Proposition 3.3. A homogeneous locally compact space with intrinsic metric is a mani-
fold if and only if it is locally contractible. In that case, the group of all its motions,
with the compact-open topology, is a Lie group.

Proof. It is clear that a manifold is locally contractible. Conversely, we stated at
the beginning of the proof of Theorem 2.1 that the neutral connected component G of the
group of all motions T of a lecally compact space with intrinsic metric acts transitively,
continuously and effectively on M. 1In addition, G is locally compact and satisfies the sec-
ond axiom of countability. If M is locally contractible, then by results of [13] G is a Lie
group. The space M, as it is homeomorphic to a quotient space G/H of G by a compact subgroup
locally compact transformation group of M, it follows that ' is a Lie group [12]. Finally,
by Theorem 1.1, we may assume that ' is endowed with the compact-open topology. This com-
pletes the proof.
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ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF A NONLINEAR DIFFUSION EQUATION
WITH A SOURCE TERM OF GENERAL FORM

V. A. Vol'pert UDC 517.9

1. Introduction

A large number of applications and an interesting mathematical statement of the problem
have given rise to diverse studies of wave solutions of parabolic equations. Problems treated
therein involve existence of a wave, its stability, evolution of a solution into a wave solu-
tion, and several others. Fundamental results relating to the theory of waves, described by
parabolic equations, available to date, are presented in [1] (which contains a rather com-
plete bibliography).

In the present paper we examine conditions for solutions to evolve into a wave relative
to form and velocity in the case of sources of sufficiently general form.

We consider the Cauchy problem
72 u
=t P, ulr 0) =/ (), (1)

where F(u)=CY0, 1], F(0})=F(1)=0. We assume that f(x) is a monotonic, piecewise-continuous
function with a finite number of points of discontinuity, 0</(z)<<1. It is well known [2]
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30, No. 1, pp. 35-47, January-February, 1989. Original article submitted December 2, 1983.

0037-4466/89/3001-0025$12.50 © 1989 Plenum Publishing Corporation 25



that a solution u(x, t) of problem (1) exists which for t > 0 is continuous, together with
second partial derivatives with respect to X and first partial derivatives with respect to t,
and which for t = 0 agrees with the initial condition f(x) at points of its continuity. In
addition, 0<<uf{z, £y<< L.

We present here results obtained earlier. We first introduce certain definitions and
notation.

Let u;, u, be such that 0<<u;<wus<1 and F(u,;) = F(u,) = 0. By ws(x; u;, u,) we shall
mean a solution of the equation

w” Few FF(w)=0, w(0)=(u; + u)/2, (2)

.
which satisfies the conditions w.(+; 1y, us) =uy, w.(—o; Uy, Ug) =Uy W< 0 . Function w, is
referred to as a wave with velocity c.

Equation (2) reduces to a system of ordinary differential equations

w' =p, (3)
p =—cp—F(w).

In the phase plane (w, p), to the wave wa(x; u,, u,) there corresponds the trajectory join-
ing the singular point (u,, 0) and (u,, 0). We introduce the function t.(w; u;, u,), which
puts abscissas of points of this trajectory into correspondence with their ordinates. It is
easy to show that t1. is unique and continuous.

We shall say that function t.(w; a, b) exists for certaina, b={0, 1], a<b, if there exists
an arc of a trajectory of system (3), which is imbedded in the halfstrip O0su<1, p<0 and
joins points (b, 0) and (g, 0) (not necessarily singular). The function T.(w; a, b) is defined
as above.

To a solution u(x, t) of problem (1} for t > 0 we can make correspond a function ¢(¢, w;
y=u'(z, t), where w = u(x, t). Then @({ @5 w.(-; w, us) )= 1wy uy, usz).

In proceeding, we shall use the following notation: ifa=|[0, 1], F(a)=0, then /(a) is a
domain of attraction of point a relative to the equation du/dt = F(u), i.e., I(a) is a con-
nected set of points of the interval [0, 1] which contains the point ¢ and is such that when
uel{a), u=a we have the inequality FF(u)=0; F(u)=g=(a), if in some right half-neighborhood of
point e the function F(u) is positive (negative); F(u)=g'(a) , if in any right half-neighbor-
hood of point @ we can find zeros of function F(u) distinct from a.

To define ["(a), I°(«) we consider a left half-neighborhood of point a.

Definition. Let m{(t, w) be a solution of the equation

u(z, t)=o. (4)
A solution u{x, t) of problem (1) comes out in the form of a wave wp(x; u,, u,) if, uniformly
with respect to z&(~w, +o), as t » »
u{x-+m(t, (n+tug)/2), 1) w(z; uy, ug).

If m(t, (u1+u2)/2)—~cas t » », we say that we have emergence with respect to velocity. (Here,
and in what follows, a dot above a letter means differentiation with respect to time.)

In the definition of emergence with respect to form and velocity the value (u, + u,)/2
can be replaced by any other value from the interval (u,, u,). This is immaterial as far as
having a solution emerge into the wave form.

Wave solutions of a nonlinear diffusion equation were considered for the first time in
the basic paper [2]. A study was made therein of emergence of a solution into a wave for
th case of a positive source and an initial condition of a particular form. These results
underwent substantial development in [3-8] in which more general sources and initial condi-
tions were considered.

The following results were obtained in [4, 5] in which sources with alternating signs
were considered.

Let the function F(u) satisfy one of the following conditions:

1) F/(O)<<0, F/(1)< 0 .

2) F(u)<0 for ue(0, a), F(x)>0 for ue(a, 1) for some a=(0, 1) and | F (u) du> 03
G
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1

3) F(u) < 0 for u=(0, a), F(u)>0 for us(q,1) and | F)du<0;
]

4) F(u) < 0 for ue(0,a), F(u)=0 for ue(g, 1).

Then, if the wave exists (existence is proved in Cases 2-4), it is unique and emerges as a
wave in form and velocity for an arbitrary monotonic initial condition [(x), [(+w)=1(0), [(—)e
I(1).

A stronger statement relative to emergence into a wave was made in [4] for Case i,
namely: instead of emergence with respect to form we have the convergence m(t, 1/2} — ct > h,
where h is a constant and where the initial condition is not assumed to be monotonic.

In these papers the notion of minimal decomposition was introduced, which means that an
interval [0, 1] can be represented as the union of a finite number of intervals (@ Db, @1 = by,
on each of which a wave u, (z; 1. by). ¢.> ¢y exists and satisfies one of the conditions 1-4
(interval {0, 11 in these conditions is replaced by [a, 5J]). If the minimal decomposition
consists of more than one interval, the wave wc(x; 0, 1) does not exist and we have emer-
gence of solutions into a system of waves, i.e., as t » «, uniformly with respect to ue[u_(t).
u(8)] (ua(t)=u(o, 1),

Pt us )= Ry () =71, (u; ap, byy) for a,{u<Lhy
or, uniformly on each finite interval with respect to x,
u ((C + m ([. ((lk -+ bh)/:)- l()—)‘ l('(vh (J'; ., bl;).

The case in which the source F(u) is positive in the interval (0, 1} was studied in
considerable detail in [2, 6, 7]. Here there is a semiaxis of velocities c¢>=>c¢y, for which
there exist waves wo(x; 0, 1), and conditions can be given on the function f(x) for which
a solution emerges onto a definite wave.

If function F(u) is positive, not on the hole interval (0, 1) but only in some neigh-
borhood of the point 0, it follows that the wave wo(x; O, 1), if it exists for some {positive,
to be specific) value of the velocity, also exists for the half-interval of velocities [cg,

). ¢,>2Va [1]. [Here, and in what follows, o = F'(0), 8 = F'(1).] 1In this case emergence
conditions were obtained only on the wave w, (r; 0, 1), assuming that e,>2Vea. a>0,3<0 [8].
As is well-known [6], for a positive source the asymptotic behaviors of solutions for the

cases c=2Va and ¢>2Vo are distinct. Apparently, this is also true for sources positive
only in a neighborhood of O.

In the present paper we study conditions for emergence into a wave minus any restric-
tions on the function F(u) except for an indicated smoothness condition. We show that for
an arbitrary monotonic initial condition [(x), [(+ew)}=](0), f(—=)=I(1), there is emergence into
a wave wc(x; 0, 1) if it exists and is unique {Theorem 7). If a wave exists and is not unique
(for positive velocity this is the case for sources positive in a neighborhood of ), we in-
dicate conditions for the behavior of initial functions at infinity for which a solution
emerges into the minimal wave wegy{x; 0, 1) (Theorem 6). We introduce the notion of a minimal
system of waves, which can be defined for arbitrary functions F(u) and generalizes the no-
tion of minimal decomposition. TIf the source is not positive close to 0 and is not negative
close to 1, emergence into a minimal system of waves occurs from arbitrary initial conditions
(Theorem 9). Otherwise it is necessary to introduce additional restrictions on the behavior
of the initial conditions at infinity (Theorem 10)}. A study of the emergence of solutions
onto non-minimal waves and systems of waves will be published separately.

We clarify the idea of the proof for these assertions by an example of emergence into
the wave wo(x; 0, 1) for the case in which it is unique (a detailed expesition is given in
Sec. 4).

We give a proof of the convergence
@t u; )~ te(u; 0. 1)

uniform with respect to u, from which, as is well-known, we have emergence into a wave with
respect to form,

The inequality q(t, u; /)= t.(u; 0, 1)—e, u (f)<u<u-(t), for arbitrary € > 0 and t suffi-
ciently large, follows from the relations [2, 5, 6]
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t,ous N>, w y), ot w )t relu; 0, 1),
. <o, o )= @
where X(x}:=lo. +~0 To prove the inequality
ot u; N<STelu; 0, )+e, u()<usu-(f) (5)
we examine the asymptotic behavior of solutions of the boundary problem
[o=0¢"¢" —Fg'+ g, (6)
Lot, uy=10. i=1,2 (0, u)=qo(u)
in the domain (>0, uy<u<u;, where bj, 1 = 1, 2 are negative constants and qo{u) is a suffi-

ciently smooth function negative on the interval [u;, u,]. We show that if a trajectory of

system (3) exists which passes through the points (u,, b,) and (u,, b,), then ¢t u) is a
solution of problem (6) which converges uniformly with respect to u to the function 1.{(u),
which makes abscissas of points of this trajectory correspond to their ordinates (Sec. 2).

We consider a function t.(u; vy, v2) such that .(u; 0, 1)<<v.(4; ¢4, v) <w(u; 0, 1) +2/2,
0<pyysu<iy<]. It is easy to show existence of the corresponding trajectory. If bi =
(s, U1, Ug), i=1, 2, then the solution @(a u) of problem (6) tends towards the function to(u;
v,, v,). If, in addition, we can choose the function gq¢(x) such that for {=0

a(t u; f)<(E(t. Wy, U= uu, (7)
and the quantities [uj ~ vj| are small, inequality (5) will have been proved.

Inequality (7) can be obtained from a theorem on positiveness of a solution [9] for the

difference a(n w)—o(t, u; ), since the function ¢(f, u; /) is a solution of the boundary problem
(4, 6]

P=q¢" —Fo'+ g,
et w)=0, u; 1), @0, u)=q(0, u; f).

In this regard, we require satisfaction of the inequalities

9(0, u; N<golu), u;y<u<uy, (8)
(P(ta Uis j)< bi:zrc(ui; Uty UQ), 1’211 2. ‘ (9)
Inequality (8) is easily guaranteed with a choice of the function ge(v). Justification of

inequality (9) is substantially more involved. We clarify this point with the simple case
Fluysg(0), F(u)el*(1). Here we can assume that F(p)<<0, F(v)>0

Let v,;, V,, be such that vo;<vy<uvg, F(va)=0, F(u)>0 for vy<u<ven. For values of c,
sufficiently large, there exists a function rc(u,bn Uag). for which ¢ (0, u; f)<:Tc(uan Uys)y Dol <
¥ <vyg. By virtue of comparison theorems on the phase plane [7] for{=0

@it ) <<Te (45 0ay. gy Vp KU e
Therefore, for values of u, sufficiently close to v, inequality (9) is satisfied (Fig. 1).
Analogous reasoning may be carried out for the point u;.

We remark that in these discussions it was assumed that f(x) is a smooth function and
£f'(x) < 0. If f(x) is piecewise-continuous and not strictly monotonic, we can then take as
initial condition the function u(x, t,) for arbitrary t, > 0. Here, and in what follows, we
use the so-called theorems of comparison on the phase plane. We now present one of such theo-
rems [7].

Comparison Theorem. Let x,(t) be a function continuous for =0 or x,(t) = —=; let
fi(x), i = 1, 2 be monotonic smooth functions, where fl(x) is defined for — < x < +», and
£,(x) is defined for zo(t)<z <o, wi(t)=w(a(t), l; fo), (1) =[ulFo, & [i), u(=, & )} Ja(t) =

lu (+°° t; Ja), uo(2)).
Let the fellowing conditions be satisfied:
1) @00, u; [1)<e(0, u; f2), w= /i (0)1/2(0),

2) if wo(t)=Ji (), then o(t, uo(t); [)<o(t, ue(t); f2). Then for all ue/;(¢)N /() we have
ot w <ot u; fo) .
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2. Behavior of Waves as x = «

In this section we consider solutions w(x) of the equation w" + cw' + F(w) = 0 in the
class of functions which, along with their second derivatives, are continuous. We assume
that w(x) > 0 for z=N for some N, and that w{x) » 0 as x > +», By a change of variables,
all the results of this section can be carried over to the case w{x) » 1 for x - —w,

The propositions presented below are, for the most part, uncomplicated and the proofs
for some of them will be omitted. For completeness we alsc present some well-known results

[1-8].
LEMMA 1. There exists a value of x, such that w'(x) < 0 for =2z and w'(x) »~ 0 as
X = + o,

It is easy to deduce from Eq. (2) that
w”/w+ c(ww)—+ ~F (0)=—a
as x > to. Differentiating Eq. (2) with respect to x, we obtain
w” +ew” +F (wyw' =0

[the derivative w"™ is defined and continuous by virtue of the continuity of F'(w)], from
whence, as x > tw, we have

(10}

w”lw' +e(w” /v ~a. (11)

We introduce the functions ¢ (z) = w' (x)w(x), @o(z)=w" (z)/w'(z). TFunctions @z}, i = 1, 2 are
continuous and differentiable for z= z;=max{xo, N);

VR w”w——(w')2 w” - 2 o ) W' — (w")? W M

(Pl(x) =.————wz——-—- =.-;.——(p1, (p&(x)zw —;:,——(Pg.

From this and from relations (10) and (11), as x > +», we arrive at the relationship

@i (@) + ci (@) + ¢ (2) > — =z, i =12 (12)
LEMMA 2. The functions |g;(z)] are bounded for z = .
THEQOREM 1. Asz-—+o @i{z)—> A, where X is a solution of the equation
At ta=0. (13)

Proof. If the limit Iim ¢;{z) does not exist, it is then possible to select sequences

A= 00
{z.,}, {y.}, for which ., y, > +oo, @:{2.) > A1, @{ya)>h2 as n >0, Ay <<hy. Let X, satisfy the inequal-
ity M <#o<A: and let it not be a solution of Eq. (13). If, for example, Ay + ch,+a>0,
then, selecting a sequence {z,} such that z, > +oo, ©;(2z.)=Ao, ¢;(2,) >0, we obtain

(P; (271) + o, (Zn) + (Pf (Zn) > C?"o + 7\'(2) = — o,
which contradicts relation (12).
Let us put A= lim ¢;(x). If A does not satisfy Eq. (13), it then follows from relation

x-»-}o0

(12) that the function ¢(z) is unbounded. This completes the proof of the theorem.

COROLLARY 1. One of the following two relations is satisfied as x - +o:
(14)

w'w——c/2+ Vel —a, w”/w - —c/2+ V¥4~ a,

29



Wi~ —cfd— Vb —a, w'lw — —c/2 — Ve/h — a, (15)
where o =F'(0), ¢*/4 — a = 0.
COROLLARY 2. If /(w)=g%(0), then as x - +
wilw—-—c, w'lw - —e

Proof. There exists a sequence {x,} such that x, » +» and F(w(x,)) = 0. We have
w” (x.)/w (2,) = —c—F(w(z,))/w'(z.)=—c. Since the limit of w"(x)/w'(x) as x » +~ exists, it
can then only be equal to —c. This completes proof of the corollary.

THEOREM 2. Let one of the following conditions be satisfied:
1) Flw)=g(0),
2) if F(w)sg*(0) or F(w)e=g°(0), then ¢>2Va.
Then there exists exactly one solution w(x) satisfying relation (15).
THEOREM 3. Assume that the wave wc(x; 0, 1) exists. Then for ¢ = 0

1) if F(w)eg*(0) (I"(1)), then F(w)sI*(1) (g7(0)) and the wave wg(x; 0, 1) exists for a
half-interval (semiaxis) of velocities [c4, c*), ¢, >0 ((c*, c,.], ¢, <<0),

2) if F(w)=g®(0) (°(1)), then F(w)el*(1) (g7(0)) and the wave wo(x; 0, 1) is unique, ¢ > 0
(e < 0);
3) if F(w)=g (0) and F(w)=1"(1), the wave wo(x; 0, 1) is then unique.

When c = 0 a necessary and sufficient condition for existence of the wave wc(x; 0, 1)
is the following:
1 1

‘g Fdy d =0, S‘ F)du>0 for 0<Cw<C1.
0 w

The wave wo(x; 0, 1) is unique.

3. Phase Plane Boundary Problems

We consider the boundary problem

=g " —Fo'+F'o, (16)
ot u)="0;, i=12 {0, u)= qolu)
in the domain u; <u<uy, t=0. Here b; are negative constants, 0 < u;, u, < 1, and Qo(u) is a
function negative on the interval [u,, u,]. We denote the solution of problem (16) by @(¢ u).

Existence of a solution of problem (16) requires justification since the coefficient of
the second derivative may be degenerate.

THEOREM 4. Let go(u)=C%u, 1], and assume that compatibility conditions of zero and first
orders are satisfied, i.e.,

ol = by, ¢ — F@" + Fglucy, =0,i=1,2
Then a unique solution of problem (16) exists which has for wyy=u<us, t>0 continuous first

derivatives with respect to t and second derivatives with respect to u.

Proof of this theorem is based on the use of 4 priori estimates of the solution $(L )
and on known results concerning existence of a solution in the nondegenerate case [9]. We
shall not supply the proof here.

Suppose that for some c there exists an arc of a trajectory of system (3), lying in the
halfplane p<0 and joining the points (u,, b,) and (u,, b;). We denote by t.(u) a function
which puts abscissas of points of this arc into correspondence with their ordinates.

THEOREM 5. Under the conditions of Theorem 4, as t + «, uniformly with respect to ue
fu,, u,], we have ot u)~ To(n).

Proof. By virtue of the nondegeneracy of the solution of problem (16), we can determine
Uy

the function IUU)::S}&Nfi” . We put SU)==&’U,le6(L uyy, a(t)=—(s(t)+ F(u))/bs The functions
) L

2
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s(t), a(t) are continuous. In the domain 0<z<zo(f), £=0, we consider the boundary problem

Ju
at

U(O, t)=u2y u(xo(t), t):uh ZL(J, 0)=f(x)s

u ()u

where f(x)} is a solution of the equation f =qo(f), f(0)=u; We show that the solution ulx, t)
of problem (17) satisfies the equation
u{x,t)

dt
ot 1) (18}

X =

3

It is easy to verify that the function u(x, t), defined in this way, satisfies the ini-
tial and boundary conditions. We verify satisfaction of the first equaticn in Egs. (17).
From Eq. (18)
Ve ) =@ (), W =g () + ¢ (W),
u” (z, ﬂ @ (¢ u)u'(z, t), E”==(umw’—(u”)ﬂ/(u3?
Substituting into Eq. (16), we obtain
B — (Vi =" — (Y — (7 S F (19)
Let us put
g(z, t)y=n—u" —Flu). (20)
Then, by virtue of equation (19), g'(z, t)—(u"/u")g(z, t})=0 , whence g(x, t) = k(t)u'(x, t},
where k(t) is some function. We have g(0, t) = k(t)u'(0, t) = k(t)b,. Since u(Q, t} =
then from Eq. (20)
g(0, t)y=—u" (0, 1)~ F(u(0, 1)) =—¢' (£, us)B(t, u2)— F () = —s(£)— F (us).
Thus, '

M0=~jﬁﬁ;ﬁﬁ=am,ﬂanzamw&J)

2

and from Eq. (20) we have d =u” +a{f)u’+F(z) . The solution ux, t) of problem (17) is unique
[ol.

We show now that for arbitrary € > 0 we can find a t, such that t.(u)—e <:$(n uy<z{u)te
u<u<ug, for t=14H. In this paper we prove only one of these inequalities. The other is
proved in a similar way.

For values ¢y, i =1, 2, ¢; # ¢,, ¢; # ¢ close to ¢, we can select trajectories of sys-
tem (3) so that the functions tej(u), i = 1, 2 are defined on the interval [u,, u,] and
Te (u)‘\ch1 W<t +e u;<u<u,, We show that ¢ (t, u) <max (Te, (), T, (W), wisu<u; for t=to
To do this we consider functlons qcl(x), i =1, 2, which are solutlons of the eguations

in = Te; (‘Zci)a Ge; (T1) = Uy, Ge, (T3 + Bi) = Uy,

where x; and hj are constants, and the boundary problem
%:” a(t) 22+ F ), vz, 0) = g, (@),
v(zi—b(t)+tct, t)=us, v({zith —b(t)+cd t)=
where b(f) = fa(v) dv, in the domain 120, ;- b(f) ‘et <z<z;+h —b(t) +ct . As a solution of

n

this boundary problem we have the function vi(z, ) = ¢, (x + b (1) — c;l).

Since v} (z; — b(t) + cit, ¥) =Ty (Ug)>Te (uz) w (0, 8), v; (x4 hi— b(B) + cit, ) = T, (W) > Te (uy) = ' {z, (), 8) ,
then, for arbitrary values of x; and h; setisfying one of the following conditions:

Z. ?‘»’Ifﬁ(O), .fl7i+h;<0, (21)

Lemma 1 {7, Sec. 2] is applicable to the difference v; — u, by virtue of which we can state
the following: if the equation u(x, t) = vy(x, t) has for some t a solution x = x%, then where
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both functions u and v are defined we have u(z, 1) % v (x, t) for z Sa* , whencez/(x*,ns;u;@ﬁ,n.

It remains to show that for t=1# , for arbitrary z¥ 0<z* <x(f), values of i and x4 can
be found satisfying one of the conditions (21) and such that x = x* is a solution of the
equation u(x, t) = vi(x, t) (in this case we say that x* possesses property 1).

We define functions z; (t)=zo(0)+ ki~ b(t)+ct, zi(t) = —hi—b(t)+cd. Then an arbitrary
value z*, 0<a2* < x(t), satisfying one of the four conditions

2% =2 (1), ¥ <zo(t), i=1, 2, (22)

possesses property 1. Assuming for definiteness that ¢, > c,, we find, for arbitrary i/ =
by Ry, + 2, (0)
1 2 0

£1 %

,» that zy,()= 12 (f), whence z;,(t)> 212(8) = 22 (£)> 222{¢) . Consequently, for arbitrary
%% one of the conditions (22) is satisfied. This completes the proof of the theorem.

4. Emergence onto the Wave we(x; 0, 1)

THEOREM 6. Let F(u)=g*(0); assume that the wave w.(x; 0, 1) exists, and that the in-
equality

, 2
u—m‘f<’><_(°—*—]/-‘i_a), (23)

x>} o0 f (x)

is satisfied, where cy is the minimum velocity for which the wave wc(x; 0, 1) exists; and let
f(x) be a monotonic, piecewise-smooth function, f(+e)=0, f(—»)=I(1). Then as t > «, uni-

formly with respect to xEEO—w,4ﬂn),u(x4-nz(L€%} %‘*l&&(x;ovih where m(t, 1/2) is a solution of

the equation u(x, t) = 1/2. Moreover, m(t, 1/2) > c.

Proof. As was observed in Sec. 1, for arbitrary t, > 0, u(x, t,) is a smooth function,
u'(x, t,) < 0. Moreover, inequality (23) is satisfied for the function u(x, t,) (for o > 0, -
at least nonstrictly, which does not affect the proof). Therefore, withno lossof generality,
we can assume that f(x) is a smooth function, f£'(x) < 0.

The proof is based on an application of Theorem 5 and proceeds, on the whole, as shown
in Fig. 1. More specifically: we consider the trajectory r%(una,vg,vo:>c*. Quantities cy —
cxs 1 — v, are sufficiently small, v, = 0. Choosing a function go(u), satisfying inequality
(8) and the conditions of Theorem 4 offers no complications. We need to select values u;
and u, so that inequality (9) will hold. For this we construct functions T (u; vy, vss), i =1, 2.

The function r%(u;vm,vﬂ) is constructed the same as in Sec. 1. There are some differ-
ences here for the positive source. In this case v,; = 0 and it is necessary to use condi-
tion (23).

In constructing the function T (¥;0,v;,) we need to distinguish two cases:

1) @ > 0; in addition, ¢, >c;>c, wdﬁﬁiﬁfﬁ<—w%ﬂ—ﬂﬂy@—ﬂ<—@yb—VﬁM~aF=

(i

fﬂ;(o;o,ym);:réj(0;0,v9==——(qﬂ2——L/Z§Zif;), whence for v,, sufficiently small,
¢ {0, 1; f) < Te, (13 0, 01) for 0 <1 << Uy, (24)
Te (1430, 015) < T, (15 0, v,) in a neighborhood of u = 0, (25)
consequently, for ¢=0
@t us ) <t (150, p) for O<Tuivm,, (26)
and for u, close to zero,
@ (6 g )< (U0, 01)<< T, (1450, 1), (27)

2) o« = 0, the function T, (0, 0,) corresponds to the minimal trajectory falling into the
singular pOint(O,OLT;AO;OJGQ:=-—CF r%(OﬂLvm)==0. When ¢; -0 vz~ 0, a value of c; suffi-
ciently small can be found for which inequalities (24)-(27) are satisfied.

Emergence of a solution into a wave in form [5, 6] implies its emergence with respect to

velocity. Actually, differentiating equation u(m(t, 1/2), t) = 1/2, we obtain u'-m + 4 = 0,
whence
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From the uniform boundedness of the derivatives u(i), i =1, 2, 3 and the convergence ulx +

m(t.12), ()= e (50 1) it follows that u'“(m(t, 12), {)—>wl(0;0.1), whence as t » »
. ¢ u’,’.’“(“; o= (., tha 1y
il —] = — . - =y
o=/ w,, (s, 1)

This completes the proof of the theorem.

Remark. By a change of variables the theorem can be extended to the case [/'(u)s [(1).
Inequality (23) must be replaced by the following:

: 1) P 0 1 oy
The theorem we present below is fundamental to this section. In proving it we employ
a lemma whose validity follows from known results on estimating the minimal velocity for a
positive source (see, for example, [6]).
LEMMA 3. If F(a)=F(D)=0, Fu)>0 fora<u<b, then 2V 7 -(a)<Lcla. b)<2‘/ wmax 7 (u) ,
—_—— aLu<y

where c(a, ) is the w.(z; a, b).

THEOREM 7. If the wave wq(x; 0, 1) exists and is unique, then for an arbitrary monotonic
piecewise-continuous function f(z), j(tw)=I(0), f(—=)=I(l), as t » », uniformly with respect
to zeE(~w, +o),

u{z+m(t 1/2), &)= w.(z; 0, 1).
Moreover, m{t, 1/2) - c.

Proof. We consider two cases: 1) ¢ > 0, 2} ¢ = 0. Case 3) ¢ < 0 is obtained from the
first case by a change of variables. The proof is carried out as in the example of Sec. 1
and is reduced to the construction of the functions t.{u; vy, ¥2) and T, (1 Vi1, Viy).

1. We distinguish two possibilities here: F{u)e=g (0) and F(u)=g%(0). The first was
considered in Sec. 1. We consider the second.

1.1. In an arbitrary neighborhood of point u = 0 we can find points of positiveness
of the function F(u).

We can assume that v,=7I(1) and that v, is so close to zero that max |F’(u){<Cc’4. Then
oéuéz‘l
for arbitrarya, b, 0<a<b<v\., satisfying the conditions of Lemma 3, c(a, b)<c. We denote
by t.(u; a. v3) the function corresponding to the trajectory falling into the singular point
{(a, 0) along the minimal direction.

We show that vy > v,. Actually, if this is not so, then vs<uy, F(r3)=0. F{u)= " (rs). Let
(ay, b)) be the largest interval of positiveness of function F(u) such that mse{e), 6,]. It then
follows from the condition c(ay, b;)<<c¢ that the trajectory leaving the point (vy, 0) (by vir-
tue of the uniqueness of such a trajectory, to it there corresponds the function t.(u; «a, vs)),
falls into the singular point (¢, 0) along a non-minimal direction, which contradicts the de-
finition of x.(u; @, v3).

Thus, t.(¢; a, vs)<T.(¥; vy, v2) for we[v, v]. As in the previous theorem, off, u; /) < T {u;
a, v3) Te/2<t.(u; vf, v) +e/2<t.(u; 0, l)*Fe for t=t(e).

1.2. In some neighborhood of the point u = 0, F(u}< 0, and in every neighborhcod there
is a point of negativeness of function F(u).

We can assume that vz&J(1) and that v, belongs to a neighborhood of the point u = 0 in
which function F(u) is non-positive. Let a be such that 0<a <z, F{a)<<0. Consider now the
function t.(u; a, v3). It is easy to show that v, > v,. Indeed, if this were not so, then
vssvy and /(u)el*(es), i.e., for u<v, points of positiveness of function F{u) can be found.
Thus, forusv, v v.(u; a, vs)<t.(u; vy, v2), and all the reasoning used in Sec. 1 is appli-
cable to the function t.(u: a.vs) .

1.3. On some interval [0, v,], v, > 0, we have F(u) = 0 and F(u) # 0 on an arbitrary
large interval.
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The proof is rather involved, and we limit ourselves to a simple special case in which
F(u) > 0 in a right half-neighborhood of point v,. This item differs from the preceding one
only in the construction of the functiont. (uivy.v;,) . We can assume that v; (0, v} , and for

an arbitrary vi, 0<wy <vi, T (u;vy,.v;,)—>0 as ¢ > 0, uniformly with respect to u, whereby
vi2—~vp. It follows from this that for ¢, sufficiently small, ¢ (0,x; 1 <o (Ui v11: Uaa), Vi S U< Ui,
and for arbitrary u, close to vy, u; > v,

@t wry )<7t(ui; vy, o), £20.
2. If F(v,) <0, F(v,) > 0, the functions T (4;v;,vi;) are then constructed as in Sec. 1.

We show that the general case can be reduced to that indicated. For this it is suffi-
cient to construct a function t.(%; ¢, ) such that t.(u; e, b)<t.(u; vi. v2) for ueslv, vo]. Here
the values of ¢ and b must satisfy the conditions 0 <a < v <vy<b<<i, F(a)<0, F(b)>0. If
we assume that for an arbitrary function v.(u; a1, bi) such that 02<bl<'1 F{b;)>0, that the

1
inequality a; > vy, holds, then by virtue of the equation g Fudu=0 we will have fF (W du<0,
al 2

which contradicts Theorem 3. Thus we can assume that ¢;<v; and F'(¢))<0. If F(a))=0, we
D
use the inequality S F(udu<<0 Veve=(ay, b)), from which it follows that in an arbitrary right
g
half-neighborhood of point a, there is a point of negativeness of function F(u). Choosing ¢
sufficiently close to a;,, F(a)<<0, and putting b = b,, we obtain the required function <.(u; qa,
b).

Convergence m{t, 1/2) » ¢ as t +» » may be proved as was done in Theorem 6. This com-
pletes the proof of Theorem 7.

5. FEmergence into a Minimal System of Waves

Definition. By a system of waves we mean a function R(u), given on the interval
[0, 1] and such that the condition R(u) ¢ 0 is satisfied for O<u< |, R(O)=R(1)=0. If
R(u) < 0 for u; < u < u, and R(uy) = R(u,) = O then for some c there exists a function t. X
(u; uy, u,) for which R(u)=rt.(#; &, u2), &1 <u <Uty. In this case we say that the function
te(u; ui, u.) emerges into the system of waves R(u).

A system of waves R,{u) is said to be minimal if for an arbitrary second system of waves
R(u) we have R(u)= Ro(u), 0 =au<< 1.

THEOREM 8. For an arbitrary source F(u) there exists a minimal system of waves Ry(u).
Proof. We put

Ry(ug)=inl {p | for some ¢ there exists a function
t(u; a, b)), 0<<a<b<1, such that p = 1. (o; @, b)J.

Tt follows from the theorem concerning continuous dependence of the solution on the parameter
(¢) and on the initial condition that for an arbitrary fixed value of u, there exists a func-
tion Te (14, by) such that R, (y,) = Te, (g3 2y, by, 0 <<ap < hp < L.

Based on an analysis of the direction field for system (3) we can show that the function
R,{u) is bounded.

We show that Ro(u) is a system of waves, i.e., if Ry(n1)<0 for u,<u<<n, Ho(w1)= Ro(us)=0,

then there exists a function 7t.(u;uy,ez) for which Ro(u)= t.(u; m, uz), mys<u<u. To do this,
we consider an arbitrary point vy &(uy, ue) and a function T, (u a,by), 0<<a, <b <<, Ayv 1) =Te, (1
a;, b)). If R (u)sércl (u; ay, by) for ay<u<b;, we can then f1nd vy € (ay, by) for which R, (1~2)<'rcl s

ay,by). For definiteness we assume that v, > vy. We consider the function 7 (u; 4, b,), 0<<a, <<
by <1, Ry (o) =1, (155 @, by). Since T (134, by) < Te, (1715 @, by), Te, (o5 @1, by) > Tc (V5305, by) , the equation
'rcl(u; ay, by) = Tc, (U5 2y, b,) then has for ue<{v;, vo] a solution, i.e., the corresponding trajectories
intersect (Fig. 2). If ¢, < ¢y, ¢, — cy is small, there then exists a function T (i; as, by),

0 <a3<by=by, such that T (Vs &, by) < Te, {095 89, by) = R, (vy) , which contradics the definition of

Ro(u). Thus, Ry(w)="1, (uia,, b;), e <u <0y ; consequently, ai=u,. by=nuo
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Minimality of the system of waves R,{u) follows from its definition. This completes
the proof of the theorem.

COROLLARY. If the function to(u; u;, uy) emerges into a minimal wave system Ro(u), it fol-
lows that F(u;) =0, i =1, 2.

Proof. Suppose, for example, that F(u;) > 0. We denote by (4, ) an interval of posi-
tiveness of the function F(u)} containing point u,. Then for some ¢ there exists a function
t.(u; a, b) and the system R,(u) is not minimal since 7.{w;; «, h)<< (0. The case F(u,) < 0 is
handled similarliy. This completes the proof of the corecllary.

We present examples of minimal systems of waves.

1. If the function to(u; O, 1) exists and is unique, then Ro{u)=r.{u; 0, 1}, 0ssu<
if the function t.{u; 0, 1) exists for the half-interval of velocities [c,, £*), ¢, >0,
then B (u) =1, (1;0,1), 0<<u <1,

2. If a minimal decomposition (see Sec. 1) exists, then I, (u)=1., (;as by), 2, <u < by

3. Let F(u) > 0 for 0<u<u Fu)y=0, a<u<b; Fu)y<0,b<w<1. Then Hyfu)==7 (0,4
for 0su<ta; Ro(u)=0, a<<u<<l; Ry(u)=1c,(u;b, 1), b<u<1. Here cj are velocities

minimal in absolute value for which the trajectories 7; exist.
‘There exist minimal systems of waves formed by an infinite set of trajectories.

The following theorems are devoted to the emergence of solutions into minimal systems
of waves. We remark that an arbitrary function F(u) satisfies one of the conditions of these
theorems, i.e., they contain scurces of arbitrary form.

THEOREM 8. Let F(u)¢tg*(0), F(u)¥ i (1). Then for an arbitrary monotonic function f(x},
f(Feo)= 1(0}, f(—o)=T(1), as t » », uniformly with respect to n |, (8), u_({)[{n.{)=u{x=, )},
o(t, u; [y~ Ro(u).
If Ry(ujy=1.{v; o, b)) for a<<u<¥é, then as t » », uniformly with respect tc x on an arbitrary
finite interval,
u(z+ml, (a+0)/2), t)—~ w.z; a, b).
Moreover, m(t, (a+ b0)/2)—c.

THEOREM 10. Let f(x) be a monotonic piecewise-smooth function, f(+w)=/{0), f(—w)=1(1),
and let one of the following conditions be satisfied:

1) Fu)e g (0), F(u)# 1-(1),

=)«
1 -
o 1@ SR (28)
2) Fuye g*(0), Fu)e (1),
lon =L > (29)

oo L1 E) T B (1)

3) Flu)ysg*(0), F(uye=sI~(1) and inequalities (28) and {29) hold.
Then as t » =, uniformly with respect to we[u,(t), u_(f)},
@ (& u; )~ Ro(u),
uniformly on an arbitrary finite interval with respect to x,
a{z+m(i, (a+8)/2), )~ w.(z; a, b),
if Ro(uy=rv.(u; a, b) for a<u<bh. Moreover, Wit (a+ BY/2Y > ¢.

Theorems 9 and 10 are easily proved by applying Theorems 6 and 7; we do this schemat-

ically. We show that for an arbitrary € > 0 there exists a to(c) such that Ro(u)-—e& < q(t, u;
fY<Ro(a)te, t=i(e), up<u<u_.. The inequality on the left is proved in the usual way:
(1, z<< 0
ko Y>> oft, ;) o, u; xR . Yy = ’
Bl 5 D> 0l 50, 0 w0 R, 1@ =g T2

To prove the inequalities on the right, we introduce the function



[ {gj, i RS R L)
[0 <-1j =4, 1f !'k k‘) << a,
lb, if  J(ry>0.
Then @(#, u; H<@{t, v, jo)— tlu; a, b)y=Ro(n) fora<u<b. It follows from the uniform in u
convergence @ (¢, u; [)— t.{u; a, b), a<u<b that u(z+m(t, (a+b)/2), t)~ w.ix; a, b), uniformly
on an arbitrary finite interval, semiaxis, or axis with respect to x, depending on whether or
not « and b are, respectively, 0 and 1.

Emergence into a wave with respect to velocity is proved in the usual way (Theorem 6).

A more detailed exposition of these results appears in [10].
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QUESTION OF EQUIVALENCE OF THE CLASSICAL METHODS OF SUMMATION OF
ORTHOGONAL SERIES

V. F. Gaposhkin UDnc 517.51

Let {gs(z)}i=0 be an orthonormal system in some measure space (Q, &, u), @<= L*(Q). The
series X 6xpn , where J,ci<< oo , will below be called an L? series. Two regular methods of
summing T, and T, are said to be equivalent in L? if, for all orthonormal systems {¢} , the T,
summability a.e. on G<=Q (p(G)>0) of the series D¢, in L? implies the T, summability a.e.
on G of this series, and vice versa.

If a subsequence Spp(x) of partial sums of the series converges, then we say this series
is summable by the method T(ngy). '

The following results are well-known:
THEOREM A. The methods of Cesaro (C, o) (a > 0), Abel and T(2™) are equivalent in L%.
THEOREM B. The methods of Euler (E, q) (q > 0), Borel and T(m?) are equivalent in L?.
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