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A nonlocal model of particle deposition is developed without resorting to empirical information on the fluctuating motion of the 
particles. The effects of particle inertia are described by a system of differential equations for the moments of the dispersed phase 
velocity. The model is tested on examples of flows in channels with smooth walls and with "grassy" roughness. 

Despite the considerable interest in the problem, a theory that consistently describes the process of  partMe deposition in 

channels has not yet been constructed. The first models for calculating the deposition rate [1, 2] were based on the "free path" 

principle. In these studies it was assumed that in the flow core up to some conventional boundary the particles were transported 

as a result of  turbulent diffusion, and that in the concluding stage there is an inertial run to the wall powered by the energy 

previously communicated by the turbulent eddies of  the carrier phase. The further development of  the theory was based on the 

modification of  the coefficients and parameters of  the Friedlander--Johnstone model [3, 4], the introduction of  the elements of 
a stochastic approach [5, 6], and the more accurate taking into account of the structure of  the turbulence near the wall [7]. 

The main shortcoming of  these studies is the large number of  empirical constants and the possibility of using the 
approaches proposed only over relatively narrow ranges of  variation of  the particle dimensions. For these reasons the use of 

diffusion models in combination with the rather artificial method of displacing the boundary conditions by the length of  the "free 
path" is not entirely satisfactory. A number of  authors [8, 9] have recently carried out direct numerical modeling of  the 
deposition processes. An analysis of  the results of  these investigations indicates that the characteristics of  the dispersed phase 

in the wall zone cannot be obtained on the basis of  a local equilibrium approach. 

1. It is proposed to consider the steady stabilized flow of  a gas--particle medium in plane-parallel (o~ = 0) and 

axisymmetric (c~ = 1) channels with absorbent walls. The mass and, in particular, the volume concentration of  the particles 

are assumed to be small, which makes it possible to neglect their collisions and their reaction on the carrier medium. The 

dynamic properties of  the particles are characterized by the relaxation time r and the Brownian diffusion coefficient D. 
Assuming a Gaussian random turbulent gas velocity fluctuation field, the equation for the particle probability density distribution 

P in the phase space of  the coordinates x k and velocities V k has the following form [1]: 

- - ~ +  Vh -+ + F~ P =  g<u~'u.') OZP + (u, 'uk~)+ 6~h OV~OV~ (1.1) 
Ot Ox~ OVk x "c Ox~ oV----~k 

Here, U k and u k' are the average and fluctuating components of  the gas velocity; (ui'uk') are the second one-point 

moments of the fluctuations; and F k is the acceleration caused by the external body force. 

The coefficients of  entrainment of the particles in the fluctuating motion of  the gas 

t 
-  -.xp d ,  

t =  ,r o -  T o (1.2) 

(s) =<u,' (t) u/(t+s) >/<u,' (t)u~' (t) > 

are determined by the two-time correlation function of  the gas velocity fluctuation r taken along the particle trajectory. 

We will derive the equation for the moments from (1. i). The correlations containing an angular velocity component (when 
c~ = 1) are determined from the condition of  elimination of  divergence on the channel axis. The equation for the mass balance 

of the solid phase C is obtained by integrating (1.1) over velocity space: 

I 0 r~<V,)C+ 0 <V~>C=O, <V~~ @~P1/'#I/'~bdV, C I P d V  (1.3) 
r ~ Or Ox 
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where x and r are measured in the longitudinal and transverse directions from the channel axis (plane of symmetry). 

Multiplying (1.1) by V r and integrating with respect to V, we obtain the balance equation for the transverse component 
of the momentum of the solid phase: 

0 ( < V ~ >  ) C _ g < u  ~>O~r _ {  06"}  - - ( '  -+- oxA ( v r v ~ ) c  --  .r -~- Fr " g(bl.r'ttx')'--~X (1.4) 

The components of the particle momentum flux density entering into expression (1.4) include both the turbulent stresses 
in the solid phase and the direct transfer of momentum by the average motion. 

From (1.4) we obtain the equation for the radial component of the particle flux 

~ oC I 
Or - 0------~-- + ~Ox Ox / 

in accordance with which the motion of the solid phase in the direction of the channel wall is mainly determined by the turbulent 
diffusion with a diffusion coefficient D r = r[(Vr2 ) + g(u/2)] that depends on the particle velocity fluctuation level, the turbulent 
migration under the influence of the particle turbulent energy gradient, and the effect of the body force. 

The equation for the moment (Vr 2) takes the form: 

O ( V f l > C  + O<V,~V~>C=2< Vr>CF~ - 
Or Ox 

]+ ,,++> ) (l.5) 

From (1.5), assuming that the transfer terms are small, we can derive the following expression for the particle energy 
corresponding to the transverse degree of freedom: 

'/2< V,D=' /z( I (u/~>+D/x)  (1.6) 

The local-equilibrium approximation based on (1.6), is well satisfied in the turbulent core of the flow; however, it may 
be upset in the wall zone, where all the variables have large gradients. Nonlocal effects can be taken into account on the basis 
of the solution of Eq. (1.5). For determining (Vr3) we assume a quasi-Gaussian distribution of the particles with respect to the 
transverse velocity component, analogous to Millionshchikov's hypothesis in the theory of single-phase turbulent flows, (Vr 4) 
= 3{Vr2) 2. In this case from the equation for the third moments in the boundary layer approximation, which makes it possible 
to omit the derivatives with respect to x from the equations for the higher moments, we have [11] 

<Vf l>=-Dr  d<Vrz) + <Vr>[ < V ~ ) + 2 ( / < u / % + D ) ]  (1.7) 
d r '  " T ~ 

Thus, the total third moment describes the diffusion transport of particle energy (Vr2)/2 and the convective transfer to the 
disturbance of the symmetry in the distribution P with respect to V r. 

We also present the equations for the moments (Vx) and (VrVx) obtained from (1.1) 

1 ~ ( <U.>-<Vp ) 
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'9 t In the boundary layer approximation, supplemented by the condition (Vfl) >>  (Vr'V x ) from (l.9) and (1.4) we have 
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<V~V~)=/(u~'ux')+-~ [ (V~)( (Vx)+<U~>.r + F~)- Dr-~r<V~)] (l.10) 

In accordance with expression (1.10), the moment (VrV x) is generated by the entrainment of the particles into the turbulent 

motion of the gas described by the local-equilibrium term j~Ur'Ux'}, convection and diffusion. 
By virtue of the formulation of the problem none of the characteristics of the dispersed phase, except for the concentration 

C, varies along the x axis, and the C distributions in different sections of the channel are similar. In this case from (1.3) there 

follows 
R 

(S ) OC _ CB~(C<V~>) ]~=~ r=C(V,>dr (1.11) 
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where R is the radius (half-width of the channel). 
Moreover, since (Vx) > >  (Vr), the terms in braces in Eqs. (1.4) and (1.8) can be neglected. 
The system of nonlinear differential equations (1.3)--(1.5), (1.8) together with the closing relations (1.7), (1.10L (1.11), 

provide the basis for modeling turbulent particle transport in channels. 
2. The boundary conditions for the equations obtained are determined by the interaction of the particles and the channel 

walls. We introduce the coefficient of restitution of the longitudinal velocity component ~" and the probability X of particle 
rebound from the boundary after impact. Then the probability density of particle transition in phase space upon collision with 

the wall takes the form: 

P(V_ I V+)=x6(Vr_+V,+)6(Vx_-;V~+), V,+>0 (2.1) 

where the plus and minus subscripts denote the parameters before and after impact. 
We assume a Gaussian distribution of the dispersed phase with respect to Vr+ at the wall: 

P(V,+)~ exp( V'+2 
2< V,~> 

Then the velocity moments are related as follows [l l] :  

<Vr)= - <V,~) '', <V~3) = - (V,% ~ (2.2) 
n 1+7~ a I+X 

The main reasons for (VrVx) deviating from the local-equilibrium value at the wall are the loss of momentum when the 
particles interact with the wall and deposition. We represent the moment (VrVx) as a sum of equilibrium and nonequilibrium 
terms: (VrVx} = ](Ur'Ux') + A{VrVx). We determine /t(VrV x} from the condition of statistical independence of the distribution 
P with respect to V r and V x in the incident and reflected particle fractions. From (2.1) we find 

( VT)+C++< VT)-C- 1-X I+~X I -S ; (  
< v r > =  c++c = < v . > +  ' 

Thus, using (2.2) we obtain 

A<V~V:>=]/ 2 1-Z~ I n I+X~ 

An analogous expression for the mixed moment of the velocity of large particles was obtained in [12] on the basis of the 
small parameter method. Finally, we obtain 

/ 

7 I t " V  ~ a I+X~ <VJ>'J'(V') (2.3) 

The boundary conditions (2.2), (2.3), supplemented by the conditions of symmetry on the channel axis, close the system 
of transport equations. 

3. The system of differential equations (1.3)--(1.5), (1.8) was solved numerically for the case of total absorption of the 
particles on the walls (X = 0). 

For calculating the gas velocity distribution we used the approximate expression for the turbulent viscosity coefficient 

1 
[1 exp A R+ ~ 2 + \ R +  

v , + = - 6 [ V l + 4  -- ( B+-r+)2x2(R+_r+)Z]_ t ] , ( t +  r+ )(__1_1( r+ )2)  (3.1) 
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which at points distant from the wall goes over into the Reichardt formula and in the vicinity of  the wall into the Van Driest 
relation [13] (x = 1.4, A = 26). The plus subscript denotes that all the quantities have been nondimensionalized by dividing 

by the friction velocity u, and the kinematic viscosity ~. 
In accordance with (I .2), the entrainment coefficientsfand g depend on the parameter f2 = T/r, where T is the time scale 

of the energy-bearing fluctuations. The time scale of the turbulence is related to the Prandtl--Nikuradze mixing length l [14]: 

T + = Y I + Z + t 0 0 ,  / = R  ( 0 . i , - 0 . 0 8  ( -R-)  z -- 0 .06(- -~-) '  ) (3.2) 

The intensity of  the turbulent fluctuations of the gas in the transverse direction is calculated from the expression 

(u,">=v,/T Set (3.3) 

In Fig. la  we compare calculations made with (3.3), using (3.1), (3.2), with Sc t = 0.9 and the experimental data presented 

in [15]. There is satisfactory agreement between (3.3) and the experimental results in the wall zone (y = R - r). 
The distribution of the particle fluctuation energy is shown in Figs. l b and l c. The broken and continuous curves 

correspond to the calculation results obtained without and with allowance for the Saffman force which acts in the transverse 
direction and develops in shear flow when the velocities of the carrier and solid phases are mismatched [16]. The Saffman force 

causes acceleration: 

9.6 9t U=-(V=) dU,( v )"~ 
Fr = - 

9~, d dr ~ -d~J=/dr 

where Px and pp are the densities of  the gas and the material of  a particle with diameter d, respectively. 
The important influence of  the Saffman force on particle transport in a viscous sublayer and deposition processes was first 

noted in [17]. 
For the approximation of  the two-time correlation function ~b(s) the following expressions are most frequently used: the 

step [18] and exponential [19] relations 

~(s )=( l -H(s - -T)  ), ~ ( s ) = e x p  (--s/T) 

(H is the Heaviside function), which give different values for the entrainment coefficients. 
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For small dynamic relaxation times (~'+ = 1.1) the particles are strongly entrained into the fluctuating motion of  the gas 

and the two approximations of  ~b(s) (the step 1 and exponential 2 approximations) lead to similar values of the fluctuation energy 

(Fig. lb) in the wall zone of  a plane channel. The experimental data of  Goren and Erhart, presented in [9], are in good 

agreement with the calculations. In Fig. lc, using the same notation as in Fig. lb, we have plotted the distribution of  the 
fluctuation energy of  particles with greater inertia (r+ = 1.43). The increase in panicle size leads to a fall in the intensity level 

of the turbulent panicle velocity fluctuations with a simultaneous flattening of  the fluctuation profile. Comparison with the 

experimental data suggests the choice of  an exponential approximation of  the correlation function ~b(s). 
The fluctuation energy of  the large particles in the wall zone may exceed the value of  the turbulent energy of  the gas, in 

which case the intensity of  the fluctuations at the wall will be nonzero. It should be noted that this effect can be obtained only 
on the basis of a nonlocal simulation of  the turbulence in the solid phase and is determined by the diffusion and convective 

mechanisms of  fluctuation transfer by the inertial particles. 
A characteristic feature of  the dependence of the intensity of  the solid-phase transverse velocity fluctuations at the wall 

on the inertia parameter r+ is the presence of a maximum at r+  = 103 (Fig. 2). The increase in <Vr2) w is attributable to the 
enhanced role of the diffusion and convective mechanisms of particle energy transfer from the flow core to the wall with increase 

in the inertia of the panicles. The fall in (Vr2) W beyond the maximum is associated with the decreased intensity of  the turbulent 

energy of  the panicles in the flow core as their inertia increases, since at points away from the wall (Vr 2) = j(Ur'2>. Brownian 

motion has an important influence on the fluctuation level of  the small panicles; in this case the fall in ( Vr2>W with increase 
in the inertia of  the Brownian particles is associated with the decrease in the Brownian diffusion coefficient D. 

The behavior of  the turbulent energy of  the dispersed phase is reflected in the dependence of  the dimensionless flux at the 

wall, given by the expression [3] 

1 ~r~U~d r O l n C  
J+ = u,  tt ~ O----Z 

0 

on the inertia parameter r+.  Figure 3 gives the results of calculating j+  for a circular channel when Re = 50 030, p f P f  = 
770. The continuous and broken curves correspond to calculations made with and without allowance for the effect of  the 
Saffman force. An analysis of  the results obtained indicates that the entire range of  variation of  r+ can be conventionally 
divided into three intervals: the deposition of  small (r+ ~ 1), medium (1 '~ r+ ,~ 100), and large (r+ ~ 100) particles. The 
principal mechanisms determining the deposition of small panicles are turbulent and Brownian diffusion. 

The fall in the deposition rate with increase in r+  is associated with the decrease in the Brownian diffusion coefficient as 
the particle size increases. The principal mechanisms determining the desposition of  medium panicles are turbulent diffusion 

and turbulent migration resulting from the nonuniform distributions of  panicle concentration and turbulent carrier-phase velocity 

fluctuation intensity and also the Saffman force; the contribution of  Brownian diffusion to deposition is now insignificant. The 

increase in deposition velocity with increase in r+  is attributable to the increased role of  the migration transport mechanism. 

The deposition velocity is mainly determined by the value of the particle fluctuation energy at the wall. Therefore the fall in 

the deposition coefficient (beyond the maximum at r+  = 103) as the inertia of  the large particles increases is associated with 
the decrease in the intensity of  the turbulent transverse velocity fluctuations (Fig. 2). The results of the calculations are 
consistent with the experimental data on the deposition coefficients obtained by various authors ([3] - -  1, [1] - -  2, [20] - -  3). 

A promising means of  intensifying deposition on the channel walls is to use "grassy" roughness. On the particle size 
interval 10 -3  < 7+ < 10 the deposition velocity has been found to increase by several orders [20]. The authors of these 

publications, in particular [21], associate the effect with the increased efficiency of  particle capture and assume that in this case 

deposition is determined by other mechanisms - -  inertial flow over the fibers in the transverse direction. However, on smooth 
walls the use of  coatings that ensure almost total absorption of  the dispersed phase did not increase the deposition rate. 

The anomalously high deposition can be explained if it is borne in mind that a "grassy" coating does not lead to significant 

distortion of  the structure of  the turbulent flow [20]. At the same time, the actual absorption surface is displaced a distance h 

equal to the fiber dimension into the flow. The proposed deposition model gives correct results in the this case also without 

it being necessary to change the physical premises. In fact, for panicles with d = 0.65 #m and Pp/t~f = 1000 calculations for 
turbulent flow in a channel with h = 103 #m led to results in good agreement with the experimental data [22]. In Fig. 4 curves 
1--4 correspond to the roughness scales 0, 10, 30, and 103 #m, respectively. A "grassy" coating has no effect on particles with 
~-+ > 100. 

These data throw some light on the causes of  the considerable scatter of the experimental data for deposition on smooth 
surfaces: the presence of  even minor roughness leads to a sharp increase in the deposition rate. 

Thus, the model proposed describes the transport and deposition processes over a broad range of  variation o f  the particle 
inertia in relation to both smooth surfaces and surfaces with "grassy" roughness. 

47 



REFERENCES 

1. S.K. Friedlander and H. F. Johnstone, "Deposition of suspended particles from turbulent gas stream," Ind. Eng. Chem., 49, i151 
(1957). 

2. C.N. Davies, "Deposition of aerosols from turbulent flow through pipes," Proc. R. Soc. London, Ser. A: 289, 235 (1966). 
3. B .Y .H .  Liu and J. K. Agarwal, "Experimental observation of aerosol deposition in turbulent flow," J. Aerosol Sci., 5, 145 (1974). 
4. A. Kitamoto and Y. Takashima, "Transport theory of aerosol in turbulent flow," Bull. Tokyo Inst. Technol., No. 121,41 (1974). 
5. P. Hutchinson, G. Hewitt, and A. E. Dukler, "Deposition of liquid or solid dispersions from turbulent gas streams: a stochastic 

model," Chem. Eng. Sci., 26, 419 (1971). 

6. M.W. Beeks and G. Skyrme, "The dependence of particle deposition velocity on particle inertia in turbulent pipe flow," J. Aerosol 
Sci., 7, 485 (1976). 

7. J.W. Cleaver and B. Yates, "A sublayer model for the deposition of particles from a turbulent flow," Chem. Eng. Sci., 30, 983 (1975). 
8. M. Fichman, C. Gutfinger, and D. Pnueti, "A model for turbulent deposition of aerosols," J. Aerosol Sci., 19, 129 (1988). 

9. G.A. Kaillio and M. W. Reeks, "A numerical simulation of particle deposition in turbulent boundary layers," Int. J. Multiphase Flow, 
15, 433 (1989). 

10. I.V. Derevieh and L. I. Zaichik, "Particle deposition from a turbulent flow," Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 5, 96 
(1988). 

11. I.N. Gusev and L. I. Zaichik, "Modeling of the particle dynamics in the wall region of turbulent gas dispersion flow," lzv. Akad. Nauk 
SSSR, Mekh. Zhidk. Gaza, No. 1, 50 (1991). 

12. I.V. Derevich and V. M. Eroshenko, "Calculation of the average phase velocity slip in turbulent multiphase channel flow," Izv. Akad. 
Nauk SSSR, Mekh. Zhidk. Gaza, No. 2, 69 (1990). 

13. B.S. Petukhov, L. G. Genin, and S. A. Kovalev, Heat Transfer in Nuclear Power Plants [in Russian], Atomizdat, Moscow (1974). 
14. I.N. Gusev, E. I. Guseva, and L. I. Zaichik, "Particle deposition on channel walls in a turbulent flow," Inzh.-Fiz. Zh., 59, 735 (1990). 
15. J. Laufer, "The structure of turbulence ill fully developed pipe flow," NACA Rep., No. 1174, 18 (1954). 
16. P.G. Saffrnan, "The lift on a small sphere in a slow-shear flow," J. Fluid Mech., 22,385 (1965); Corrigendum, J. Fluid Mech., 31, 

624 (1968). 
17. Roukhainen and Stashevich, "Deposition of small-sized particles from turbulent flows," Trans. Am. Soc. Mech. Eng., Ser. C, J. Heat 

Transfer, 92, 118 (1970). 
18. I.V. Derevich, V. M. Eroshenko, and L. I. Zaichik, "Effect of the particles on the intensity of turbulent transfer in a dusty gas," lnzh.- 

Fiz. Zh., 45, 554 (1983). 
19. A.A. Shraiber, L. B. Gavin, V. A. Naumov, and V. P. Yatsenko, Turbulent Gas Suspension Flows [in Russian], Naukova Dumka, 

Kiev (1987). 
20. A.C.  Wells and A. C. Chamberlain, "Transport of small particles to vertical surfaces," Br. J. Appl. Phys., 18, 1793. 
21. E.P. Mednikov, Turbulent Transport and Deposition of Aerosols [in Russian], Nauka, Moscow (1981). 
22. A .C .  Chamberlain, J. A. Garland, and A. C. Wells, "Transport of gases and particles to surfaces with widely spaced roughness 

elements," Boundary-Layer Meteorology, 29, 343 (1984). 

48 


