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We have employed a computer simulation method for uniaxial compression to 
create random, but spatially inhomogeneous, disk and sphere packings in con- 
tact with exposed faces of their own close-packed crystals. The disk calculations 
involved 7920 movable particles, while the sphere cases utilized over 4000 par- 
ticles. Rates of compression to the jamming limit were varied over two orders 
of magnitude, and in three dimensions this produced a clear distinction between 
the cases of jamming against (001) and (I 11) faces of the sphere crystal, Specifi- 
cally, epitaxial order next to the (001) face was markedly enhanced by slowing 
the compression; for the (111) face the epitaxial order was quite insensitive to 
the compression rate. 

KEY WORDS: Rigid disks; rigid spheres; amorphous solids; glasses; epitaxial 
order; crystallization; interfaces. 

1. I N T R O D U C T I O N  

The power  of s tat is t ical  mechanics  to descr ibe  the behav io r  of real ma t t e r  
stems in large par t  f rom its capac i ty  to exploi t  s imple models.  The  rigid 
sphere mode l  (and its two-d imens iona l  r igid disk relat ive)  have cer ta inly  
been p rominen t  in this regard.  (1 6) They are sufficiently rich to offer insights 
in to  the na ture  of  dense fluids, a m o r p h o u s  solids, and  the freezing 
t ransi t ion.  The  present  s tudy touches  aspects  of all of these. 

O u r  p r io r  work  has focused on  the geomet r ica l  p roper t ies  of r a n d o m  
disk and  sphere packings ,  (7'8) and  has a d d e d  to a g rowing  l i te ra ture  of such 
studies. (9-~s) The pr inc ipa l  mo t iva t ion  behind  these invest igat ions  has been 
the desire to unde r s t and  the a tomic  s t ructure  of noncrys ta l l ine  solids as a 
form of  bulk  mat ter .  However ,  the emphas is  in the present  pape r  concerns  
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the interfaces between crystalline and amorphous regions, both of which 
are geometrically packed (i.e., jammed). We believe the results may have 
relevance to the kinetics of crystal growth from strongly supercooled 
liquids and glasses, and to the mechanical strength of "welds" between 
macroscopic crystalline domains. 

The properties of random disk and sphere packings are sensitive to the 
method used in their formation, in particular, whether sequential addition 
or full-system compression is selected. This distinction is vital in the 
present context, since the usual sequential addition method can yield only 
crystalline packings for some substrate selections, rather than crystalline- 
amorphous interfaces. 

Section 2 presents our computational procedure, involving selection of 
a fixed substrate array and a dynamical protocol for jamming particles 
against this array. Section 3 describes results obtained for rigid disks. 
Sections 4 and 5 report sphere results, respectively, for packing against 
(001) and (111) substrate crystal faces. The concluding Section 6 interprets 
our findings in the light of earlier literature on random packings, and in 
terms of application to real materials phenomena. 

2. C O M P U T A T I O N A L  P R O C E D U R E  

The objective is to produce randomly jammed arrangements of 
large numbers of disks or spheres in contact with a close-packed crystal 
surface composed of the same kind of particle. For this purpose we used 
rectangular (disks) and rectangular-solid (spheres) cells to contain the 
particles. A single layer of immovable particles stretches across the center 
of the cell, presenting the desired crystal face to the movable particles 
above and below. Periodic boundary conditions apply in all directions 
normal to the cell faces. For a given number of particles the cell is initially 
chosen to be sufficiently elongated in the direction perpendicular to the 
fixed crystal surface so as to correspond to a relatively dilute fluid. Figure 1 
illustrates this initial geometry. Jamming is produced by shrinking the 
length of the cell normal to the fixed layer (until the available configuration 
space undergoes dimensional reduction(7'8)). 

Our disk calculations have involved 8000 particles, including those 
forming the fixed crystal layer. This layer consisted of 80 disks. The initial 
dimensions of the system cell were Lx x L y  = 80 x 400 in the natural units 
of particle diameter. The latter dimension can never shrink below 50.31/2, 
the value it would have if all 8000 particles attained a perfect triangular 
crystalline array. Such an ideal (but uninteresting!) structure might indeed 
appear if the rate of compression were very slow (although this is not 



Packings for Disks and Spheres 499 

inevitable(S)). But we have utilized relatively rapid compression to guaran- 
tee jamming in a defective structure with a greater final vertical dimension. 

Two distinct sphere cases have been examined, corresponding to 
jamming at distinct crystal faces of the basic face-centered cubic sphere pack- 
ing. The (001) face comprised 132= 169 fixed spheres arranged in contact 
in a simple square array; the initial cell dimensions were 13 x 13 x 100 and 
a total of 4225 particles was involved. The (111) face consists of a close- 
packed layer of 168 fixed particles (14 rows of 12 spheres); this case utilized 
a total of 4200 particles with initial cell dimensions 12 x 7.3~/2x 100. 

Fig. 1. Initial configuration for production of random disk packing next to a perfect crystal 
surface. For the case shown the surface consists of 80 disks in contact across the middle of 
the rectangular cell, and the vertical height is 400 disk diameters. 
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Preparation of initial conditions employed our procedure for growing 
a preset number of movable particles (7'8) from zero diameter to a small 
size, relative to jamming, in a fixed orthogonal cell. This cell was then split 
in the middle, the two halves moved apart, and the fixed layer of particles 
inserted in the gap. 

The subsequent evolution of the system computationally is carried out 
as a lengthy sequence of "sessions." Each of these follows standard peri- 
odic-boundary-condition particle dynamics, encompassing 5 x 10 5 pairwise 
collisions, except for one fundamental change. This change is produced by 
the fixed-rate shrinkage of the initially elongated dimension of the system 
normal to the fixed layer. Consequently, any particle which crosses the top 
or bottom boundary of the system (and then reappears at bottom or top, 
respectively, due to periodic boundary conditions) receives a velocity 
increment equal to twice the boundary velocity. As a result the kinetic 
energy of the system Of movable particles increases during the compression, 
and would diverge in the jamming limit (s) if nothing intervened to 
prevent it. 

On account of this last point, particle velocities are scaled downward 
at the beginning of each session to keep the kinetic energy bounded. In 
particular, the mean magnitudes of velocity components normal and 
tangential to the fixed layer are scaled to be equal and to yield mean value 
unity for particle speed. 

Upon approaching the jamming limit most particles diffuse slowly and 
collide repeatedly with the same small set of nearest neighbors. This would 
consume the major portion of the computing activity without leading to 
any substantial or permanent change in particle arrangement. In a nearly 
jammed random packing, furthermore, this effect will vary considerably 
among particles, since some will be tightly confined, while others will reside 
in looser geometric circumstances. In order to facilitate the computations 
in their later stages, subsets of particles are identified as those simply 
executing rapid, small-displacement, collision sequences within a cage 
formed by a constant set of neighbors; these are temporarily held fixed 
during the subsequent session while the "looser" particles move. The set of 
jammed particles held fixed tends to increase from one session to the next; 
but to avoid total kinetic arrest, all previously fixed particles are freed 
when four sessions occur in sequence with identically the same set of fixed 
particles. 

Finally, it has been computationally helpful, without significant 
structural consequences for the final state, to slow the compression rate 
of the cell in the late stage by a factor of 10 2. This and the preceding tactics 
provide an effective way to approach the strict jamming limit to high 
numerical precision. 
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3. RIGID DISKS 

The 8000-disk system depicted in Fig. 1 was subjected to vertical 
compression at a rate very large compared to the initial mean particle 
speed, namely 

dLy/dt = -1000  (3.1) 

Figure 2 shows the system at an intermediate stage, with the disks in a 
dense but not yet jammed state. Those disks in the immediate vicinity of 
the fixed line of 80 exhibit a substantial degree of epitaxial order. But at the 
same time the beginnings of polycrystalline order have begun to emerge in 
regions somewhat farther from the fixed line, with orientations in conflict 
with an epitaxial array. 

Figure 3 presents the final jammed state. The fraction of the entire 
system area covered by the 8000 disks in this state (the "packing fraction") 
is 

= 0.865513475 (3.2) 

Fig. 2. Intermediate stage in rapid compression of the 8000-disk system. The packing frac- 
tion is 0.72646489 [maximum value, for the triangular crystal, is ~/(2-31/2) = 0.906899682]. 



502 Stillinger and Lubachevsky 

This may be compared with the maximum value of ~, attained with a 
perfect triangular lattice: 

~max = ~/(2" 31/2) ~ -  0.906899682... (3.3) 

The disk pattern in Fig. 3 away from the fixed line is qualitatively 
similar to those that have been generated previously under rapid jamming 
conditions. (7,s) It can be described as polycrystalline, with individual grains 
often traversed by shear-generated linear faults, and occasionally contain- 
ing vacancies. The conflicting growth directions of the epitaxial layers 
above and below the fixed line, and of the neighboring misoriented grains, 
has now become visually very obvious. The vertical range of epitaxial order  
appears to be less than the mean grain diameter in the regions away from 
the "crystal surface." 

Careful examination of the configuration depicted in Fig. 3 reveals 
that not all disks in contact with the fixed row of 80 reside precisely in 
"pockets" of that row (i.e., in simultaneous contact with two of its disks). 
Instead there can exist a small lateral displacement, with corresponding 

Fig. 3. Jammed state produced by completed compression of the configuration shown in 
Fig. 2. The packing fraction is 0.865513475. 
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uplift. A clear indication of this feature is the V-shaped intrusion just above 
the fixed row, one-quarter its length from the right end in Fig. 3. In order 
for this to be jammed in place, the epitaxial material to its left and right 
must be slightly displaced inward toward the center line of the intrusion. 

The packing fraction shown in Eq. (3.2) falls in the range for rapidly 
jammed bulk disk packings. (7's~ It is also useful to record the slightly 
modified packing fraction that emerges from application of the Gibbs 
dividing surface concept. (t6~ In the present circumstance this requires 
surrounding the fixed row symmetrically with a strip whose area A s is 
equal to that attributable to 80 disks embedded within a perfect close- 
packed crystal: 

As= 80(31/~2)=40-31/2 (3.4) 

Then the total system area A minus A, is the appropriate area "belonging" 
to the 7920 initially movable disks that actually form the amorphous 
phase, and their corresponding packing fraction is 

4' =0.865114694 (3.5) 

The disk packing displayed in Fig. 3 is but one of several that have 
been produced by the method described above. Although details differ 
slightly from case to case, the qualitative features mentioned for Fig. 3 
appear to be generally applicable. 

Finally, it is worth stressing that a conventional sequential process for 
adding disks atop a fixed crystal surface would produce results quite 
different from those just discussed. In particular, one popular method 
brings particles one at a time to the growing aggregate in a direction 
normal to the surface, and after contact, sliding the particle downward into 
a pocket. (17) For the case of disks growing on the type of fixed row used 
here, the result invariably would be a perfect close-packed crystal, devoid 
even of isolated vacancies. 

4. SPHERES ON A (001)  FACE 

As explained in Section 2, this three-dimensional case involves 169 
fixed spheres forming the exposed crystal face, and 4056 movable spheres 
of the same unit-diameter size. Two examples will be discussed, differing in 
the rate at which the initially elongated cell was shortened: 

d L z / d t  = -1.00 (rapid jamming) 

= -0.01 (slow jamming) (4.t) 
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The respective final states possessed the following packing fractions: 

= 0.663743666 (rapid jamming) 

=0.703345180 (slow jamming) (4.2) 

which can be compared with the close-packed value: 

~max = re/(3.21/2) = 0.7404804897... (4.3) 

If we adapt the Gibbs dividing surface concept, (16) invoked previously for 
disks, to excise the volume attributable to the ordered surface particles, we 
find in place of Eq. (4.2) the slightly reduced values 

~' = 0.660889967 (rapid jamming) 

= 0.701878538 (slow jamming) (4.4) 

In a manner analogous to that found for disks in two dimensions, the 
sphere packings experience epitaxial ordering near to the fixed surface, 
but show disorder further away. One convenient way to visualize this 
phenomenon is illustrated by Fig. 4. It shows, for the rapidly compressed 

Fig. 4. Planar section through the rapidly compressed sphere packing, in contact with a 
fixed (001) sphere array (open circles). 
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case, a planar section through the jammed packing that is normal to the 
surface. Circular slices through the initially mobile spheres are shaded, 
those through the surface particles are unshaded. Decay of positional order 
away from the surface is obvious. 

Near the left-hand margin in Fig. 4, in the second ordered layer below 
the fixed surface, one encounters a monovacancy (missing sphere). These 
point defects seem to occur rather frequently in epitaxially ordered regions 
when rapid compression has been employed to jam up the collection of 
spheres. Figure 5 provides another monovacancy example from the same 
jammed packing, this time in the layer immediately above the fixed surface. 
The sectioning plane used is parallel to that of Fig. 4, but displaced from 
it by one sphere diameter. 

By contrast to the vivid domain texture of the disk packing away from 
its fixed surface (Fig. 3), various views of the sphere packing, such as 
provided by Figs. 4 and 5, reveal no tendency toward formation of crys- 
talline domains outside of the epitaxially ordered region in the immediate 
vicinity of the fixed surface. This is consistent with our prior observations 

Fig. 5. Another planar section through the rapidly compressed packing at a fixed (001) 
sphere array. This section is parallel to that of Fig. 4, but displaced by t unit (sphere 
diameter). 
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on sphere packings created in the absence of fixed surface arrays. ~8) As a 
consequence, we do not expect, and have been unable to identify, discrete 
cavities in the amorphous regions of the high-compression-rate packing 
that by their size could legitimately be termed "vacancies." 

Another way to view heterogeneous sphere packings of the kind under 
consideration focuses on the variation of density with respect to position. 
Figure 6 exhibits, in histogram form, the density of sphere centers as it 
varies with normal distance from the fixed square array of 169 spheres. 
Once again this refers to the packing produced by rapid compression. The 
peak at the origin comprises the fixed layer, and it is surrounded on either 
side (as expected) by several peaks of nearly equivalent magnitude. This is 
followed by a rapid decay into an essentially fiat distribution within the 
amorphous packing regions. 

The bins utilized for Fig. 6 have widths equal to one-eighth the layer 
spacing in the (001) direction for a perfect close-packed (face-centered 
cubic) crystal. If indeed such a crystal were present, the distribution would 
have consisted only of isolated peaks, all equal in height to that at the 
origin. The failure of close-in peaks of Fig. 6 to attain the height of the one 
at the origin stems in part from the presence of vacancies, as already 
mentioned. But it is also due to the displacement of a few particles out of 
the crystal positions into neighboring bins. Note that these displacements 
are almost always in the direction away from the fixed surface. This asym- 
metry represents a three-dimensional analog for the "uplift" phenomenon 
discussed earlier for disks in two dimensions. 

Figures 7 and 8 are the analogs of the prior Figs. 4 and 5, but now 
for the more slowly compressed packing in contact with the fixed (001) 
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Fig. 6. Density distribution of sphere centers normal to the fixed (001) array (located at the 
origin). This result refers to the rapidly compressed packing. 
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Fig. 7. Planar section through the slowly compressed packing at a fixed (001) sphere array, 
oriented normal to that array (open circles). 

array. These planar sections, again normal to the fixed array, illustrate the 
reason why the final jamming density has increased [Eqs. (4.2) and (4.4)]. 
It is clear, particularly by viewing the bottom half of Figs. 7 and 8, that a 
greater extent of epitaxial order has appeared. Evidently the longer time 
available to the movable spheres before they become substantially locked 
in place has permitted them to anneal out some of the stacking disorder. 

The density distribution normal to the fixed array for this slow- 
compression case appears in Fig. 9. It stands in strong contrast to the 
rapid-compression version in Fig. 6. No region now appears in which the 
sphere density is substantially constant; strong oscillations appear all the 
way across the periodic boundary from the fixed array to its image. Indeed 
this stratification is so well developed that empty histogram bins exist 
between each pair of layer peaks. Even though the ordering is imperfect, it 
appears that this slow-jamming regime encourages orientational ordering 
of at-least-partially-crystalline domains that are translationally a bit out of 
register with the perfect epitaxial material. 

Both density distributions, Figs. 6 and 9, display asymmetry about the 
fixed layer at the origin. This is particularly obvious in the latter case. It 
is a characteristic arising from the modest system sizes to which we are 
confined by the practical limitations of computing resources. The coherence 

822/73/3-4-4 
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Fig. 8. Another planar section through the slowly compressed packing at a fixed (001) 
sphere array. This section is parallel to that of Fig. 7, but displaced by 3.75 units (sphere 
diameters). 

-13 -12 -11 - I0  -9 -8 -7 -6 -5 -a -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 

LAYER NUMBER 

Fig. 9. Density distribution of sphere centers, normal to the fixed (00l) array, for the slowly 
compressed packing. 
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lengths of ordered regions are comparable to lateral dimensions of the box 
size used. If it were possible to increase system size without limit, symmetry 
should be restored with unit probability. 

5. SPHERES ON A (111) FACE 

Now we consider sphere packing against a close-packed layer of 168 
fixed spheres. The movable spheres number 4032, and once again have the 
same unit diameter as those that are fixed. As was the case in Section 4 for 
the (001) crystal face, both rapid and slow compressions have been 
examined. The respective compression rates are the same as those shown 
earlier in Eq. (4.1). 

The final jammed states were found to possess the following overall 
packing fractions: 

= 0.640745982 (rapid jamming) 

= 0.638844252 (slow jamming) (5.1) 

Fig. 10. Planar section, normal to a fixed (l 11) surface, through a rapidly compressed sphere 
packing. 
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By invoking once again the Gibbs dividing surface strategy to remove the 
effect of the ordered fixed layer, these packing fractions are replaced with 
the smaller values 

4' -- 0.637170159 (rapid jamming) 

--0.635211447 (slow jamming) (5.2) 

Notice that this set of packing fractions is uniformly smaller than those 
presented in Section 4, Eqs. (4.2) and (4.4), and within expected statistical 
dispersion essentially independent of compression rate. 

Figures 10 and 11 begin to reveal the reason for the last observation. 
They provide a pair of parallel planar sections through the rapidly com- 
pressed packing, normal to the fixed (111) array of spheres, and separated 
by 1.5 units, approximately. In distinct contrast to Figs. 4, 5, 7, and 8, very 
little epitaxial ordering appears. The reason evidently stems from a basic 
distinction between the crystal growth processes at (001) and (111) sur- 
faces. In the former case every pocket formed by a square of spheres in the 

Fig. 11. Another planar section through the rapidly compressed sphere packing at a fixed 
(111) surface. This is parallel to that of Fig. 10, but displaced by approximately 1.5 sphere 
diameters. 
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underlying layer can and must be occupied by a sphere in formation of a 
next crystal layer. But in the latter case the pockets are triangular, and only 
every second one will be filled by the completed next layer. This degeneracy 
leads to stacking faults (ref. 18, p. 637) and dislocations (ref. 18, p. 628) 
that disrupt orderly propagation of the crystal structure, and almost 
immediately lead to amorphous sphere arrangement as distance increases 
from the fixed (111 ) triangular array. 

The stacking ambiguity next to the fixed layer is confirmed by examin- 
ing sections parallel to that layer. Figure 12 presents a good example, also 
from the rapidly jammed case. The section shown is located below the fixed 
array at the position of the centers of a perfect epitaxial layer resting 
just underneath that fixed array [-downward displacement -(2/3)1/2]. 
Although the sphere positions indicated show some disorder, they also 
include close-packed triangular patches. However, these patches are out of 
registry with one another because their spheres have settled into distinct 
pocket subsets. This is seen most clearly near the figure's right edge. The 
"channels" between neighboring patches are dislocation cores into which 
subsequent layers of spheres can deeply penetrate. 

Figure 13 presents the density variation in this rapidly jammed packing 
as a function of distance from the fixed (1t l)  array. While some epitaxial 
stratification appears, it extends substantially less far than for the (001) 
cases discussed in Section 4. 

In contrast to the (001)-surface cases, slowing the jamming rate has 
relatively little structural influence in the present case of the fixed (111 ) 

Fig. 12. Planar section, parallel to the fixed (111) surface, through the rapidly compressed 
sphere packing. The position coincides with that of sphere centers in a structurally perfect 
layer just below the fixed sphere array. 
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Fig. 13. Density variation normal to the fixed (111) array for the rapidly compressed sphere 
packing. 

surface. Figure 14 shows the resulting normal-direction density variation. 
While small details distinguish the histograms in Figs. 13 and 14, the over- 
all patterns are nearly the same. This is consistent with the near equality 
of packing fractions for rapid and for slow compression with this surface. 
Although not shown here, examination of normal and parallel direction 
sections for the slow-compression case are qualitatively very similar to 
those of the rapid-compression case. If indeed it is possible to eliminate 
stacking fault disorder at the (111) surface by annealing, it apparently can 
only occur with much slower compression rates than we have considered 
thus far. 

- 1 4 - 1 3 - 1 2 - 1 1 - 1 0 - 9  -8 ~7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 I0  11 12 13 14 
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Fig. 14. Density variation normal to the fixed (111) array for the slowly compressed sphere 
packing. 
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6. D I S C U S S I O N  

One of the achievements of the present project is simply the 
demonstration that disk and sphere packings exist with an interface 
between ordered crystalline and disordered amorphous regions. This is no 
surprise for spheres pressed against a (111) face of the close-packed sphere 
crystal; as discussed in Section 5, stacking faults and associated dislocations 
disrupt orderly extension of the periodic crystal structure into the region 
of added spheres. However, the existence of inhomogeneous (crystal- 
amorphous) packings for disks in two dimensions and for spheres jammed 
against a (001) crystal face in three dimensions is not a pr ior i  obvious. 
Packings produced by conventional sequential addition procedures in these 
latter two cases invariably extend the underlying crystalline layering into 
the growing region without limit, and produce perfect stratification. The 
compressive jamming procedure used in the present study shows that this 
kind of outcome is not inevitable. 

The published literature concerning disk and sphere packings often 
presents the concept of densest "random close packing," with the sugges- 
tion that unique densities can be identified for these in two and three 
dimensions.(11,14,19 21) The results reported in this and our previous (7,s) 
papers suggest the contrary. Random disk packings have a distinctly 
polycrystalline texture, and the mode of formation can be used to control 
the mean linear grain size to lie anywhere between a few disk diameters 
to arbitrarily large size. As a result the packing density can be varied 
continuously (in the large-system limit) over at least the range (8) 

0.852 < ~ ~< n/(2- 31/2) (6.1) 

where the upper limit corresponds to the perfect triangular crystal. Indeed 
the lower limit in Eq. (6.1) probably can be reduced substantially by incor- 
porating high concentrations of monovacancies in the crystalline grains. 

Surely an analogous situation obtains for the packing of spheres in 
three dimensions. We have established in the present work (successfully 
placing amorphous packings next to a crystal face) that crystalline 
domains, apparently of arbitrary size, can coexist stably with disordered 
regions. In the large-system limit it should be possible to vary the propor- 
tion of these two types of regions continuously. As a consequence, the 
packing density likewise will vary continuously up to the maximum 
attainable, corresponding to the perfect cubic close-packed crystal. The 
"unique" random close-packed densities that seem to emerge from various 
prior studies are simply characteristics of the specific preparation method 
employed. 
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A possibly significant extension of the work reported here would 
involve incorpora t ion  of  a small fraction of " impuri ty" spheres differing in 
size from the majority. Particularly in the case of j amming  at the (001) 
crystal face where substantial epitaxial ordering of the uniform-size sphere 
system was observed (Section 4), the results in the extension should depend 
sensitively on whether the impuri ty  spheres were smaller or larger than the 
rest. In  the small-impurity case, simple substi tution of a few spheres 
should occur, creating " impuri ty  rattlers," but not  otherwise disturbing 
the epitaxial stratification. But larger impurities would not  fit without  
disrupting the epitaxial order. If the rate of  compression to the j amming  
limit is rapid, the larger impurities would tend to be t rapped in the inter- 
facial zone and would inhibit ou tward  growth of  the crystalline order. 
Slow compression,  on the other hand, might  permit diffusive expulsion of 
impurities f rom the interfacial zone as in zone refining, ~22) thus restoring 
the possibility of  substantial crystalline ordering. 
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