
This estimate shows that the iterates of J-symplectic matrics that are sufficiently close 
to W are bounded~ We have not only proved stability of iterates of W, but also showed how 
to find an effective estimate for these iterates. 
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NILPOTENT GROUPS OF FINITE ALGORITHMIC DIMENSION 

S. S. Goncharov, A. V. Molokov, 
and N. S. Romanovskii 

t~C 517o15 

Problems of algorithmic dimension of algebraic systems have been a subject of attention 
of many authors (see [I, ii]). The main problem in this direction is that of an algebraic 
characterization of systems of various algorithmic dimensions~ In this connection, an in- 
teresting question is that on possible algorithmic dimension of systems in standard classes~ 
Goncharov has first found, in [I], examples of nonautostable algebraic systems of finite algo- 
rithmic dimensions, while in [3] he has constructed a solvable, of step 2, nonautostable 
group of finite algorithmic dimension and has shown that an Abelian group may be either 
autostable or of infinite algorithmic dimension. The question on possible algorithmic dimen- 
sion of nilpotent groups remained open. 

It is shown in this article that there exist nilpotent groups of step 2 of any algo- 
rithmic dimension. The appropriate construction was first proposed by S. S. Goncharov and 
then, on the basis of this construction, N. S. Romanovskii and A. V. Molokov independently 
constructed examples of torsion-free as well as periodic of period 4 or 4 (where p is a prime~ 
p > 2) nilpotent groups of step 2 which have a given algorithmic dimension. These examples 
are presented below. 

Essential definitions which we will use below can be found in books: [12) !3] in group 
theory, [14] in the theory of constructive models, [15] in the theory of recursive functions~ 

I. Preliminaries on Nilpotent Groups of Step 2 

i.i. Recall that if G is a nilpotent group, then the collection of elements generating 
G modulo its commutator subgroup G' is a system of generators of the entire group G. 

Let F be a free nilpotent group of step 2 with a basis {x~l~f} , where I is an ordered 
set. Note that F' is a free Abelian group with a basis {~ ~]fi<], i, ]~ I}. We denote by 
the class of groups of the form F/R, where R ~F'. This class consists exactly of hi!potent 
groups of step 2 whose quotient group over the commutator subgroup is a free Abelian group~ 
Let G~J~ and let H be a subgroup of G, we define the number rG(H) as the rank of the Abelian 
group HG'/G'. 

Let A and B be nilpotent grops of step 2. We denote by AoB the 2-step ni!potent product 
of these groups, i.e., the group defined in the variety of nilpotent groups of step 2 by 
means of the union of the systems of generators and the defining relations of the groups A 
and B. The groups A and B can be embedded as subgroups in AoB in a standard way. The valid- 
ity of the following statement can be easily verified. 
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LEMMA i. Let A, B~J{, G=AoB, {a~li~l} a basis of A module A t, {bj]]~J} a basis of 
B modulo B' Then {ai, b~li~I, ] ~ J} is a basis of G modulo G' and we have a decomposition 
G' = A t x B' x C, where C is a free Abelian group with a basis {[a,, bs]li~I,]~J}. 

1.2. Let k~i and let A be a free Abelian group of rank k with some fixed basis{as .... , 
a~}. Suppose that B ~Jd and B has a subgroup C which is a free nilpotent group of step 2 
with a basis {cjl]~ J} �9 Suppose that the last set may be completed by elements b i (i~ I) to 
a basis of B modulo B'. Consider the group G=B o A/[al, C] , we will also denote it by <B, 
(C, A)>. Obviously, B and A can be embedded in G as subgroups. By Lemma i, G' can be writ- 
ten as a direct product of the subgroup B' and a free Abelian group D with a basis {[b~, a~], [ci, 
am]li~l, ]~J, i:~l~k, 2~m~k}. Note that the centralizer of the element al in G is 
equal to CAG'. 

LEMMA 2. If H is an Abelian subgroup of G and r~(H)~ 3, then H is contained either in 
BG' or in AG'. 

Proof. Suppose the contrary, let H be a counter-example. Without loss of generality, 
we may assume that H~ G'. Note that each element of the group G can be uniquely written, 

modulo the commutator subgroup G', as a standard product a ,  . . . a k  .b .c ,  where b is some ordered 

product of powers of the elements bi, c an ordered product of powers of the elements cj. We 
�9 ~P choose a canonical element h I in H such that h1=a~ ~ ..ap .b.c, where p is maximal relative to 

the condition ap ~ 0 and the number ap is minimal in absolute value among all such possible 
numbers. Then we may assume that H is generated modulo G' by the canonical elements h~, 

h2~..., and the decompositions for h2, h~,.., involve no elements a~, l~p . Let h 2=aI ... 

a~S.b'.c ', s < p .  
Suppose  f i r s t  t h a t  p > 1. Then,  i f  b '  ~ 1 o r  c '  ~ i ,  t h e n  [h I ,  h 2] = u . v ,  where u ~ B ' i  

v ~ D ,  and we can  a s s e r t  t h a t  t h e  e l e m e n t  v i s  d i s t i n c t  f rom 1 b e c a u s e  i t s  e x p r e s s i o n  r e l a -  
t i v e  t o  t h e  b a s i s  o f  t h e  g roup  D would c o n t a i n  a commuta to r  o f  t h e  form Ibm, ap] o r  [cj, ap]. 
Th i s  c o n t r a d i c t s  t h e  c o m m u t a t i v i t y  o f  H. T h e r e f o r e ,  h2, h3, . ~ A . S i n c e  r~ (H)>  3 ,  a t  l e a s t  
one o f  t h e  e l e m e n t s  h 2, h a , . . ,  depends  on some a~ , where  s > 1. Suppose  i t  i s  h 2, i . e . ,  
s > i ,  a :=/=0.  S i n c e  h I ~ A G ' ,  e i t h e r  b ~ 1 o r  c ~ 1. I n  t h i s  c a s e  a g a i n  we can show t h a t  [ h i ,  
h 2] ~ 1. Aga in ,  we a r r i v e  a t  a c o n t r a d i c t i o n  t o  t h e  c o m m u t a t i v i t y  o f  H. 

Suppose p = 1, i . e . ,  h I a~ .b.c, a s r  and t h e  e l e m e n t s  h 2, h a , . . ,  l i e  in  B. I f  h 2 
b " c '  and b '  ~ 1, t h e n  t h e  e x p r e s s i o n  o f  t h e  commuta to r  [h l ,  h 2] c o n t a i n s  a f a c t o r  o f  t h e  
form[as l  b~] ~ , so (hl, h2 ] r  I .  T h e r e f o r e ,  h2, h3 , . . .  ~ C .  But t h e n  ro(H N C ) >  2 . I n  v iew o f  t h e  f a c t  
t h a t  C i s  a f r e e  n i l p o t e n t  g roup  o f  s t e p  2, t h i s  i m p l i e s  t h a t  H n C i s  a n o n - A b e l i a n  g roup .  
The o b t a i n e d  c o n t r a d i c t i o n  p r o v e s  t h e  lemma. 

1 .3 .  Le t  B ~ 2 f  and l e t  C ~ , . . . , C  s be s u b g r o u p s  o f  B which  a r e  f r e e  n i l p o t e n t  g r o u p s  
o f  s t e p  2 and t h e  u n i o n  o f  t h e i r  b a s e s  can be complemented  t o  a b a s i s  o f  B modulo B ' .  Con- 
s i d e r  d i s t i n c t  n a t u r a l  numbers  ks . . . . .  k2~ ( k ~  3) and a l s o ,  f o r  each  i ,  a f r e e  A b e l i a n  g roup  
A i w i t h  a f i x e d  b a s i s  {a~.~ . . . .  , aa~.,}. We form t h e  g roup  G = <B, (C~, As), (Cs, A~) , . . . ,  (C~, A~_~), 
(Cs, A~s)>. 

LEMMA 3. Suppose that B has no maximal Abelian subgroups which, modulo B', have rank 
equal to one of the numbers k i. Then: 

I) The subgroup CiG' consists exactly of elements which centralize as,=~-, and a~,~; 

2) if ~ is an automorphism of the group G, then a,.r G', 

3) the subgroups AiG' and CiG' are characteristic in G. 

Proof. The first statement is obvious because the centralizer of the element as.~-1 in 
G is equal to CiA~i_~G' while the centralizer of the element a~,2~ is equal to CiA=iG'. 

By Lemma 2, G has a unique maximal Abelian subgroup which, modulo G', has rank k i, it 
is AiG'. Thus, AiG' is a characteristic subgroup. The cyclic subgroup generated by the 
element as.~ multiplied by G' can be characterized as the collection of elements of AiG' whose 
centralizers are greater than the set AiG' Obviously, this connection must be automorphi- 
cally admissible. Hence a~.~(p~a • modG' . Then it follows from Subsec. 1 that each subgroup 
CiG' is characteristic. The lemma is proved. 

1.4. The following two statements can be easily verified. 
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LEMMA 4. Consider a group G defined in the variety of nilpotent groups of step 2 by 
means of generators a. 0, x~ (n~X) and defining relations [(q x,,]=[b, x,.+~] (n~N). Then, if x~ 
g r ( x ,  i n c a  ~) and [a. x ] = [ b ,  x], t hen  .r--=x,._~modG'. 

LEMMA 5. Let G be a group defined in the variety of nilpotent groups of step 2 by means 
of generators c. d, U.., ~,~ (~ ~ X) and defining relations [~/~,, u,] = J, [~J,. c] = [~J,,-l. c], [~,~ dJ =[~,~+!, 
d] (n~A') . Then, if y~- gr(W,~[n~JV),~ ~ gr(~q, ln~A~),!/~ J, z~,~l , and [y, u] = i, then for 
some n we have ~j~ gr (g,~), u~ gr(tz~) ; if, furthermore, [.q, c]=[~0, c]. [~, d]=[~0, c/j, then y E Yn, 
u ~ UnmodG' 

1.5. Let J{~ denote the class of nilpotent groups of step 2 in which the quotient group 
over the commutator subgroup has period 2 (the commutator subgroup in such a group also has 
period 2), let .5~ be the class of nilpotent groups of step 2 and of period p (p is a prime, 
p > 2). These classes contain analogues of constructions and statements studied above for the 
class .Yr. 

2. Main Theorem 

Proposition. For each infinite computable family S of recursiveiy enu~merable sets there 
exists a nilpotent group G of step 2 such that there is an algorithm of constructing a con- 
structivization vy of the group G for each one-valued computable numeration y of the family S; 
here ~7 is not autoequivalent to v 7 if and only if y and 7 m are nonequivalent numerations, and 
for each constructization v of the gorup G there exists a numeration 7 such that v and vy are 
autoequivalent. 

Proof. Consider a family S of recursively enumerab!e sets and a computable one-valued 
numeration y of the family S*, where S*={s*Is~S}  and s*={c(n, ]~')[n~s, ]c~N}. We define a 
strictly computable family of finite sets {?'(n)jn, t=~:u such that U %,~ (n) - %, (I 0` ?0(i~)=~ and 
J~I+1(n)\?~(n)l < [ for all 'h t~i\'. ~0 

Remark. If 7 is a one-valued computable numeration of S, then 7*(n)~{c(k, l)[k~?(n)} 
is a one-valued computable numeration of S*, if y is a one-valued computable numeration of S*~ 
then ?~ 0)} is a one-valued computable numeration of S. 

By this remark, we have a one-to-one correspondence between one-valued computable numera- 
tions of the families S and S*, and 71 ~ 72, if and only if 7~~T~ �9 Hence, S and S* possess 
the same number of nonequivlent one-valued computable numerations. Henceforth, we will work 
with the family S and its computable one-valued numeration y assuming that S has the follow- 
ing property: if c(n, l)~s in S, then for each natural number m the element c(n, m) also lies 
in s. Without loss of generality, we may assume that every natural number lies in one of the 
elements of S. If this is not so, then we could add the set N to the family S, and S U (N} 
would possess the same properties. 

Let A-~fV s be such that 

A={c~(n, t, k)]7~+~(n)\7~(n)={k}, n, t, k ~ N } .  

This set is recursively enumerable, nonempty and infinite. So there exists a recursive func- 
tion fT: N + N such that fy maps N bijectively onto c3(A), where c3: N ~ N is a one-to-one 
numeration of all triples of natural numbers [15]. 

Now, we will construct the required group G = GT. Suppose a group B is given in the 
variety of nilpotent groups of step 2 by means of generators a, b, c, d, x,~: ~j,~, z,, ~,,. ~~ (n ~ N) 
and defining relations 

Ix., a] = [x.,.i, b], [y.., ~l,,] = I, [z,,, u,.] =- I, [U.., c] =- [U,~+~. c], 

[z . ,  d] = [z.+~, d], [t*,,, d ] =  [u,,§ d], [v,,, c] = Iv.§ c], 

heren~N, [x~. g.]=i, and [Ys, Zn] = 1 if for some t we have fy(s) = c3(n, t, k). 

LEMMA 6. If H is an Abelian subgroup of B, then r~(f/)~2. 

Proof. Assume the contrary. Then there exists a number q such that the group Bq given 
by the generators a, b, c, d, x,~, y,~, z,~, u~, u~ (I ~ n ~ q) and defining relations 

[x~, a] = t ,  Ix. ,  b] = 1, Ix . ,  y~] = j . . . .  , [x~, y~] = ~, 
b . ,  u~] = I . . . .  , b . ,  ~3 ,  [~. ,  Zl] = I , . . . ,  [y . ,  z~] = l ,  
[ z . ,  v~] = t . . . . .  [z,,, v~] = ~, b , , ,  c] = l ,  [~ . ,  c] = t ,  

[z,,, d] = t ,  0~,,, d] = '1, 
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where 1 ~ # z < q ,  has an Abelian subgroup E such that rBq(E)~3. The group Bq can be obtained 

by a sequential procedure starting with a free nilpotent group of step 2 with a basis {xl,... , 
Xq}, adding, at each step, one generator and one system of defining relations in the same 
order as that listed above. This enables us to apply Lemma 2 by means of which we conclude 
that an Abeiian subgroup E with the condition rpq(E)~:~ could not exist. The lemma is proved. 

Consider the following subgroups of B which are free nilpotent groups of step q: A = 
gr(a), B = gr(b), C = gr(c), D = gr(d), X 0 = gr(x0), X = gr(x~In~A'~, Y = gr (g,,17~N), Z = 
gr(=,~In~N), U = gr(l~,<!,~X), V = gr(z: !n~N). We assign to these groups pairs of natural 
numbers (kl. k2) ..... (kl~. k~,~), respectively, where k~3. k~k~ for i ~ j. For each k i we take 
a free Abelian group A i with a fixed basis la~i ..... aI~i~l and, using the construction described 
in 1.2 and 1.3, define the group 

G~= <B. (.1, .1~), (A. =l~), ... ,  (v, A~9), (~', ~1~o)>. 

A constructivization of the group just defined is given as follows. We have essentially 
described the group Gy by means of the set of generatorsJf={a.b.c.d,x,~.F,~.z,~.u,.~',~.a~In~A'. 
l~i~k~, I~]~201 and some system of defining relations. We consider its standard represen- 
tation as a quotient group F/R~, where F is a free nilpotent group of step 2 with the basis 
M. Let v be the GSdel numeration of elements of the group F. We define the constructiviza- 
tion ~y of the group G7 putting ~(n)~(n)R~. 

LEMMA 7. If y~ and ~2 are two one-valued computable numerations of the family S, then 
the groups Gy~ and G~ are isomorphic. 

Proof. Consider a one-to-one map h of the set N onto N such that ?i(n)=?~(h(n)). For 

each pair (l, n) such that /~?~(n) there exists a triple (n. t, l) such that [~y~+~(#~).\y~(n). 

Since l~?i(n)=?~(h(n)) , there exists a triple(h(n), t', l) for which l~'+~(h(#z))\T~'(h(n)) . We 

define a function ~ putting ~(s) = s' if the equality iv~(s)=c~(n, t,l) impliesfv~(s')=c~(h(n). 

t',l). This function is a one-to-one map of N onto N. The required isomorphism Gv -+Gv~ is 
defined on the generators as follows: 

a.-+a,  b--)-b, c - , - c ,  d--)-d,  x,~..-~ x~, ~,~--)'Wr 

( , ~ N ,  l ~ i ~ k ~ ,  1 ~ ] ~ 2 0 ) .  

The lemma is proved. 

Note that in the proof of the lemma the isomorphism Gv -+G~. 2 is constructed effectively 
relative to the map h. So we have 

LEMMA 8. If Yl and Y2 are equivalent one-valued computable numerations of the family S, 
then ~i and ~2 are autoequivalent. 

LEMMA 9. For each computable numeration ~ of the family S the numerated group (G, v~) 
is constructive. 

Proof. It suffices to verify that the equality relation is decidable on the numbers of 
elements of the group G. This is equivalent to the decidability of the problem of equality 
of elements v~(n) to the identity. The latter does hold because for each subgroup H gener- 
ated by a finite subset of the set M of given generators of the group G one can effectively 
construct a finite system of defining relations, and it is well known that the equality prob- 
lem is decidable in finitely generated nilpotent groups. The lemma is proved. 

Each group G (including ours) that can be written in the form F/R, where F is a free 
nilpotent group of step 2 with a basis M and R~F' satisfies 

LEMMA i0. Each map M ~ G equal to the identity modulo G' can be extended to an auto- 
morphism of the group G. 

LEMMA ii. If v is a constructivization of the group G, then there exist recursive func- 
tions o~. o~. o=. o,,, or and permutations p and q of the set N such that 

~ ( a , , ( , , ) ) ~  tg,<,,>, ~ ( ~ ( l z ) )  ~ z:,,~.~ m<,d C' .  

Proof. Let m denote the v-number of an element m in M. Then we put o,(0)= S0, G~(n + I)= 

~a( [V(0 ,  ~ ,  ,~] = 1 & b ( 5 ,  a~. ~} = l ~ [ , , ( l ) ,  b] = [ , - ( ~ ( ~ ) ) ,  a]). 
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7' putting 

We define the binary function (o~, G~)(~)=(ov(n), O,(n))as follows: (o~, o~)(0)=(~0, ~), 
(% ~,,)(~+l}=(~J, ~u)(B(I), <.~s]=1&[v(l),a~.~4]=l&[v(r), o: ~r]=~&[v(r), a~ ~s]=;&[v(l). c)= 
[gm c] & Iv(r). ~ = [u0, dJ & & [v({)~ v(G(k) )]~ ~). The binary function (~:, ~) is defined similarly~ 

h ~ ,'~ 

The fact that the constructed functions satisfy the required conditions follows from Lemmas 
3-5. The iemma is proved. 

Note that the subgroup generated in the group G by the elements x,. Y~, s~ (n ~N) is de- 
fined, in terms of the given generators by the defining relations [Xk, Ys] = 1 and [Ys, Zn] = 
i for some t we have fy(s) = c~(n, t, k). This implies 

LEMMA 12. For given k and n there exists s such that [Xk~ Ys] = i and [Ys, Zn] = 1 if 
and only if l:~7(n). 

LEMMA 13. If v is a constructivization of the group GT~ then there exists a one-vaiued 
computable numeration 7' of the family S such that v and v 7, are autoequivalent. 

Pro9f_= Consider the functions G ~. ~:-o~. o~ and the permutations p and q constructed in 
Lemma ii. We define a family S' of recursively enumerable sets and its computable numeration 

~,'(n)={~"~s(B(o~(#)), , ,-(<,(s) )] = I & [,,-(c~(sO), " , ( o : ( , 0 ) ]  = ~-,~;}, 

S '  = {~ ' (n ) [n  ~.Y}. 

R e c a l l  thatv(o~(k))=--x~, v(o:~(s))-~yl.~.,, v(~:(n))=~&~,~modG'. So ~,'(n)={k]"J.s([x~, yp(~/]= [&[y j~> 
s,u,,,]= i)}. Since p and q are permutations of the set N, Lemma 12 immediately implies that 
?'(n)=7(q(n)) . But then S' = S and 7' is a computable numeration of the family S. We will 
define from 7 ~ a constructivization v 7, of the group GT,. 

Consider the following map M + GT,: 

n~ -+ n~ for the remaining elements l?~ ~ J]. 

Obviously, this map defines an isomorphism~.: Gv-~C~,, . The recursiveness of the functions 
o~. o~, g=, ~,, o, implies that there exists a recursive function $ such that ~(%,, (l 0) = v{~(n)}o The 
lemma is proved. 

LEMMA 14. Suppose that constructive groups (G%, vv~ ) and (C~,, vv, ) are recursively iso- 
morphic. Then 71 and Y2 are equivalent numerations. 

Proof. Let ~ be a recursive isomorphism of the first group into the second one and let 
be a recursive function such that~)v%=v~,~. By Lem~ma 3, the subgroups A, B, C, D, X0, X, 

Y, Z, U, V are characteristic in G. Hence ~:(m)~meImodG" , wherem~{o~ b, G d. 2~ Suppose, 

~xy modG . Then the relations of the group G imply that Ix,,, a]--= by induction, that~(x,) +' ' 

[~'(x,+i)=l~ hi. By Lemma 4, we deduce that ~-(x,~+1)---~x~+11~od 

Since  q'(z,,) ZG, ~'(v,,)~VG' and [q'(--,,). ~'(~,,)]= 1, bemma 5 i m p l i e s  t h a t  ~ (z , , )~  ~-~q(~), g (v , )~ -  
~'v~t,) mod G' for some permutation q of the set N. The recursiveness of the isomorphism .~ im- 
plies the recursiveness of the permutation q. Since 72(n) = 7!(q(n)), 7~ and 72 are equiv- 
alent numerations. The lemma is proved. 

Remark. If the definition of the group G is modified by adding the relation mP = I, 
where p is a prime and m~.]f , then we obtain a group in the class .51~ (cf. 1.5) which also 
satisfies the main Lemmas 7-9, 13, 14. 

THEOREM. For each ~t (]~n~o~) the classes .){ and 0~; contain groups of algorithmic 
dimension n. 

Indeed, consider a family S n of recursively enumerable sets having exactly n nonequiv- 
alent one-valued computable numerations. Such families have been constructed in [i, 2]. 
From this family we construct the group G in the appropriate class, and it is as required~ 

i. 

2. 
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RELATIVELY STANDARD ELEMENTS IN NELSON'S INTERNAL SET THEORY 

E. I. Gordon UDC 513.83 

All discussions in the present article are carried out within the framework of the 
axiomatic system for nonstandard analysis -Nelson's internal set theory (IST) [i]. 

As we know, the existence of actual infinitely large and infinitesimal numbers in non- 
standard analysis enables us to give simpler formulations for the classical notions of anal- 
ysis. For example, for a standard function f: R-* R and standard numbers m $ ~ R 

l i , n / ( , 0 = b ~ = ~ V ~ 0  / ( a + ~ ) - - b ~ O  (1) 
x - - u  

(~ ~ 0 means t h a t  ~ i s  i n f i n i t e s i m a l ) .  Here ,  as in o t h e r  e q u i v a l e n c e  of  t h i s  k ind ,  i t  i s  
essential that f, a, and b are standard. There arises the problems of existence of simple 
nonstandard criteria in the general case where arbitrary nonstandard elements occur in a given 
definition. A situation, where this is necessary, arises quite often. The simplest example 
is obtained when we try to give a nonstandard definition of ]imlim/(~r. y)=-4, even in the case 

x--0 ,;I-- I) 

of standard f and A. Indeed, from (i) we get the equivalent condition V~.~01im/(~.y)~.l. 

However f(~, y) is already a nonstandard function for ~ ~ 0 and equivalence (i) is not appli- 
cable to it. This example suggests that it is necessary to introduce infinitesimals of orders 
substantially higher than a given ~, i.e., numbers that remain infinitesimal even if ~ is as- 
sumed to be finite. This view was put forth in the seminars at the Moscow State University on 
the 70th birth anniversary of A. G. Dragalinyi. For its realization an extension of IST that 
is noncontradictory with respect to ZFC has been introduced in [2] by the addition of a count- 
able family of (not definable in IST) predicates Stk(x) (x is standard of degree i/k), with 
the help of which we can give a simple criterion so that ][m/(r)~b for a standard f and non- 

standard G and b. Let us also observe that for a partial solution of this problem we can ap- 
parently use the construction of the double nonstandard enlargement from [3], although this 
problem has not been touched upon there. 
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