth moment is 

ES4=fo ""fo ( 45/1 + 57/112) i_~1 li 

x exp - li 2 dll ...dlT,~ 1.40 (9) 
i 1 
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Unfortunately, the method soon becomes impractical, due to combinatorial 
explosion in both the first term of the integrand and the dimension of the 
integral. 

Here is the calculation for (9). First observe 

ES 4 = E(X(I)X(2)X (3)X (4)) (lO) 

where the X (;) are independent choices of mass elements from the same 
realization of ISE. Consider the associated tree structure as in Fig. 2. 
Associated with each edge e is an increment A Y(e), and the Xj are the sums 
of the A Y(e) along the path from the root to x;. Expanding (10), the only 
terms with nonzero expectation are those where each A Y(e) has even 
power, so the contribution to (10) from the tree shape i in Fig. 2 is 

E(A Y(el ) )  4 + 4 terms of form E(A Y(e~)) 2 (A Y(ej)) 2 

Writing A Y(ei)=l~/2Zi for standard normal Zi, we find that the 
contribution is 

312 + 4 terms of form lil; (11) 

There are 15 tree shapes i [cf. (2)], of which 12 are topologically the same 
as Fig. 2 and the other three are a different topological type, for which the 
contribution (11) has three instead of four cross-terms. Combining (11) 
with the density (1) leads to (9). 

3.2. R e r o o t i n g  S y m m e t r y  

One of the combinatorial models on n-vertex trees appearing in 
Section 2.1 is the "uniform random rooted labeled unordered tree," where 
one starts with n distinguishable vertices, then picks uniformly from the 
n n-2 ways to join the vertices into a tree, and then picks uniformly a vertex 
to be the root. This obviously has the property of "random rerooting 
invariance," i.e., that choosing a new root uniformly from the vertices does 
not alter the distribution. This property extends to the Brownian CRT and 
then to ISE, using the time-reversal property 

(B  t" 0 <<. t <~ to) a= (Bto_,  _ Bt ~ : 0 ~ t <~ to) 

of Brownian motion. Explicitly, the property for ISE is as follows. From a 
realization of Jr pick uniformly a mass element X, translate the realization 
so that X is moved to 0, and call the resulting mass distribution tit*. Then 
(unconditionally) ~ *  has the same distribution as J//. This immediately 
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implies, in one dimension, that the random amount  U of mass in [0, oe) 
satisfies 

U has uniform distribution on [0, 1] (12) 

It also enables us to do a simple calculation of second moments  for the 
center of mass S. Writing X as above for a randomly chosen mass element, 
we have 

E I X I  2 = E I S I  z + E I X -  Sf 2 = 2EISI 2 

where the second equality uses the random rerooting property and the first 
equality is the elementary variance identity; for any mass distribution # 
with center of mass s 

f lxl2~(dx)= Is12+ f Ix-sl2~(dx) 

Now using (6), we obtain 

E IX-I z = d E X  2 = d ( ~ / 2 )  ~/2 

implying 

E I S I  2 = �89 d ( ~ / 2 )  ~/2 (13) 

A few more distributional results about  ISE can be deduced from 
distributional results in ref. 2 about  the Brownian CRT, but let us not 
exhaust the reader. To mention a simple open question, in d = 1 the mass 
distribution is supported on some random interval [L, R]  containing 0, 
but there are no known expressions for p.d.f.'s or expectations of R or the 
length R - L. 

3.3. Large-Deviation Behavior 

ISE has an interesting large-deviation behavior, stated as (16) and 
(17) below. For  purposes of comparison, and because we reuse some 
ingredients of the proof, we first recall some known large-deviation 
behavior of the B r o w n i a n  br idge  B ~  (B~ 0~< t ~< 1), that is, standard 
d-dimensional Brownian motion conditioned on B 1 =0 .  Fix a finite set 
x = {Xl ..... xk} of points in R d. Then a precise limit result is 

lim lim sup e -  1 log P(E 1/2B~ visits a 6-neighborhood of each xi) 
6.[0 ~ 0  

= - �89 2 (14) 
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where TSP(x) is the length of the traveling salesman path through x and 0, 
that is, the shortest path starting and ending at 0 which passes through 
each xi is some unspecified order. More informally, we may rewrite (14) as 

P(g 1/290 visits a neighborhood of each xi) 

e x p (  [TSP(x) ]2 )  
\ ~ee J as g ~ O  (15) 

To state an analogous result for ISE, recall J denotes its support, and 
write el/25 ~ for the support after scaling d-space by e u2. Then 

lim lim sup e-4/3 log P(d/25e intersects a 6-neighborhood of each xi) 
5~0 e$O 

= - 3 . 2 - 5 / 3 [ S T ( x ) ]  4/3 (16) 

where ST(x) is the length of (i.e., sum of edge-lengths in) the Steiner tree 
on x and 0, i.e., the tree of shortest length containing x and 0. More 
informally, we may rewrite (16) as 

P(el/25 ~ intersects a neighborhood of each x~) 

3.2  5/3[-ST(x)34/3"~ 
~exp  - g4/3 j as ~ 0  (17) 

It is important to distinguish the Steiner tree from the minimum spanning 
tree: the former is allowed to have branch points outside the given vertex- 
set x w {0}. It is interesting that the large-deviation behavior of both the 
abstract Brownian CRT and the embedding affect the large-deviation 
behavior of ISE. The 4/3 power law in (16) and (17) results from the 
interplay between these two behaviors. 

At the rigorous level, (14) may be derived from Schilder's theorem 
(e.g., ref. 8, Theorem 5.2.3), although I do not know an explicit reference. 
Here is the argument in outline. Consider times 0 =  to< t~ < - . - <  t~< 
t k + l =  1 and points in d-space 0 = Xo*, Xl,...,* xk*, xk+* 1 = 0, where the (x~) 
are some permutation of (xi). The large-deviation theorem for the multi- 
variate normal distribution implies 

P(el/2B ~ in neighborhood ofxi  for all i) 

1 k+l ix._xL,12,~ 
~ e x p  - ~e ,~1 t i~ t ,~-I  / (18) 

Now the fundamental large-deviation paradigm is that the probability of 
a rare event happening in some unspecified way is (up to subexponential 
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terms) just the probability of it happening in the most likely specified way. 
Thus the right side of (15) is obtained by minimizing the sum in (18). 
Fixing the (x*), the minimum over (t~) is attained by 

[x*-x*_ l ]  A = ~  I x * - x *  ,] 
t i - -  t i  1 - -  A ' - 

i 

and the minimized value equals A 2. And by definition the minimum value 
of A over permutations (x*) is  TSP(x), establishing (15). 

To obtain (17) requires only a slightly more elaborate argument. 
Given x, use (4) and scaling to see that the probability of an embedded tree 
structure as in Fig. 2, with each yi in a neighborhood of xi, is 

exp - ~ where F =  l(e) + lAy(e)]2 (19) 
' /(~) 

Appealing to the large-deviation paradigm again, we seek the minimum 
value of F over all tree shapes i, edge lengths (I(e)), and embedded branch- 
point positions (Yi) including leaves x. To calculate the minimum, first fix 
i and (Yi) and a constant A, and first minimize over edge lengths (l(e)) 
with ~2e l(e)=A. Arguing as in the previous analysis, we find that the 
minimum is attained by 

A 
l(e) = Ay(e) B' where B = ~ Ay(e) 

e 

and the minimized value is 

I"----  A 2 -I- B2/A 

Minimizing over A gives the minimum value F = 3 . 2  2/394/3. And by 
definition the minimum value of B over all trees in d-space with root 0 and 
leaves x is ST(x). 

3.4. Dimension and Tree St ructure  of ISE 

A realization of 5 ~, the support of ISE, has dimension min(4, d) in any 
of the usual senses of fractal dimension. This is known rigorously from 
superprocess results (Section 4.1), but here is the intuitive explanation of 
"4." Choosing k vertices at random in the Brownian CRT, the maximal 
distance from any point of the CRT to the nearest of the k points is 
k 1/2+~ and this order cannot be improved by any other choice of k 
points. The Brownian embedding of the abstract tree into d-space sends 
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points a distance 6 apart in the abstract tree to points in R a a distance 
0(61/2) apart. So the maximum distance of any point in 5 a to the nearest 
of k randomly picked mass elements of ISE is k 1/4+~ 

It is important to distinguish the above from a different notion of 
dimension. If one picks two random points from a continuous density on 
R a, the chance that the two points are less than e apart is e a+~ as e ~ 0. 
What if we pick two vertices X (~), X (2) from ISE? By rerooting symmetry 
X (2)-  X (1) is distributed as a single random element X, and by (7) this has 
finite p.d.f, at 0, so 

P(JX(2) -X( I )  I < e ) = e  a+~ as e-- ,0  

in this sense ISE behaves as if it has dimension d. 
A related question is: when is 5 p itself a tree, i.e., when does 5 P possess 

the property that there is a unique path between any two points? In other 
words, when does 5 ~ have no self-intersections? The heuristic rule is that 
subsets of dimensions d~ and d2 in general position in R a will not intersect 
if d >  dl + d2, but may intersect if d <  dl + d2. Applying this rule of different 
branches of 5 ~ suggests that 5 p is a tree in d>~ 9 and is not a tree in d~< 7. 
These results (and the deeper fact that 5 P is a tree in the critical dimension 
d = 8 )  also are known rigorously from the superprocess literature 
(Section 4.1 ). 

3.5. Recursive Self-Similarity 

ISE has a property of being the superposition of three randomly 
rescaled independent copies of itself. To put this in context, recall the 
familiar recursive constructions of fractals such as the Cantor set or the 
Sierpinski gasket, which can be decomposed into (deterministically) 
rescaled copies of themselves. Randomized versions of such constructions 
have been studied in detail. (17) A somewhat different recursive self-similarity 
property for the Brownian CRT is given in ref. 4, Theorem 2, and the 
corresponding property for ISE, which we now state, is an immediate 
consequence. 

Say Brownian scaling by c to mean scaling space by c 1/2 and scaling 
mass by c. Let ~/1, ~2 ,  J//3 be independent copies of ISE. Independenly, let 
(A1, A2, A3) have density 

f (Ul,  U2, U3)=(2rC ) 1.(/./1/./2/./3) 1/2 on {ui>0;Ul-l-u2--l--u3=l} (20) 

Define Jg* to be 4 Brownian-scaled by A i. Pick a random mass element 
X* from ~ * .  Translate ~ / *  and de'* by the map x ~ x + X * ,  and super- 
impose these translated mass distributions and .#~' to obtain a random 
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mass distribution J/{*. Because A s - ] - A 2 d - A  3 = 1, it follows that J/d* is a 
unit mass distribution, and the recursive self-similarity property of ISE is 
that J4"* is also ISE. 

4. S U P E R P R O C E S S E S  

We have used the phrase "random mass distribution" for what mathe- 
maticians call "random probability distribution" or "random measure." 
The field of superprocesses (the papers we cite (6, 7, ~0.1~. 13.15.22, 23, 27) form only 
a small part of recent work in this field) studies random measures evolving 
with time, as the continuous limit of processes of particles undergoing both 
branching and spatial movement. The superBrownian case is where the 
spatial movement of a particle's ancestral line is a Brownian motion. The 
simplest setup for superBrownian motion is to start at time 0 with unit 
mass at the origin: the total mass varies randomly with time until a 
random finite extinction time. Our model, integrated superBrownian 
excursion, features two variations on that simplest setup. 

(i) We integrate over time, to get a random measure without "time" 
explicitly involved. 

(ii) We start at time 0 with an infinitesimal mass at the origin, and 
condition on the total (i.e., integrated over time) mass until extinction 
being exactly one unit. 

The first variation has been discussed in the literature, (6'22'23) but the 
second has not (though the somewhat related case of conditioning on never 
becoming extinct is treated in ref. 3). The mathematical litature is rather 
impenetrable and does not emphasize the kind of concrete calculations 
given in Section 3. For  instance, calculations of moments via tree diagrams 
are performed as means to some other end (e.g., refs. 9 and 10) rather than 
as natural explicit calculations in themselves. Our combinatorial approach 
has advantages (e.g., the rerooting symmetry in Section 3.2, which seems 
more mysterious from the conventional superprocess approach) and 
disadvantages (e.g., the connection between superprocesses and partial 
differential equations ~2) gets lost). 

4.1. Rigorous Results 

The constructions of the Brownian CRT and of the superBrownian 
process from Brownian excursion (2'3'1s'16) enable us to connect rigorously 
the definition of ISE in Section 2.2 with the superprocess definition above. 
There is no difficulty in seeing that the calculations in Sections 3.1, 3.2, and 
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3.5 are rigorous. The assertions on dimension and self-intersection in 
Section 3.4 follow from rigorous results on superBrownian motion (6'27) 
because conditioning does not affect such "local behavior of sample paths" 
results. Our calculations in Section 3.3 establish (16) as a rigorous lower 
bound on the asymptotic probability in question. A rigorous upper bound, 
involving more technical analysis, has been given by Dembo and Zeitouni 
(personal communication). 

4.2. La t t ice  Trees 

The most interesting and difficult questions of rigorous proof concern 
limits of random lattice trees or lattice animals. As an analogy, it has long 
been believed (and recently proved(19~--see ref. 25 for a survey) that above 
the critical dimension d=  4 the self-avoiding walk rescales to Bownian 
motion. It seems equally intuitively clear that random lattice trees, above 
the critical dimension d=8,  should approximate ISE scaled by Cd nl/4. 
Results relating to this n 1/4 power law have been established by Hara and 
Slade (21'2~ using lace expansion techniques similar to those used on self- 
avoiding walk. But the connection with ISE has apparently not been made 
in the physics literature. Whether the ISE limit can be proved rigorously 
seems an important open question. 

5. R E L A T I O N  TO O T H E R  M O D E L S  

The practical models mentioned in the Introduction have definitions 
intimately tied to the geometry of d-space. On the other hand, axiomatic 
methods of defining random distributions of mass typically lead to the 
Dirichlet distributions discussed by Ferguson. (14) These are discrete 
distributions whose definition pays no attention to the geometry of 
d-dimensional space [the occurrence of a Dirichlet distribution at (20) 
seems merely coincidental]. Our model is intermediate between these, and 
might be called semi geometric. Quite different tree-based models have been 
proposed by Mauldin e t a / .  (26) and Lavine, (24~ who emphasize statistical 
modeling issues. 
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