
proposition 3.3. A homogeneous locally compact space with intrinsic metric is a mani- 
fold if and only if it is locally contractible. In that case, the group of all its motions, 
with the compact-open topology, is a Lie group. 

Proof. It is clear that a manifold is locally contractible. Conversely, we stated at 
the beginning of the proof of Theorem 2.1 that the neutral connected component G of the 
group of all motions F of a locally compact space with intrinsic metric acts transitively, 
continuously and effectively on M. In addition, G is locally compact and satisfies the sec- 
ond axiom of countability. If M is locally contractible, then by results of [13] G is a Lie 
group. The space M, as it is homeomorphic to a quotient space G/H of G by a compact subgroup 
locally compact transformation group of M, it follows that F is a Lie group [12]. Finally, 
by Theorem i.i, we may assume that F is endowed with the compact-open topology. This com- 
pletes the proof. 
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ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF A NONLINEAR DIFFUSION EQUATION 

WITH A SOURCE TERM OF GENERAL FORM 

V. A. Vol'pert UDC 517.9 

I. Introduction 

A large number of applications and an interesting mathematical statement of the problem 
have given rise to diverse studies of wave solutions of parabolic equations. Problems treated 
therein involve existence of a wave, its stability, evolution of a solution into a wave solu- 
tion, and several others. Fundamental results relating to the theory of waves, described by 
parabolic equations, available to date, are presented in [i] (which contains a rather com- 
plete bibliography). 

In the present paper we examine conditions for solutions to evolve into a wave relative 
to form and velocity in the case of sources of sufficiently general form. 

We consider the Cauchy problem 

0-; = ~x-~ + f @ ,  u (x, 0) = / (x), ( 1 ) 

whereF(u)~C2[O, t], F ( 0 ) = F ( I ) = 0 .  We assume t h a t  f ( x )  i s  a monotonic ,  p i e c e w i s e - c o n t i n u o u s  
f u n c t i o n  wi th  a f i n i t e  number o f  p o i n t s  of  d i s c o n t i n u i t y ,  0 ~ / ( x ) ~ t .  I t  i s  we l l  known [2] 
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that a solution u(x, t) of problem (i) exists which for t > 0 is continuous, together with 
second partial derivatives with respect to x and first partial derivatives with respect to t, 
and which for t = 0 agrees with the initial condition f(x) at points of its continuity. In 
addition, 0~ u(x,t)~i. 

We present here results obtained earlier. We first introduce certain definitions and 
notation. 

Let u:, u 2 be such that 0~u1<u~l and F(u l) = F(u2) = 0. By Wc(X; u:, u 2) we shall 
mean a solution of the equation 

~v" + cw' + F( t v )=  O, ~,(0) = (u~ + u2)/2, (2) 

which satisfies the conditions ~t'~(+~; ul, u2) =u:, u'~(-~; u b u2) =u2, u'~<0. Function w c is 
referred to as a wave with velocity c. 

Equation (2) reduces to a system of ordinary differential equations 

tv' =p ,  (3) 
p' = - e p  - F (w) .  

In the phase plane (w, p), to the wave Wc(X; u l, u 2) there corresponds the trajectory join- 
ing the singular point (u2, 0) and (u:, 0). We introduce the function <c(W; u:, u2), which 
puts abscissas of points of this trajectory into correspondence with their ordinates. It is 
easy to show that ~c is unique and continuous. 

We shall say that function ~(w; a, b) exists for certain a, b ~[0, i], a< b, if there exists 
an arc of a trajectory of system (3), which is imbedded in the halfstrip 0~u~l, p<0 and 
joins points (b, 0) and (a, 0) (not necessarily singular). The function To(w; a, b) is defined 
as above. 

To a solution u(x, t) of problem (i) for t > 0 we can make correspond a function q~(t, ~v; 
f ) = ~ ' ( x ,  t ) ,  where w = u (x ,  t ) .  Then ~(t, w; w~(-; u : , u ~ ) ) = ~ ( u ' ;  ~1, u2). 

In proceeding, we shall use the following notation: if a ~ [0, i], F(a)= 0, then l(a) is a 
domain of attraction of point a relative to the equation 8u/St = F(u), i.e., I(a) is a con- 
nected set of points of the interval [0, i] which contains the point a and is such that when 
u~l(a), u~ a we have the inequality f(u)~ 0; f(u)~g~(a), if in some right half-neighborhood of 
point a the function F(u) is positive (negative); F(u)~~ , if in any right half-neighbor- 
hood of point a we can find zeros of function F(u) distinct from a. 

To define /:(a), l~ we consider a left half-neighborhood of point a. 

Definition. Let m(t, w) be a solution of the equation 

u(x ,  t ) =  ~. (4) 

A solution u(x, t) of problem (I) comes out in the form of a wave Wc(X; u:, u 2) if, uniformly 
with respect to x~(-~, +~), as t + 

u ( x +  re(t, (~I: + u2)/2), t ) ~  Ivo(x; u,, u2). 

If re(t, (u1+u2)/2) -+e as t § ~, we say that we have emergence with respect to velocity. (Here, 
and in what follows, a dot above a letter means differentiation with respect to time.) 

In the definition of emergence with respect to form and velocity the value (u I + u2)/2 
can be replaced by any other value from the interval (u:, u=). This is immaterial as far as 
having a solution emerge into the wave form. 

Wave solutions of a nonlinear diffusion equation were considered for the first time in 
the basic paper [2]. A study was made therein of emergence of a solution into a wave for 
th case of a positive source and an initial condition of a particular form. These results 
underwent substantial development in [3-8] in which more general sources and initial condi- 
tions were considered. 

The following results were obtained in [4, 5] in which sources with alternating signs 
were considered. 

Let the function F(u) satisfy one of the following conditions: 

i) F ' ( 0 ) < 0 ,  f ' ( t i < 0  ; 
1 

2) F ( u ) ~ O  f o r  u~(0 ,  a), F ( u ) > 0  f o r  u~(~,  1) f o r  some a~(0 ,  1) and SF(u) d u > 0 ;  
(t 
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1 

1 3) F(u) < 0 fo r  u~(O,a),F(u)~O fo r  u ~ ( a , l )  and F(u) d u < 0 ;  
0 

4) F(u) < 0 fo r  u~(0,  a ) , F ( u ) ~ 0  for  u~(a, t). 

Then, if the wave exists (existence is proved in Cases 2-4), it is unique and emerges as a 
wave in form and velocity for an arbitrary monotonic initial condition /(x),/(i~)~f(O),/(-~)~ 
E(1). 

A stronger statement relative to emergence into a wave was made in [4] for Case i, 
namely: instead of emergence with respect to form we have the convergence m(t, ]./2) - ct + h, 
where h is a constant and where the initial condition is not assumed to be monotonic. 

In these papers the notion of minimal decomposition was introduced, which means that an 
interval [0, i] can be represented as the union of a finite number of intervals[ak, bk], ak+~ = b~, 
on each of which a waveu'~h(x;a~,bk ), c~>c~+1 exists and satisfies one of the conditions 1-4 

(interval [0, i] in these conditions is replaced by [a~, b~])~ If the minimal decomposition 
consists of more than one interval, the wave Wc(X; 0, i) does not exist and we have emer- 
gence of solutions into a system of waves, i.e., as t § ~, uniformly with respect to ~[u+(t), 
u_(t)] ( u ~ ( t ) = ~ ( •  t)) , 

r U; / ) - - ~ O ( ~ ) ~ T r l ~ ( ~ ;  a~, bh) for ~ b ~  

or, uniformly on each finite interval with respect to x, 

u (z + m (t, (a~ + bh)/2), t) ~ ~l'<.t~ (,~'; m, hi<). 

The case in which the source F(u) is positive in the interval (0, i) was studied in 
considerable detail in [2, 6, 7]. Here there is a semiaxis of velocities c ~ c0, for which 
there exist waves Wc(X ; 0, I), and conditions can be given on the function f(x) for which 
a solution emerges onto a definite wave. 

If function F(u) is positive, not on the hole interval (0, i) but only in some neigh- 
borhood of the point 0, it follows that the wave Wc(X; 0, i), if it exists for some (positive, 
to be specific) value of the velocity, also exists for the half-interval of velocities [c,, 

c*), c.~2~ [I]. [Here, and in what follows, ~ = F~(0), ~ = F'(!).] In this case emergence 

conditions Were obtained only on the wave u,%(~;0,~), assuming that c,>2V'~. ~>0, ~<0 [8]. 

As is well-known [6], for a positive source the asymptotic behaviors of solutions for the 

cases c =2~ and c> 2~ are distinct. Apparently, this is also true for sources positive 
only in a neighborhood of 0. 

In the present paper we study conditions for emergence into a wave minus any restric- 
tions on the function F(u) except for an indicated smoothness condition. We show that for 
an arbitrary monotonic initial condition/(~],/(+~)~[(0), /(-~)~I(I), there is emergence into 
a wave Wc(X ; 0, i) if it exists and is unique (Theorem 7)~ If a wave exists and is not unique 
(for positive velocity this is the case for sources positive in a neighborhood of 0), we in- 
dicate conditions for the behavior of initial functions at infinity for which a solution 
emerges into the minimal wave Wc,(X; 0, i) (Theorem 6). We introduce the notion of a minimal 
system of waves, which can be defined for arbitrary functions F(u) and generalizes the no- 
tion of minimal decomposition. If the source is not positive close to 0 and is not negative 
close to I, emergence into a minimal system of waves occurs from arbitrary initial conditions 
(Theorem 9). Otherwise it is necessary to introduce additional restrictions on the behavior 
of the initial conditions at infinity (Theorem 10). A study of the emergence of solutions 
onto non-minimal waves and systems of waves will be published separately. 

We clarify the idea of the proof for these assertions by an example of emergence into 
the wave Wc(X; 0, i) for the case in which it is unique (a detailed exposition is given in 
Sec. 4). 

We give a proof of the convergence 

~(t, u; i ) ~ ( u ;  0, 1) 

uniform with respect to u, from which, as is well-known, we have emergence into a wave with 
respect to form. 

The inequality ~(t, u; /)~ T~(u; 0, i)-- ~, u+(t)~ u~ u_(t), for arbitrary ~ > 0 and t suffi- 
ciently large, follows from the relations [2, 5, 6] 

27 



where X(x)= i0. x~0. To prove the inequality 

cp(t, u; / )~To(u;  0, i ) + e ,  u+(t)<u<u_(t) (5) 

we examine t h e  a s y m p t o t i c  b e h a v i o r  o f  s o l u t i o n s  o f  t h e  boundary  problem 

[ q~, = q~2q~ H _ F q / +  U'% (6)  

[q~(t, u~)=b,, i = 1 , 2 ,  q~(0, u ) = ~ o ( . )  

in the domain t~O, ui~u~u:~, where bi, i = i, 2 are negative constants and ~F0(u) is a suffi- 
ciently smooth function negative on the interval [ul, u~]. We show that if a trajectory of 

system (3) exists which passes through the points (ui, b 2) and (ul, bl), then ~(t, u) is a 
solution of problem (6) whiah converges uniformly with respect to u to the function Zc(U), 
which makes abscissas of points of this trajectory correspond to their ordinates (Set. 2). 

We consider a function To(u; ul, vi) such that ~(u; 0, ~)<r~(u; of, u~)<T~(u; 0, i) +~/2, 
0< u~ ~u~ui< L It is easy to show existence of the corresponding trajectory. If b i = 

r~iu,, u~, v~), i= J, 2, then the solution ~(t, u) of problem (6) tends towards the function ~c(U; 
vz, vi). If, in addition, we can choose the function q:0(u) such that for t~>0 

~r(t, z~;/)<$(t ,  .) ,  ~ , < u < ~ ,  (7) 

and t h e  q u a n t i t i e s  [u i - v i i  a r e  s m a l l ,  i n e q u a l i t y  (5) w i l l  have been p roved .  

I n e q u a l i t y  (7) can be o b t a i n e d  f rom a theorem on p o s i t i v e n e s s  o f  a s o l u t i o n  [9] f o r  t h e  

d i f f e r e n c e  ~(t, u)-q~(t, u; /), s i n c e  t h e  f u n c t i o n  q0(t, u; /) i s  a s o l u t i o n  of  t h e  boundary  problem 
[ 4 ,  6] 

{ q:~ q'~q:" - F q / +  F'% 

~(t, u~)=~(t, u,,;/), ~(0, z0=~(0,  u; f). 

In this regard, we require satisfaction of the inequalities 

q~(0, u; /)<q~o(~), u ~ u ~ u 2 ,  (8) 

q~(t, u~; j)<b+=To(u~; v~, vi), i = 1 ,  2. (9)  

Inequality (8) is easily guaranteed with a choice of the function ~0(u). Justification of 
inequality (9) is substantially more involved. We clarify this point with the simple case 
f(u)~g-(O), f(u)~l+(1). Here we can assume that F(u~)<0, F(u~)>0. 

Let v~i, vz2 be such that ui~<ui<u22, f(u~)----0, F(u)>0 for vo=~<u<~ueo.. For values of c 2 
sufficiently large, there exists a function v%(u; u~i, v~,), for which ~(0, u;/) <T% (u; u~, u~,), uil 

~u~.. By virtue of comparison theorems on the phase plane [7] for t~0 

q~ (t, u ; / t  < T,, (u; u~, ~'2--,), ~,~ ~ u ~ ~'~. 

Therefore, for values of u 2 sufficiently close to v 2 inequality (9) is satisfied (Fig. i). 

Analogous reasoning may be carried out for the point ul. 

We remark that in these discussions it was assumed that f(x) is a smooth function and 
f'(x) < 0. If f(x) is piecewise-continuous and not strictly monotonic, we can then take as 
initial condition the function u(x, t o ) for arbitrary t~ > 0. Here, and in what follows, we 
use the so-called theorems of comparison on the phase plane. We now present one of such theo- 
rems [7]. 

Comparison Theorem. Let x0(t) be a function continuous for t~0 or x0(t) - -~; let 
fi(x), i = i, 2 be monotonic smooth functions, where fi(x) is defined for -~ < x < +~, and 
f ~ ( x )  i s  d e f i n e d  f o r  x o ( t ) ~ x < +  ~o, uo(t)=u(xo(t), t; /'2), ]~(l)=[u(+~, t; /~), u( -~ t; /,)], ] z ( t ) =  
[u(+~, t; ]~), uo(t)]. 

Let the following conditions be satisfied: 

i )  q~(0, u; h)<q~(0, u; 12), u~,(O)n&(O), 
2) i f  uo(t)~J~(t), t h e n  ~(t, u0(t); / l)<qo(t,  u0(t); ]~). Then f o r  a l l  u~J~(t)~lJ~(t) we have 

~(t, u; /,)~< ~(t, u; 7~) . 
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2. Behavior of Waves as x ~ 

In this section we consider solutions w(x) of the equation w" + cw' + F(~) = 0 in the 
class of functions which, along with their second derivatives, are continuous. We assume 
that w(x) > 0 for x~N for some N, and that w(x) + 0 as x + +~. By a change of variables, 
all the results of this section can be carried over to the case w(x) § 1 for x -+ -~. 

The propositions presented below are, for the most part, uncomplicated and the proofs 
for some of them will be omitted. For completeness we also present some well-known results 
[1-8]. 

L ~  i. There exists a value of x 0 such that wi(x) < 0 for x ~ x o  and w~(;~) ~ 0 as 
x -> + oo. 

It is easy to deduce from Eq. (2) that 

w " / w  + C(w'/w) ~ - f '  (0 )  = - ~  ( 1 0 )  

as x § 4-o0. D i f f e r e n t i a t i n g  Eq. (2 )  w i t h  r e s p e c t  t o  x,  we o b t a i n  

w "  + cw" + F" (w)w" = 0  

[the derivative w'" is defined and continuous by virtue of the continuity of F~(w)], from 
whence, as x + § we have 

w"/~v' + c ( w " / w ' )  ~ - ~ .  ( 11 ) 

We introduce the functions q~(x) = w' (x)/w(x), q~2(x)= w" (x)/w'(x). Functions %(x), i = !, 2 are 
continuous and differentiable for x >i Xx = max(x0, N) ; 

t - -  - -  .~ 

= w'2 u, %,  % (x) (w,)~. --- --,~, - -  q~. 

From this and from relations (i0) and (ii), as x § +~, we arrive at the relationship 

~ ] ( x )  + ~ ( x )  + ~ ( ~ ) - ~ -  ~ ,  ~ = ~ , 2  ( 1 2 )  

L ~  2. The f u n c t i o n s  l~{(x)] a r e  bounded f o r  x>~x0~ 

THEOREM 1. As x-~ +oo ~{(x)-~E,  where ~, i s  a s o l u t i o n  o f  t h e  e q u a t i o n  

~ +  c)~+ a = O. (13)  

Proof. If the limit lira ~i(x) does not exist, it is then possible to select sequences 

{x,~}, {y,}, for which x,~, y,~-+ +~, %(x~)-+%1, qD~(y~)-~2 as n-+~, %1<~. 2 . Let ~0 satisfy the inequal- 
ity %1<A0<~2 and let it not be a solution of Eq. (13). If, for example, %~+c%0§ 
then, selecting a sequence {Zn} such that z,~-+ +~, %(z.)=~0, ~;(z,) ~>0, we obtain 

which  c o n t r a d i c t s  r e l a t i o n  ( 1 2 ) .  

Let us put ~= lim r If X does not satisfy Eq. (13), it then follows from relation 

(12) that the function ~(X) is unbounded. This completes the proof of the theorem. 

COROLLARY i. One of the following two relations is satisfied as x ~ +~: 

(14)  
w ' / u  . . . .  c / 2  + 1/c2/4 --  a ,  w " / w '  -+ - - c / 2  + 1!c~I4 - -  a ,  
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w'/u; -~ - c /2  -- 1/c2/4 -- ~, w"  /w" -'~ --c/2 -- IIc2/4 -- a, ( 1 5 )  

w h e r e  ~ = F'  (0), c~ - ~ >~ O. 

COROLLARY 2.  I f  F ( u , ) ~ g ~  t h e n  a s  x -~ +~ 

~L~'/IU "~ --C~ l t ~  /U7 ~ -~- --C. 

Proof. There exists a sequence {Xn} such that x n + +~ and F(w(Xn)) = O. We have 

u~"(x.)/u/(x,,) =-c--F(w(x,,))/w'(x,,)-~-c. Since the limit of w"(x)/w'(x) as x + += exists, it 
can then only be equal to -c. This completes proof of the corollary. 

Then 

is the following: 

THEOREM 2. Let one of the following conditions be satisfied: 

1) F ( t v ) ~ g - ( O ) ,  

2) i f F ( w ) ~ g + ( O )  o r  / , ' ( w ) ~ g ~  t h e n  e > 2 1 ~ .  

there exists exactly one solution w(x) satisfying relation (15). 

THEOREM 3. Assume that the wave wc(x; 0, i) exists. Then for c ~ 0 

I) if F(w)~g+(0)(l-(1)), thenF(w)~l+(1)(g-(0)) and the wave Wc(X; 0, i)exists for a 
half-interval (semiaxis) of velocities [c , ,c*) ,  % > 0  ( ( c* , c , ] , c . ,<O) ,  

2) if F(w)~g~ (l~ then F(w)~l+(1) (g-(0)) and the wave Wc(X; 0, i) is unique, c > 0 
(c < 0); 

3) i f  F ( u , ) ~ g - ( 0 )  a nd  F ( w ) ~ l * ( 1 ) ,  t h e  wave  Wc(X; 0 ,  1) i s  t h e n  u n i q u e .  

When c = 0 a necessary and sufficient condition for existence of the wave Wc(X; 0, i) 

1 I 
~ /"(,l~dll = O, .[F(ig) du>O for ()<,t'<l. 
0 w 

The wave Wc(X; 0, i) is unique. 

3. Phase Plane Boundary Problems 

We consider the boundary problem 

= ~2<p- _ F ~ '  + f ' %  ( 16 ) 
~(t,  ~ i ) -  b~, i = t, 2, ~(0,  ~ ) =  ~0(~) 

i n  t h e  d o m a i n u l ~ u ~ u 2 ,  t ~ 0 .  H e r e  b i a r e  n e g a t i v e  c o n s t a n t s ,  0 < u a ,  u 2 < 1, and  r i s  a 

f u n c t i o n  n e g a t i v e  on t h e  i n t e r v a l  [u  l ,  u 2 ] .  We d e n o t e  t h e  s o l u t i o n  o f  p r o b l e m  ( 1 6 )  by ~(t ,  u). 

Existence of a solution of problem (16) requires justification since the coefficient of 
the second derivative may be degenerate. 

THEOREM 4. Let ~0(u)~Ca[ul, u2], and assume that compatibility conditions of zero and first 
orders are satisfied, i.e., 

q',,(u~) = b~, (~qY--F~p'  + F ' ~  I . . . .  ~ = 0, i = t, 2. 

Then a unique solution of problem (16) exists which has for u, ~ u~u2, t ~ 0 continuous first 
derivatives with respect to t and second derivatives with respect to u. 

Proof of this theorem is based on the use of ~ priori estimates of the solution ~(t, u) 
and on known results concerning existence of a solution in the nondegenerate case [9]. We 
shall not supply the proof here. 

Suppose that for some c there exists an arc of a trajectory of system (3), lying in the 
halfplane p~0 and joining the points (u 2, b 2) and (ul, bl). We denote by ~c(U) a function 
which puts abscissas of points of this arc into correspondence with their ordinates. 

THEOREM 5. Under the conditions of Theorem 4, as t § ~, uniformly with respect to u 

[u I, uz], we have ~(t ,  u)-~-T~(U). 

Proof. By virtue of the nondegeneracy of the solution of problem (16), we can determine 

the function x o ( t ) = ~  du We put s ( I ) = $ ' ( t ,  u2)~(t ,  u2) a ( t ) = - - ( s ( t ) + F ( u 2 ) ) / b ~  The f u n c t i o n s  
�9 ([~ ( t ,  ~, ) ' - 

~t 2 
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s ( t ) ,  a(t) 

where f(x) is a solution of the equation]'=q00(/), f(O)=~. 
of problem (17) satisfies the equation 

u(x,t) 

x = ~ It, ~)" 
~2 

are continuous. In the domain O~x~xo(t), t~>0, we consider the boundary problem 

Ou 09"u Ou 
7 F - - - ~  +a(t), ~ +  F(u), (17) 

u(O, t)=u2, U(Xo(t), t)=ul, u(X, O)=/(x) ,  

We show that the solution u(x, t) 

( 1 8 )  

It is easy to verify that the function u(x, 
tial and boundary conditions. We verify satisfaction of the first equation in Eqs. (17). 
From Eq. (18) 

~' (x, ~) = ~ (t, ~), ~' = (~ (t, u) + ~' (t, ~) u, 

u~(x, t)=~'(t ,  u)u'(x,  t), ~"  = ( u " u ' - ( u " ) ~ ) / ( u ' )  ~. 

Substituting into Eq. (16), we obtain 

~'-(u~lu')~ = ~"-(u~)Vu'-(u~/u')F+ u'P'. 

t), defined in this way, satisfies the ini- 

Let us put 

r  t)  = ~ - u "  - F ( u ) ,  

Then, by virtue of equation (19), g'(x, t)--(u"/u')g(x, t)=0 , whence g(x, 
where k(t) is some function. We have g(0, t) = k(t)u'(0, t) = k(t)b 2. 
then from Eq. (20) 

g(O, t ) = - u "  (0, t)--F(u(O, t ) ) = - $ ' ( t ,  u2)~(t, u : ) - F ( u 2 ) = - s ( t ) - F ( u 2 ) .  

k (t) ~ = a (t),  g (z ,  t) = a (t) u' (x,  t) 

Thus, 

(~9 )  

(20) 

t )  = k ( t ) ~ ' ( x ,  t ) ,  
Since 6(0, t) = 0, 

and from Eq. (20) we have ~=u"+a(t)u'+F(u). The solution u(x, t) of problem (17) is unique 
[9]. 

We show now that for arbitrary ~ > 0 we can find a t o such that ~(u)-e <~(t, ~)<~(~)+e, 
eL ~< u<~ u.2, for t >~ to. In this paper we prove only one of these inequalities. The other is 
proved in a similar way. 

For values ci, i = I, 2, c I ~ c=, c i ~ c close to c, we can select trajectories of sys- 
tem (3) so that the functions Zci(u), i = i, 2 are defined on the interval [u I, u2] and: 

Tc (u) < ~c~ (u) < Tc (u) + e, u I ~ < u~. We show that ~ (t, u) < max (T% (u), Te.~ (u)), ul ~< u ~< u~ for t >i to. 
To do this we consider functions qci(X), i = I, 2, which are solutio'ns of the equations 

where x i and h i are constants, and the boundary problem 

S F = ~  + a ( t ) ~ + F ( v ) '  v(x,O)=q(i(x), 

v ( x ~ - b ( t ) +  c~t, t)=u2, v(x~ + h~-  b(t)+ c&, t )= ul, 
t 

where b(O=J'a(~)d~, in the domain t>~O, x ~ - b ( t ) + c ~ t < ~ x ~ x ~ + h ~ - b ( t ) + c ~ t .  As a solut ion of 
N 

this boundary problem we have the function v~ (x, t) = q~:~ (x + b (t)-- c~t). 

Since ~)'i (xi ' - b  (t) @- cit, t) = ~ i  (u2)>Tc (u~)=u'(O, t), v~(xi + h i -  b (t) H- c~t, ~) = Tci (u) > ~ (u~) = u' (x~) (t), t) , 
then, for arbitrary values of x i and h i satisfying one of the following conditions: 

x~>~ xo(O), x~+ h~ <<. O, (21) 

Lemma i [7, Sec. 2] is applicable to the difference v i - u, by virtue of which we can state 
the following: if the equation u(x, t) = vi(x , t) has for some t a solution x = x*, then where 
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both functions u and v i are defined we have u(x,t) ~<ui(x,t) for xJx* , whence u' (x*, t) ~ v~ (x*, t). 

It remains to show that for t>~to , for arbitrary x*, O<.x*<xo(t), values of i and x i can 
be found satisfying one of the conditions (21) and such that x = x* is a solution of the 
equation u(x, t) = vi(x, t) (in this case we say that x* possesses property i). 

We define functions x~,(t)=xo(O)+h~-b(t)+c~t, x~2(t) =-h~--b(t)+c~t.  Then an arbitrary 
value x*, O<<-x *<~xo(t), satisfying one of the four conditions 

x*>~x~(t), x*<~x~(t), i = 1 ,  2, (22)  

p o s s e s s e s  p r o p e r t y  1. Assuming f o r  d e f i n i t e n e s s  t h a t  c~ > c2 ,  we f i n d ,  f o r  a r b i t r a r y  t ~ t 0 =  
h~ -t- h~ + x o (0) 

�9 t h a t  x~:(t)>~x~(t), whence xH(t)>x~:(t)>~x2~(t)>x22(t). C o n s e q u e n t l y ,  f o r  a r b i t r a r y  

x* one of the conditions (22) is satisfied. This completes the proof of the theorem. 

. 

THEOREM 6. 
equality 

Emergence onto the Wave Wc(X; 0~ i) 

Let F(u)~ g+(O); assume that the wave Wc(X; 0, i) exists�9 and that the in- 

-rTr < -- --~ -%---a (23) 
x-~+oo f ~x) 

is satisfied, where c, is the minimum velocity for which the wave Wc(X; 0, i) exists; and let 
f(x) be a monotonic, piecewise-smooth function, /(+~)=0, /(-oo)~f(1). Then as t + ~, uni- 

formly with respect to x~(--~, +~), ux+m t,y ,t 

the equation u(x, t) = 1/2. Moreover, m(t, 1/2) + c,. 

Proof. As was observed in Sec. i, for arbitrary t o > 0, u(x, t o ) is a smooth function, 
u'(x, to) < 0. Moreover, inequality (23) is satisfied for the function u(x, t o ) (for ~ > 0, 
at least nonstrictly, which does not affect the proof). Therefore, withno loss of generality, 
we can assume that f(x) is a smooth function, f'(x) < 0. 

The proof is based on an application of Theorem 5 and proceeds�9 on the whole, as shown 
in Fig. i. More specifically: we consider the trajectory T%(u;v1, v~), co>c,. Quantities c o - 

c,, 1 - v 2 are sufficiently small, v I = 0. Choosing a function (p0(u), satisfying inequality 
(8) and the conditions of Theorem 4 offers no complications. We need to select values u I 
and u 2 so that inequality (9) will hold. For this we construct functions T~,~(u; v~, vi.~), g = J, 2. 

The function %.,(u; v~, v,,2) is constructed the same as in Sec. i. There are some differ- 

ences here for the positive source. In this case v21 = 0 and it is necessary to use condi- 
tion (23). 

In constructing the function %~ (u; 0, v1~ ) we need to distinguish two cases: 

1) a > O; in addition, co>c1>c . and ]im (P (O' u: / ) <  --  (c,/2-- ]/ c~./4 -- a )<--  (Q/2 -- V'c~/4 a ) :  
U 

Tc I (0; 0, ul~)<~ % (0;0, u2)=-- c0/2-- fcJ/j--a) , whence for vl2 sufficiently small, 

(p (0, u;/) < ~% (u; 0, v1~) for 0 < u < u1~, (24) 

Tc~ (".; 0: Y~2) < T% (t.6; 0, ~'.~) in a neighborhood of u = O, (25) 

consequently, for t ~ 0 
(p(t, tt;/)~Tcl (u;O, vl2) for O<It~Ul2, (26) 

and for u I close to zero, 

(p (t, ul ; /)  ~< ~% (u~; (), u12)< ~c ~ (ul; O, ~2), (27)  

2) a = O, t h e  f u n c t i o n  z(l(u;O, vl~ ) c o r r e s p o n d s  t o  t h e  min ima l  t r a j e c t o r y  f a l l i n g  i n t o  t h e  

s i n g u l a r  p o i n t  (O,O),T~l(O;O, v12 ) = - c  1, ~0(0;0, v12)= O. When c 1 ~ 0  v l 2 ~ O ,  a v a l u e  o f  c 1 s u f f i -  

c i e n t l y  small can be found for which inequalities (24)-(27) are satisfied. 

Emergence of a solution into a wave in form [5�9 6] implies its emergence with respect to 
velocity. Actually, differentiating equation u(m(t, 1/2), t) = 1/2�9 we obtain u''~ + 6 = 0, 
whence 
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m t, -- u' (,~(t. 1.2i. t) 

From t h e  u n i f o r m  b o u n d e d n e s s  o f  t h e  d e r i v a t i v e s  u ( i ) ,  i = 1, 2, 3 and t h e  c o n v e r g e n c e  u ( x  + 
m.(l, 1 2), !) .,c~., (~_;0. 1) i t  f o l l o w s  t h a t  u ~'~(r I 2), [)-+ "(t~@" 0. 1), whence as  t + 

" \ '"  2 ./ ~ w~i * ( ( l ' t l ,  l j  = ~ * "  

T h i s  c o m p l e t e s  t h e  p r o o f  o f  t h e  t h e o r e m .  

Remark. By a change  o f  v a r i a b l e s  t h e  t h e o r e m  can be e x t e n d e d  t o  t h e  c a s e  F ( u ) ~ - ( 1 ) .  
I n e q u a l i t y  (23)  must be r e p l a c e d  by t h e  f o l l o w i n g :  

Jim -- t" (.~) ~__ _ , == i ~/ET,,~ + l ' /  -7- c, < O, [~ l"' (1). 
x ~ - -  z,- 

The theorem we present below is fundamental to this section. In proving it we employ 
a lemma whose validity follows from known results on estimating the minimal velocity for a 
positive source (see, for example, [6]). 

LEMMA 3 .  I f  Y ( a ) = f ( b ) = O ,  F ( u ) > 0  f o r  a < u < b  , t h e n  2 ] / f , " . ( a ) ~ c ( a , b ) ~ 2 ~ /  max F'(u)  , 
~t~U~b 

where c(a, b) is the w~(x; a, b). 

THEOREM 7. If the wave Wc(X ; 0, i) exists and is unique, then for an arbitrary monotonic 
piecewise-continuous function /(x), ](+oo)~I(0), /(-=)~I(I) , as t ~ ~, uniformly with respect 
to z~(-~, +~) , 

u ( x i  m( t ,  !1/2), t ) ~  w~(x; O, t ) .  

Moreover, ~(t, 1/2) ~ c. 

Proof. We consider two cases: I) c > 0, 2) c = 0. Case 3) c < 0 is obtained from the 
first case by a change of variables. The proof is carried out as in the example of Sec. 1 
and is reduced to the construction of the functions T~(u; v~, v~) and T~i(U;L'iI,~2 ), 

I. We distinguish two possibilities here:f(u)~g-(0) and F(u)~g~ The first was 
considered in Sec. i. We consider the second. 

i.i. In an arbitrary neighborhood of point u = 0 we can find points of positiveness 
of the function F(u). 

We can assume that vf~l(1) and that v I is so close to zero that max Ik"(~}[~c~4. Then 
O ~ U ~ t '  I 

for arbitrary a, b, 0<a~b<v!,, satisfying the conditions of Lemma 3, c(a, b)<c. We denote 
by ~(~; a. v~) the function corresponding to the trajectory falling into the singular point 
(a, 0) along the minimal direction. 

We show that v 3 > v 2. Actually, if this is not so, then u3~vi, F(L'3)~O. k'(a)~+(v~). Let 
(a~, b,) be the largest interval of positiveness of function F(u) such that v~[al, bl]. It then 
follows from the condition c(a~, bl)<c that the trajectory leaving the point (v3, 0) (by vir- 
tue of the uniqueness of such a trajectory, to it there corresponds the function T~(u; a, v3)), 
falls into the singular point (a, 0) along a non-minimal direction, which contradicts the de- 
finition of T~(u; a, v3). 

Thus, ~(u; a, v3)<~(u; v~, v o) for u~[vl, vf]. As in the previous theorem, q~(t, u; /)~(u; 
a, v 3 ) + e / 2 < ~ ( u ;  vl, v 2 ) + g / 2 < ~ ( u ;  O, 1 ) + e  for t>~to(~) .  

1.2. In some neighborhood of the point u = 0, F(u)~0 , and in every neighborhood there 
is a point of negativeness of function F(u). 

We can assume that vf~l(1) and that v I belongs to a neighborhood of the point u = 0 in 
which function F(u) is non-positive. Let a be such that O<a<vl. l:(a)<0. Consider now the 
function T~(u; a, vz). It is easy to show that v~ > vz. Indeed, if this were not so, then 
ua~vt and F(u)~l+(o3), i.e., for u~v~ points of positiveness of function F(u) can be found. 
Thus, for u~[v~, v~] ~(u; a, vs)<rr v~, v~), and all the reasoning used in Sec. 1 is appli- 
cable to the function ~r a, v~) . 

1.3. On some interval [0, v~], v 0 > 0, we have F(u) -= 0 and F(u) ~ 0 on an arbitrary 
large interval. 
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The proof is rather involved, and we limit ourselves to a simple special case in which 
F(u) > 0 in a right half-neighborhood of point v 0. This item differs from the preceding one 
only in the construction of the function ~q(u, u~, v~) . We can assume that u~ ~(0, v0) , and for 

an arbitrary vs~, 0 < v~s < u~, ~c~ (~; ~'~. ~h~)-+0 as c + 0, uniformly with respect to u, whereby 

v~-+~0. It follows from this that for c~ sufficiently small, ~p(O,u;/)<Tq(~;~'~,V~),Vi~<--_u-<~Vs~, 
and for arbitrary u~ close to v~, u~ > v~, 

~(t.u,;/)<~(u~; vs, v~), t~>0. 

2. If F(v~) < 0, F(v2) > 0, the functions T~(u;u~x, Ui., ) are then constructed as in Sec. i. 

We show that the general case can be reduced to that indicated. For this it is suffi- 
cient to construct a function T~(u; a, b) such that ~(u; a, b)< ~(tt; ul, v~) for ~ ~ Ivy, u~]. Here 
the values of a and b must satisfy the conditions O<a<us<u~<b<J, F(a)<0, F(b)>0. If 
we assume that for an arbitrary function ~=(u; a~, b~) such that u~<b~<i,f(bs)>0, that the 

b I i 

inequalitya~>v=, holds, then by virtue of the equation.l f(u) de=0 we will have jf(u) d~<0 , 

a I ~ 

which contradicts Theorem 3. Thus we can assume that as<--.v~ and F(a~)~<0. If F(as)=0, we 
@ 

t u s e  t h e  i n e q u a l i t y  . F(u) du < 0  Vv~(a~, b~), f r o m  w h i c h  i t  f o l l o w s  t h a t  i n  an  a r b i t r a r y  r i g h t  
% 

h a l f - n e i g h b o r h o o d  o f  p o i n t  as t h e r e  i s  a p o i n t  o f  n e g a t i v e n e s s  o f  f u n c t i o n  F ( u ) .  C h o o s i n g  a 
s u f f i c i e n t l y  c l o s e  t o  a~, F ( a ) < 0 ,  and  p u t t i n g  b = b~ ,  we o b t a i n  t h e  r e q u i r e d  f u n c t i o n  -c~(u; a, 
b). 

C o n v e r g e n c e  ~ ( t ,  1 / 2 )  ~ c a s  t § ~ may be  p r o v e d  a s  was d o n e  i n  Theorem 6.  T h i s  com- 
p l e t e s  the proof of Theorem 7. 

5. Emergence into a Minimal System of Waves 

Definition. By a system of waves we mean a function R(u), given on the interval 
[0, i] and such that the condition R(u) <- 0 is satisfied for 0~<u~<], R(0)=R(1)~0. If 
R(u) < 0 for u I < u < u 2 and R(u I) = R(u 2) = 0, then for some c there exists a function ~c • 
(u; ul, u~) for which ]~(U)~-T~(I~; u~, tl~), us~u<~u2. In this case we say that the function 
Zc(U; u1~ u2) emerges into the system of waves R(u). 

A system of waves R0(u) is said to be minimal if for an arbitrary second system of waves 
R(u) we have R(u)>~ Ro(n), O ~ u ~ I. 

THEOREM 8. For an arbitrary source F(u) there exists a minimal system of waves R0(u). 

Proof. We put 

Ro(71o) : iI|~ {/) I for some c there exists a function 
x~(u; a, b), O ~ a < ~ b ~  l, such tha t  p =T~(u0; a, O)~. 

I t  f o l l o w s  f r o m  t h e  t h e o r e m  c o n c e r n i n g  c o n t i n u o u s  d e p e n d e n c e  o f  t h e  s o l u t i o n  on t h e  p a r a m e t e r  
(c) and on the initial condition that for an arbitrary fixed value of u 0 there exists a func- 
tion �9 %(u;a0, b~) such that R o(uo)=T%O%;ao,bo), 0 ~ a 0 < ~ b 0 ~  J. 

B a s e d  on an  a n a l y s i s  o f  t h e  d i r e c t i o n  f i e l d  f o r  s y s t e m  ( 3 )  we c a n  show t h a t  t h e  f u n c t i o n  
R~(u )  i s  b o u n d e d .  

We show that R0(u) is a system of waves, i.e., if /?t,(ll)<0 for us<~z<zz2, R0(~ll):/~0(~l_~)=0, 
then there exists a function ~(tl;ns, l~2) for which Pt0(z~)~T~(u; HI, u2), u1~t2. To do this, 
we consider an arbitrary point vl ~(us, ~0) and a function T%(u; au, bl), 0~ a I ~ b I~ I, /~0 (ul) = Tct (~h; 

a~,b~). If Ro(u)~/~r%(u;a~,b~) for al~t~bs, we can then find u~(a~, b,)for which P%(~,~)<~q(~.,; 

a~, b~). For definiteness we assume that v2 > v~. We consider the function T%(~; a~, b~), 0~a~ 

b~.~t ,  Ro(~:~_)=rc,(P2;a.,_,b,,_). S i n c e  rc~(u~;a~,b~)<~%(u~;a~,b.0,  "v%(~:2;a~,b~)>T%(u2;a~,b~) , t h e  e q u a t i o n  

%~(u;ax, ba) = ~%(u;a~,b~) t h e n  h a s  f o r  u ~ [vl, v2] a s o l u t i o n ,  i . e . ,  t h e  c o r r e s p o n d i n g  t r a j e c t o r i e s  

i n t e r s e c t  ( F i g .  2 ) .  I f  c a < c z ,  c~ - c~ i s  s m a l l ,  t h e r e  t h e n  e x i s t s  a f u n c t i o n  ~%(u;a:~,b~), 

a ~_ a~ ~ b~ = b~, s u c h  t h a t  ~% (v~; a~, b~) < T~ (u~; a~_, b~) = R 0 (~'_o) , w h i c h  c o n t r a d i c s  t h e  d e f i n i t i o n  o f  

R o ( u  ) .  Thus ,Ro (u )~T~(u ;a l ,  bl) , a ~ - ~ b ~  ; c o n s e q u e n t l y ,  a s = ~ l ,  b l = U 2 .  
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Minimality of the system of waves R0(u) follows from its definition. This completes 
the proof of the theorem. 

COROLLARY_. If the function ~c(U; ul, u2) emerges into a minimal wave system R0(u)# it fol- 
lows that F(ui) = 0, i = i, 2. 

Proof. Suppose, for example, that F(u l) > 0. We denote by (a, b) an interval of posi- 
tiveness of the function F(u) containing point u I. Then for some c there exists a function 
T,~(u; a, b) and the system Re(u) is not minimal since T~(~:; a, b)<0. The case F(ul) < 0 is 
handled similarly. This completes the proof of the corollary. 

We present examples of minimal systems of waves. 

I. If t}~e function Te(u; 0, I) exists and is unique, then H0(~)~T~(u; 0, J), 0~:~,~ I; 
re c* L c, > 0 ,  if the function Tc(U; O, I) exists for the half-interval of velocities , ,, 

then R 0 (u) ~ T~. (a; 0, I), 0 ~ ~ I, 

2. If a minimal decomposition (see Sec. i) exists, then 7{, (u) =-- T~ (u; ai,, b~,), a~<~u<-b~,. 

3. Let F(u) > 0 for 0<~<al F(u,)=0, a~u<~b; F(u)<0, b<u,<]. Then 7~(~0-~:v%{~;0,~) 
for O<~u~a; Ho(a)~-0, a < u < b ;  Ho (u) ~-- T% (u; h, ~), b~u<~]. Here c i are velocities 

minimal in absolute value for which the trajectories Tci exist. 

There exist minimal systems of waves formed by an infinite set of trajectories~ 

The following theorems are devoted to the emergence of solutions into minimal systems 
of waves. We remark that an arbitrary function F(u) satisfies one of the conditions of these 
theorems, i.e., they contain sources of arbitrary form. 

THEOREM 9. Let F(u)r F(u)~[-(~). Then for an arbitrary monotonic function f(x), 

/(+oo)~I(0), ](_oo)~ [(]), as t + ~, uniformly with respect to u~[,t+(l), ~L(Q](~:~(t)=u(~, g)) 

q~(~, ~;/)-~ Ro(~.). 
IfB0(u)~vo(a; a, b) for a~n~b, then as t ~ ~, uniformly with respect to x on an arbitrary 
finite interval, 

u(x+  re(l, (a + b)/2), t ) ~  *v~(x; a, b). 

Moreover, *h(t, (a+ b) /2)~ c. 

THEOREM 10. Let f(x) be a monotonic piecewise-smooth function, /(+~)~I(0), /(--~)~I('i), 
and let one of the following conditions be satisfied: 

1) r ( . ) ~  g+(O), F(..)~ l-(~), 
t r ~ .  

!ira /' (x) < R'(o)' (28) .~Z+~ ! ix) o 

2) F(u)r  F ( u ) ~ / - ( I ) ,  
. - / '  (x) 
.... l---/(x) B~(1)' (29) 

3) F(u)~g+(0), F(u)~l-(1) and inequalities (28) and (29)hold. 

Then as t + ~, uniformly with respect to u~[u+(t), ~z_(t)], 

~(t, , ,;/)-~ no(u), 
uniformly on an arbitrary finite interval with respect to x, 

u(x + re(t, (a+ b)/2), t)-+ w~(x; a, b), 

if ~o(u)------T~(u; a, b) for a ~ u ~ b .  Moreover, .~h(t, (a+b)/2)-+c. 

Theorems 9 and I0 are easily proved by applying Theorems 6 and 7; we do this schemat- 
ically. We show that for an arbitrary s > 0 there exists a t0(s) such that I~0(~) .... s ~ q It, t~; 
/)~ R0(u)+ e, t~ t0(e), ~+ ~ u ~ ~_o The inequality on the left is proved in the usual way: 

qo( t ,u; j )>~(t ,u;?:) ,~p( t ,u;x) fRo(u) ,  7.(2..)=={ 1' x < 0 ,  
" O, x~>O. 

To prove the inequalities on the right, we introduce the function 
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Cf{mj, if ' ~ , "  " - " 

fo (,~) = i `~' ~-f i (,~) < <'~, 
b I if f iX) > b. 

Then ~(t, u; /)~<9(t, ~; /0)-+ to(u; a, b)~-/T0(u) for a~<~<bo It follows from the uniform in u 
convergence ~(t, ~z; i)-~ ~(~z; a, b), a ~< u ~< b that u(x + re(t, (a + b)/2), t)-+ w~(x; a, b) , uniformly 
on an arbitrary finite interval, semiaxis, or axis with respect to x, depending on whether or 
not a and b are, respectively, 0 and i. 

Emergence into a wave with respect to velocity is proved in the usual way (Theorem 6). 

A more detailed exposition of these results appears in [i0]. 
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QUESTION OF EQUIVALENCE OF THE CLASSICAL METHODS OF SUMMATION OF 

ORTHOGONAL SERIES 

V. F. Gaposhkin UDC 517.51 

Let {~h(X)}h~=0 be an orthonormal system in some measure space (Q, ~%{, ~), ~k ~ Lz(Q). The 
. 2 series~c~(pk , where~ci~<~ , will below be called an L 2 series. Two regular methods of 

summing T l and T 2 are said to be equivalent in L 2 if, for all orthonormal systems {~} , the T l 

summability a.e. on G c ~2 (~(G)> 0) of the series ~Ch~k in L 2 implies the T 2 summability a.e. 

on G of this series, and vice versa. 

If a subsequence Snm(X) of partial sums of the series converges, then we say this series 
is summable by the method T(nm). 

The following results are well-known: 

THEOREM A. The methods of Cesaro (C, ~) (~ > 0), Abel and T(2 TM) are equivalent in L 2. 

THEOREM B. The methods of Euler (E, q) (q > 0), Borel and T(m z) are equivalent in L 2. 

Moscow. Translated from Sibirskii Matematichskii Zhurnai, Vol. 30~ No. I, pp. 48-56, 
January-February, 1989o Original article submitted October 29, 1986. 

36 0037-4466/89/3001-0036512o50 �9 1989 Plenum Publishing Corporation 


