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DISCRETE GROUPS IN THREE-DIMENSIONAL LOBACHEVSKY SPACE GENEP~.TED 

BY TWO ROTATIONS 

E. Ya. Klimenko UDC 512.543.14:514.132 

This paper will consider discrete groups of transformations in three-dimensional Loba- 
chevsky space. A full classification of two-generator Fuchsian groups, i.e., discrete 
groups of orientation preserving transformations of the Lobachevsky plane, has already been 
given. This classification was completed by Purzitsky [i], and Matelski gave a new proof 
of the result using a geometric method [2]. The ideas of the latter proved useful in the 
study of the three-dimensional case. In this paper, we give necessary and sufficient condi- 
tions for the discreteness of a group of isometries of three-dimensional Lobachevsky space, 
generated by two elliptical elements with intersecting, mutually perpendicular axes. 

We shall consider the group of orientation preserving isometries of the Lobachevsky 
space I| s. which, as is known, is isomorphic to P$s C). All non-trivial elements of this 
group are divided into three types: elliptical, parabolic and loxodromic (see, for example, 
[3, p. 65]). Elliptical elements are determined by their axes (the set of stationary points) 
and by the angle and direction of rotation around these axes. An elliptical element of fi- 
nite order r~2 with angle of rotation 2~/n is said to be p_r_imitive. 

We shall assume that two lines in the space H 3 may either lie in one plane (and then 
they may intersect, by parallel, or diverge) or intersect. In the latter case, they have a 
common perpendicular. The ~ between intersecting lines is the dihedral angle between 
the planes passing through the common perpendicular to each of the lines separately. 

Then we have 

THEOREM. If .I. B~PSs C)are primitive elliptical elements of order n and m, respec- 

tively (tz<m), with mutually perpendicular axes, then the group generated by these elements 
G = <A, B> is discrete if and only if one of the following conditions holds: 
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i) [A, B] = ABA-IB -l is a loxodromic element, 

2) [A, B] is a parabolic element, 

3) [A, B] is an elliptical element with dihedral angle 4v/s and one of the following 
is true: 

a) the triple (n, m, s is one of: 

(~.6;.3). (5.6 31 (6 6. 3). (4 ~.~). 

b) s is an integer and i/s + i/m < 1/2, 

c) n = 2, m ~ 7, s = m/2, 

d) n = m > 7, Z = n/2. 

Suppose A and B are elements satisfying the conditions of the theorem, where a is the axis 
of A and b is the axis of B, and that e is the common perpendicular to the lines a and b. 
Let e~ denote the line obtained from the line e by rotation around the line a by an angle of 
v/n in the direction of rotation of the element A. Similarly, the line e b is obtained from 
the line e by rotation around the line b by an angle of ~/m in the direction of rotation of 
the element B. We use E, E~, and E b to denote elliptical elements of order two with axes 
e, e~ , and e b (respectively). Then A--foE. B=EI~E and [A. B]=ABA-IB -I=(E~E) X(EbE)(EE~)(EE~) 
=(E~EE~)  ~ =(=IEt~) 2. 

L e t  ~ d e n o t e  t h e  p l a n e  p a s s i n g  t h r o u g h  a and e~, ~ d e n o t e  t h e  p l a n e  p a s s i n g  t h r o u g h  b 
and e b,  ~ d e n o t e  t h e  p l a n e  p a s s i n g  t h r o u g h  e, eo and b,  and 6 d e n o t e  t h e  p l a n e  p a s s i n g  t h r o u g h  
e ,  e b and a .  No te  t h a t  t h e  p l a n e  ~ and 6, ~ and ~, ~ and 6 i n t e r s e c t  a t  r i g h t  a n g l e s ,  and 
that the planes a and 6 intersect at an angle of ~/n, whilst the planes B and ~ intersect 
at an angle z/m. The planes ~ and $ may intersect in a line (Fig. i), be parallel (inter- 
secting in a single point at infinity) or diverge. 

Let R, Ro and R b denote the reflections in the planes 6, ~ and $ (respectively). Then 
.1 = R,R. and E , , = R R , .  Thus [,l, B] =(~IE,,) 2 =(R~,RRRz,) 2 ~(R~Rz,) 2. 

The proof of the theorem follows from the following five lemmas. 

LEMMA i. Suppose the lines e~ and b intersect or are parallel. Then 

i) [A, B] is an elliptical element, 

2) if [A, B] has angle of rotation 4z/s then the group G = <A, B> is discrete if and 
only if the triple (n, m, ~) belongs to the set S={(~. ~. 5): (4. 5. 3): (5, 5. 3): (3. 6. 3); 

(3.  3. 6): (3 ,4 .~) :  (4.6.:~): (5 .~ .3) :  (6 .6 .3) :  (4 .4,4)} ,  

Proof. Since 7t~m and the lines e,, and b intersect or are parallel, the lines e b and a 
also intersect or are parallel. In this case, the planes ~, B, 7, 6 are the faces of a 
tetrahedron, some vertices of which may lie at infinity. This tetrahedron is said to be 
fundamental. 

Let c be the line of intersection of the planes ~ and ~ and ~/s the dihedral angle of 
the fundamental tetrahedron with edge c. Then it is easy to see that R~R,, is an elliptical 
element with axis c and angle or rotation 2~/~. Thus the element [=I. B]=(R.,R,) ~ is a rotation 
by an angle 4z/Z around the line c. This proves point i) of Lemma i. 

We now prove point 2) of Lemma i. Suppose the group G is discrete. Then s must be 
rational. We consider two separate cases: Z is an integer and Z = p/q is an irreducible 
fraction. 

Suppose s is an integer. Then all the dihedral angles of the fundamental tetrahedron 
are of the form v/r for some integer r. The classification of such tetrahedra is known and 
is given in [4], whence we deduce that the triple (~. ~. ~)~S. 

Suppose s = p/q is an irreducible fraction. It is not hard to see that in the fundamen- 
tal tetrahedron, the dihedral angle with edge c must be acute, ~/Z < ~/2 or p/q > 2. We 
shall show moreover that ~ < 6. 

Consider the groups G, G = <G, E> and G = <G, R>, where E and R are as previously de- 
fined, The group G is either equal to the group G or is a subgroup of index two in it. 
Actually, as a geometric consequence of the obvious relationships EAE -~ = A -~ and EBE -~ = B -~, 
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Fig. 1 

a 

Fig. 2 

we have ~=GUGE. If E~G, then G = G but if E~G. then G~ Using similar arguments, and 

taking into account the fact that the reflection R alters the orientation, whence H~ G, we 

deduce that G is a subgroup of index two in the group G. Thus the groups G, G, and G are 
simultaneously discrete or not discrete. 

All the reflections in the faces of the fundamental tetrahedron belong to the group G. 
Since one of its angles is equal to q(v/p), this dihedral angle is divided into q parts (and 

the fundamental tetrahedron is divided into q tetrahedra) by the additional planes of the re- 
flections of ~, passing through the edge c, where the angle between adjacent planes is ~/p. 
If in any one of the q tetrahedra, not all the dihedral angles are of the form v/r for some 
integer r, then it is possible to continue to subdivide this tetrahedron in a similar way. 
If the group G is discrete, the process of subdivision must terminate, and after a finite 
number of steps we will obtain a tetrahedron, all of whose dihedral angles are of the form 
~/r. All such tetrahedra were calculated in [4], and have dihedral angles not less than 
~/6. Thus ~/P~/6 and p~6. 

Whence we have an irreducible fraction p/q > 2 with P ~8. With this restriction, p/q 
is not an integer for p = 5, q = 2 only. Easy calculations show that there are no tetrahedra 
of the form T[2, 2, n; 2, 5/2, m] (where n and m are integers) in the Lobachevsky space. (We 
recall that if n/i~, ~/%2, n/i~ are the dihedral angles of a tetrahedron whose edges lie in one 
plane, and v/Ui are the angles subtended by the angles ~/li, i = I, 2, 3, then such a tetra- 
hedron is denoted by f[i1,~,i3; ~i~ ~2,1~].) 

Thus, if the group G is discrete, the number s is not a proper fraction. 

Conversely, suppose (n, ~,Z) ~S. 

If s is even, then there exists an integer k such that [A, B] k is a rotation by an angle 
2~/s Set C = [A, B] k. Then E~=CB -j, E=E~A=CB-!A, whence E~G and G=<E, E~, B>. The 
conditions of Poincar4's theorem hold (see [5]) for the generators E, E= and B and for the 
double tetrahedron obtained from the fundamental tetrahedron and its reflection in the face 
y, and thus we deduce that the group G is discrete. 

If s is odd, then the group G is discrete by Poincar4's theorem, applied to the genera- 
tors A and B and the quadruple tetrahedron obtained from the double tetrahedron and its re- 
flection in the face 6. (Note that in this case E~ G .) The proof of Lemma i is complete. 

LEMMA 2. Suppose n > 2. Then the following conditions are equivalent. 

I) The lines a and b diverge and e b and a intersect or are parallel, 

2) [A, B] is an elliptical element with angle of rotation 4~/s and the following inequal- 
ities hold 

1/l + l/n ~ U2, l/z + l /m < ~/2. ( 1 )  

In this case, the group G = <A~ B> is discrete if and only if s is an integer. 

Proof. Suppose that n > 2, that the lines e~ and b diverge, and that e b and a intersect 
or are parallel. In this case, the planes a and ~ intersect in a line which we shall denote 
by c. As in the previous lemma, it can be shown that [A, B] is an elliptical element with 
axis c and angle of rotation 4~/s where ~/s is the angle between the planes ~ and ~. We note 
that the planes ~, $, 7, 6 form an infinite triangular prism with base 6 and lateral force 
~, ~ and y. As noted by Kaplinskaya [6], there exists a plane ~ perpendicular to all the 
lateral faces. From a theorem of Andreev [7, 8], it follows that inequalities (i) hold for 
all infinite triangular prisms with faces ~, $, y, 6, ~. Conversely, if [A, B] is an ellip- 
tical element and the inequalities (i) hold, then the planes ~, $, 7, 6 form an infinite tri- 
angular prism, and so the lines e= and b diverge and the lines e b and n intersect or are par- 
allel. 
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Suppose the group G is discrete. Then Z is rational. We show that s cannot be a proper 
fraction. 

Suppose s = p/q is an irreducible fraction. Since G is discrete, the group G = <G, E> 
is also discrete. Since E=,B E ~ and the plane E is invariant under Ea and B, by considering 
the restrictions of E= and B to the plane, we deduce that the group generated by these ele- 
ments must be Fuchsian. Using the results of [2], it follows that q = 2 and p = m~ 7. 

Consider the vertex V formed by the intersection of the edges a and eb• If V lies at 
infinity, then by considering the restrictions of the elements A and E b of G to the orisphere 
corresponding to the vertex V, we deduce that the group they generate is isomorphic to a 
group of transformations of the Euclidean plane and is furthermore discrete (since G is dis- 
crete). The classification of discrete groups of transformations of the Euclidean plane is 
known [9], of such orientation-preserving groups, only cyclic groups contain elliptical ele- 
ments of order p~ 7. In our case, the axes of A and E b intersect the orisphere at a number 
of different points, consequently the group they generate is noncyclic. Thus, V does not lie 
at infinity. 

If the vertex V is proper, then any non-Euclidean sphere with center at the vertex V is 
invariant under A and Eb; thus these elements generate a discrete group of transformations 
of a two-dimensional sphere. All such groups are known [9], and no such group contains two 
elliptical elements with different axes, and orders n and p with n > 2 and p ~ 7. Thus the 
vertex V cannot be proper. 

Thus s cannot be a proper fraction if the group G is discrete. 

The sufficiency of the discreteness of G is proved accordingly as s is even or odd, 
as in Lemma i. 

LEMMA 3. Suppose the lines e= and b diverge and e b and a intersect, and moreover that 
n = 2. Then 

i) [A, B] is an elliptical element with angle of rotation 4~/s 

2) the group G is discrete if and only if the following conditions hold 

a) s is an integer and i/s + i/m < i/2, 

b) m ~ 7 , ! =  m/2. 

Proof. It is easy to show that if the planes ~ and B intersect in the line c, and the 
angle between the planes is ~/~, then [A, B] is a rotation by an angle of 4~/s around the 
axis c. 

Suppose the group G is discrete. Then G = <G, E> is also discrete. From the conditions 
of the lemma, we deduce that the lines e= and b are perpendicular to the plane 6. This shows 
that ~ is invariant under the elements E= and B, and thus the group <E=, B> acting on 6 must 
be Fuchsian. By virtue of the result in [2], we deduce the necessity of conditions a) and b) 
of the lemma. 

The sufficiency of condition a) for the discreteness of the group G is proved as in Lem- 
mas 1 and 2. Suppose condition b) holds, then it is easy to see that the group ~ = <G, R> 
is discrete. Consequently, its subgroup G is also discrete. 

LEMMA 4. The following statements are equivalent 

i) The lines e b and a diverge and the planes ~ and $ intersect in a line 

2) [A, B] is an elliptical element with angle of rotation 4~/s and the inequalities 

t/I+ l / n <  112, tlZ+ ~lm< 112. (2) 
Then, the following two conditions are necessary and sufficient for the group G to be dis- 
crete 

a) s is an integer, 

b) n = m ~ 7 , 1 = m / 2 .  

Proof. Suppose that the lines e b and a diverge and the planes ~ and ~ intersect in a 
line which we denote by c. As before, it can be shown that [A, B] is an elliptical element 
with axis c and angle of rotation 4z/s where ~/Z is the angle between the planes ~ and $. 
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Since n~ m and the lines e b and a diverge, e= and b diverge. Moreover, n > 2 and m > 2. 
Then there exist planes ~ and ~ such that s is perpendicular to the planes a, ~ and ~, and 
is perpendicular to the planes ~, 6 and 6. By a theorem due to Andreev [7], the inequality 
(2) holds for the polyhedron in Lobachevsky space bounded by the planes =, 6, Y, ~, s, D. 
Conversely, if [A, B] is an elliptical element and inequality (2) holds, then the planes 

and $ intersect in a line and the lines e b and a diverge. 

Suppose now that the group G is discrete. Then s cannot be irrational. 

Suppose s = p/q is an irreducible fraction. Since the group G = <G, E> is discrete, 
and the elements E= and B leave the plane E invariant, then as before, using the results of 
[2], we obtain m =21, m ~ 7. Similar arguments for the elements A and E b which leave the 
plane D invariant, show that n = 2s .n~ 7. Thus, if the group G is discrete and s is ration- 
al, then condition b) holds. 

We may now assume that condition b) holds. We consider the group G = <G, E, R>. The 
planes of reflection of this group divide the initial polyhedron into six infinite triangular 
prisms (Fig. 2), each of which is a fundamental polyhedron for the group ~. Thus the group 
is discrete. Consequently, G is discrete. The discreteness of the group G given condition 
a) is proved as in Lemmas 1 and 2. The proof of Lemma 4 is complete. 

Lemmas 1-4 give necessary and sufficient conditions for the discreteness of the group 
G when the planes a and ~ intersect in a line. 

LEMMA 5. Suppose the planes a and ~ are parallel or diverge. Then G is discrete. 

Proof. If the planes ~ and ~ are parallel, then [A, B]=(R~Rb) 2 is a parabolic element, 
whose fixed point (the point of intersection of a and 6) lies at infinity, if a and ~ di- 
verge, then [A, B] is a loxodromic element whose axis is the common perpendicular to these 
planes. In both cases, the group G is discrete, by Poincar6's theorem. 

Lemmas 1-5 together with the previously stated theorem show that 

COROLLARY. Let A, B~ PSL(2, C) be primitive elliptical elements with intersecting, 
mutually perpendicular axes which generate a discrete group G = <A, B>. Then 

i) If Ha/G is compact, then it is one of the three Lannerovsky groups of compact type 
[4]: T2 = T(2, 2, 3; 2, 5, 3), T3 = T(2, 2, 4; 2, 3, 5) or T4 = T(2, 2, 5; 2, 3, 5), 

2) if H3/G is finite, but not compact, then G is one of the following semi-Lannerovsky 
groups of noncompact type [4]: T I = T(3, 2, 2; 6, 2, 3), T 2 = T(2, 2, 3; 2, 6, 3), 
T 3 = T(3, 2, 2; 4, 2, 4); T 4 = T(4, 2, 2; 6, 2, 3), T s = T(5, 2, 2; 6, 2, 3), T 6 = 
T(6, 2, 2; 6, 2, 3) or T 7 = T(4, 2, 2; 4, 2, 4). 

Remark. The discrete group T= T(%I, %=, %s; ~l, ~2, ~3) generated by rotation around three 
edges of the fundamental tetrahedron T~I, ~2, A3; ~i, ~2, ~3], described in Lelmna I, has the follow- 
ing canonical representation 

= y, = = = = = = I} 

It is natural to consider the group T as a three-dimensional analog of planar discrete 
groups generated by three rotations around the vertices of a triangle. From the proof of 
Lemma i, it follows that the groups T2, T3, T4, T I, T 4, T s, T s are generated by two elliptical 
elements, and so their rank (minimal number of generators) is equal to two. A similar re- 
sult for discrete planar groups was proved by Zieschang [I0, pp. 170-171]. 

In conclusion, the author acknowledges the advice of A. D. Mednykh, who suggested the 
problem, and is also indebted to N. A. Gusevskom and D. A. Derevnin for their useful remarks 
and discussions of the results. 
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MONADS OF PRO-ULTRAFILTERS AND EXTENSIONAL FILTERS 

S. S. Kutateladze UDC 517.11 

In [1] we proposed an approach to the application of monadology, a branch of nonstandard 
analysis, to the study of cyclic filters, which arise in the context of Boolean-valued models. 
In this paper we characterize the monads of pro-ultrafilters and extensional filters and dis- 
cuss some relevant properties of these objects. To save space, we shall use the notation 
and conventions described in detail in [i] without further explanation. We emphasize only 
that henceforth B will denote a fixed complete Boolean algebra and V (B) the corresponding 
separable Boolean-valued universe. The truth value of a formula ~ of Zermelo-Fraenkel set 
theory will be denoted by [~]. When monadology is used, the neoclassical formulation is as- 
sumed. We shall generally adopt the hypothesis that the entourage is standard, without fur- 
ther mention. 

i. Let X be a cyclic set (= descent of some B-set). As usual, the symbol Pd will de- 
note the operation producing the (discrete) monadic hull. In other words, ~(Z) := Z, and 
if U is a nonempty set in X then Ud(U) is the monad of the standardization of the external 
filter of supersets of U, i.e., 

z ~ ( U ) + - * ( ( w ~ V c  X) U~ V - . ' z ~  U). 

By analogy, we define the cyclic monadic hull Vc as follows: 

(u) ..-.- (v tv) (v = v A v x A u v--+ �9 v). 

Thus, if U is not empty, the cyclic monadic hull Pc(U) is the monad of the cyclic closure of 
the standardization of the filter of supersets of U. 

2. The cyclic monadic hull of a set is the cyclic closure of its monadic hull: 

~= (U) = mix (~ (U)) 
for every U. 

Let U~ ~ and let V be a standard set such that V ~ mix(~(Ui). By Theorem 2.3 of [i], 
there exists W in the filter *{UI C XI Ul ~ U} such that V ~W#~ and so V~ ~=(U). Thus ~c(U)c 
mix(~(U)) , since the set on the right is a monad. Conversely, if V~ ~(U) and V is standard, 
then V contains the cyclic closure of a superset of U and thus V D U. Hence V ~ ~((*{W: W~ 
U})r and it remains to appeal again to Theorem 2.3 of [I]. > 

3. Cyclic filters in X that are maximal with respect to inclusion will be called pro- 
ultrafilters in X. An essential point in X is defined to be an element of the monad of a 
standard pro-ultrafilter. The external set of all essential points of X will be denoted by 
ex. It is useful to emphasize that the pro-ultrafilters in X are precisely the descents of 
the ultrafilters in the ascent X+ of X. 

4. Nonstandard Pro-Ultrafilter Criterion~ A filter is a pro-ultrafilter if and only if, 
first, its monad is cyclic, and, second, it is easily captured by a standard cyclic set. 

Let 9 r be a filter. We have to prove that the following proposition is valid: 

(~ is a pro-ultrafilter) +-~ ~ (~-) = mix (~ ($z-)) A (VstV) (V = V ~ -+ it (~') ~ V V ~ (~T-) ~ V'). 
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