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M O D A L  L O G I C  W I T H  N A M E S  

ABSTRACT. We investigate an enrichment of the propositional modal language 
with a "universal" modality n having semantics x ~ iq~ iff Vy(y ~ ~0), and a countable 
set of "names" - a special kind of propositional variables ranging over singleton sets 
of worlds. The obtained language ~cq c proves to have a great expressive power. It is 
equivalent with respect to modal definability to another enrichment s176 of L* ~ where 
[ ]  is an additional modality with the semantics x ~ []~o iff Vy(y  r x ~ y ~ q~). Model- 
theoretic characterizations of modal definability in these languages are obtained. 
Further we consider deductive systems in ~c. Strong completeness of the normal s 
logics is proved with respect to models in which all worlds are named. Every ~~ 
axiomatized by formulae containing only names (but not propositional variables) is 
proved to be strongly frame-complete. Problems concerning transfer of properties 
([in]completeness, filtration, finite model property etc.) from ~ to ~ are discussed. 
Finally, further perspectives for names in multimodal environment are briefly sketched. 

1. INTRODUCTION  

In a p ropos i t i ona l  sett ing (modal ,  t empora l ,  dynamic ,  etc.) n a m e s  are  

p roper t ies  tha t  ident i fy  the in tens iona l  objects  complete ly ,  i.e. each o f  

them holds  only  for  a single object  (be it a poss ible  world ,  a t empora l  

s tate or  a da t a  f ragment ,  depend ing  on the semant ic  in t e rp re t a t ion  o f  

the language)  and  can be thus used to name tha t  pa r t i cu l a r  object .  

His to r ica l ly  the idea o f  such naming  var iables  can  be t raced  back  

to the p ioneer ing  works  o f  Pr io r  (1956) and  especial ly o f  Bull (1970) 

who in t roduced  t empora l  reference to pa r t i cu la r  mome n t s  (or  to the 

co r r e spond ing  state o f  affairs) by means  o f  special  var iables  (the 

c lock-var iab les  o f  Pr ior)  which are  t rue at  a single t ime instant .  In  

Bull (1970) one can find an ax ioma t i za t i on  o f  a t empora l  system in 

the language  ex tended  also by a universal  m o d a l i t y  (i.e. a moda l i t y  

re la ted semant ica l ly  to the universal  relat ion) .  

In  the area  o f  app l i ca t ion  o f  p ropos i t i ona l  logic to c o m p u t e r  

science the idea o f  names  was first explored  ( independent ly  o f  the 

deve lopments  in t empora l  logic) by Passy and  Tinchev (1985). In  

Passy  and  Tinchev (1991) there are  m a n y  examples  which show tha t  

Journal o f  Philosophical Logic 22:607 - 636, 1993. 
�9 1993 Kluwer Academic Publishers. Printed in the Netherlands. 



608 GEORGE GARGOV AND VALENTIN GORANKO 

this enrichment is quite appropriate for the treatment of problems 
arising from, or justified as arising from, possible applications (cf. 

Gargov and Passy (1988) as well). 
A first attempt to apply named languages to traditional modal logic 

was made in the main origin of  the present paper (Gargov et al., 

1987) where the minimal normal modal logic with names was axioma- 
tized and several further properties were stated. Let us note the use of 
necessity and possibility forms (instead of  the universal modality) in 
the latter paper, borrowed from the treatise on programming logics in 
Goldblatt  (1982). We now find this area ripe for a systematic treat- 
ment going from a collection of interesting but loosely connected 
cases to a kind of  a general theory. In our work we try to give a 
coherent exposition of  the theory of  names in purely modal environ- 
ment in order to emphasize just on the effects which names yield. We 

have chosen to reinstall the universal modality for many reasons, 
both technical and aesthetical. 

After the preliminaries we start with expressiveness of the new lan- 
guage ~~ C in Section 3. In Section 4 we investigate modal definability 
in 5~. The language with names turns out to be equivalent in this 
respect to another modal language enriched with an additional (recently 
actively investigated) modality over the inequality relation - the so 
called difference operator. This equivalence allows for a uniform 
characterization of modal definability in the spirit of  Goldblatt and 
Thomason (1974). A good demonstration of the expressive power of 
2~o is the result that every finite frame is definable in ~ by means of 
a single pure  (not containing propositional variables) formula only. In 
Section 5 we turn to deductive systems and problems of completeness 
in ~c. The minimal normal ~<-logic K< is axiomatized using an addi- 
tional rule of  inference COV (taken from Passy and Tinchev (1985) 
where it appears independently from the quite analogous rule in Gabbay 
(1981); evidently COV originates from the co-rule in the arithmetic) 
which enables construction of canonical-like models built from maximal 
consistent sets each of which contains a name. Thus strong completeness 
with respect to surjectively named models is settled for all normal ~c- 
logics. Two classes of  ~c-logics are especially considered in the paper, 
which occupy the two extreme ends of the axis on which one could place 
logics according to the degree of  "involvement with 
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names". On one hand we have the so-called minimal extensions axio- 

matized by formulae in the basic classical languages (i.e. which do not 
mention names explicitly), on the other hand the so-called pure ~ -  
logics axiomatized by axiom schemata where only names occur. At 
the lower end a concern of ours is transfer of properties from a logic 
to its minimal extension. A simple instance of  such a transfer is the 
conservativeness of the minimal extension (and hence, e.g., the up- 
ward transfer of incompleteness). The upward completeness transfer is 
still an open problem in general but it has been proved for the rep- 
resentative case when the underlying 5o-logic is canonical. At the 
upper end we have proved that all pure Sr are strongly frame- 
complete which gives readily complete axiomatizations in 5O,. for a 

number of  logics of  particular interest. However, not every first-order 
definable 5oc-logic can be purely axiomatized; a counter-example is 

Glc = Kc + ~ [ ] p  --+ D~p ,  as shown in Section 6: At the end of the 
paper we briefly discuss several directions of  further applications of  
names in multimodal environment including tense, dynamic etc. lan- 
guages as well as systems with additional polyadic modalities as 
Karnp's Since and Until. 

To complete these introductory remarks let us just mention a more 
regular and more promising viewpoint to the names: they are proposi- 
tional variables with a restriction on the possible valuations. They 
range over the elements of a definable family of  subsets of  a given 
frame (in this case singletons). In this vein one could consider other 

types of restricted variables, ranging over points or subsets with speci- 
fic definable properties. This idea awaits to be systematically explored 
in further investigations on intensional logics. 

2. PRELIMINARIES 

2.1. Syntax 

We take a classical propositional modal language 5O with a countable 
set P = {P0, Pl . . . .  } of propositional variables, logical signs 7 ,  A, 
truth 2-, modality D. The other signs v ,  ~ ,  ~--,, falsity L and ~ are 
classically defined as well as the set of  formulae of  5 ~ . 
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Now we consider an enrichment of  L~ a with the following syntacti- 

cal objects: 
- an additional "universal" modality �9 (for a detailed investiga- 

tion of the role of  �9 see Goranko  and Passy (1992)) with Kripke 

semantics over the universal relation W 2 of the universe: 

(W, R, V> ~ �9 iff Vy(<W, R, V> ~ r 

- countable set C = {Co, cl, . . . } of  special kind of  variables, 

called modal constants or names. They have a status similar to that of  

the propositional variables with an important  difference: the names 

are allowed to be true at exactly one point of the universe. The set of  
formulae of the language A~ obtained in this way is defined as usual, 

with the additional clauses: the names are formulae and �9 is a for- 
mula whenever cp is. 

We shall use ~o, Z, ~ as metavariables for formulae both of ~ and 

~c (explicitly pointing the langtiage when necessary) and c, d, e as 

metavariables for names. 
Some notions in s A closed formula is a Boolean combination of 

formulae of the type �9 A pure formula is a formula not containing 

propositional variables. An instant of a formula is the result of  a 
replacement of  propositional variables by arbitrary formulae and 

names by names. 

2.2. Semantics 

We assume familarity with all basic semantic notions and construc- 
tions connected with the algebraic and relational semantics of  classical 

modal logic. For  the technical background, see e.g. Hughes and 

Cresswell (1984), van Benthem (1984, 1986), Goldblat t  (1976), Seger- 
berg (1971). Some of the basic notions are modified here according to 

the new language. 

D E F I N I T I O N .  A named model in ~c is a quadruple < W, R, V, Z> 
where <W, R, V> is a model in the classical sense and X: C ~ Wis  a 

valuation of the names. The extension of V to a valuation of all for- 
mulae is based on the clauses 

{~7 ifV(~p) = W. 

(i) V(�9 = otherwise ' 
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(ii) V(c)  = {Z(c)} for  each c ~ C. # 

Hav ing  a va lua t ion  we say that  (p e 2,0 c is true at  a point  x of  a named  

model  9l = ( W ,  R, V, Z>, denoted 91 ~ cp[x], if x ~ V(cp); ~0 is valid 

in 91, denoted 91 ~ q~, if V(~o) = W. 

D E F I N I T I O N .  A named  model  ( W, R, V, )~> is surject ive  if Z is sur- 

jective (which, o f  course, implies N WIt ~ N0). # 
We say that  q~ ~ 5~ is va l id in  a mode lgJ l  = <W,  R,  V> if for  every 

Z: C ~ W, (932, X> ~ ~0. N o w  validity in a f r a m e  is defined as a valid- 

ity in all models  over  the frame.  Also the not ions  o f  general f rame 

and validity in it are accordingly adap ted  in ~ .  

T h r o u g h o u t  the pape r  we will freely use metavariables:  F, G for  

frames,  5,  15 for  general  frames,  9]2 for  models ,  91 for  named  models.  

3. EXPRESSIVENESS AND FIRST-ORDER DEFINABILITY IN ~,. 

There  are (at least) two natura l  extensions to L, ce~ of  the t ranslat ion S T  

(see van Benthem (1986)) o f  the moda l  formulae  into the first-order 

language L1 containing a b inary  predicate  R and a countable  set o f  

unary  predicates {P0, P1 . . . .  }: 

I. S T "  is the s tandard  S T  for  5f  and obeys the following addi t ional  
clauses (cf. G a r g o v  et al., 1988): 

(i) S T ' ( c i )  = (x  = y~) where { Y0, Yl, �9 �9 - } is a countable  set o f  
individual variables,  especially assigned for  present ing the names  in Lt 

and x is a fixed variable,  different f rom Y0, Y~ . . . .  

(ii) ST ' ( I l cp)  = g y S T ' ( c p ) [ y / x ]  where y doesn ' t  occur  in ST ' ( (p)  

and x is the variable,  fixed to be the only free variable (if any) besides 

the y ' s  in ST'(~o). N o w  one can express the validity in a named  
model .  Let  9~ = <gJ/, ;(>, where 99~ = <W, R, V ) ,  be a named  

model.  Define an L j -mode l  9)l' = < W; R,  Po, P~, �9 �9 . > such that  

P~ = V ( p , )  for  every i ~ N, and a valuat ion o f  the individual variables 
V: V ( y i )  = Z(c~) and V(z)  arb i t ra ry  for  any z not  belonging to 

{ Y0, Y~, �9 �9 �9 }. Then <gJ/, Z> ~ q) iff <gJ~', V> ~ VxST'(~o) .  Now,  for  
validity in a model  we have: 99l ~ q) iff 9J/' ~ YxVy~a . . . V y ~ S T ' ( q ) )  

where % . . . .  , % are the names  occurr ing in (p. Let  us denote  the 
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formula Yyil . . . Vy, ST'(q)) by ST(q)). This gives a complete analogy 

with ST  in the standard language ~ and validity in a frame is defined 

in the same way as for 5r - with the universal closure of the latter 

formula over all occurring P 's .  

II. Define ST" as follows: let x be a fixed variable; 

(i) S T " ( p , )  = P2i+lX; 
(ii) ST"(ei) = P2ix; 
(iii) the remaining clauses are the same as above. 

Now let 9l = (W, R, V, X) be a named model. Define a correspond- 

ing Ll-model  91' = (W;  R, P0, PI ,  - �9 �9 ) such that Pzi = {7~(ci)} and 
Pzi+l = V(pg) for each i e N. Then 91 ~ q) iff 91' ~ VxST"(q)). For  

models ST" gives: ifg)~ = (W, R, V)  and ~ '  is obtained as 91' 

above, evaluating all P2i arbitrarily, then 

' - /  9J/~ q) iff 9J/' ~ V x V P 2 q . . .  VP2ik(3!zPzilZ A . . .  A 

3 ! z P z j  ~ ST"(q))) 

where Q , . . . ,  cik are the names occurring in ~0. Now it is natural to 

denote by ST(o)  the formula 

VPz i l . . .  VPzik(3!zP2i~ z /x . . .  A 3!zPzikZ --* ST"(~o)). 

It  is provably equivalent to the above ST  and thus we have again an 
analogy with S T  in 2Z. Finally, validity in a frame is expressed by the 

universal closure of  ST(q)) over all P2~+1 such that Pi occurs in q). 
The former translation is preferable from the point of  view of  sim- 

plicity, however it is a bit ad hoc while the latter one reflects ade- 

quately the idea of names over definable sets. 

P R O B L E M  1. Find model-theoretic characterizations (in the style of  
van Benthem (1986)) of  the fragments of  Lj corresponding to each of  

the translations above. Is the problem whether an Ll-formula  is equi- 

valent to such a translation of a modal  formula decidable? 

Now, a few words about  first-order definability. A formula q) ~ 5~ 

is said to be first-order definable if the class FR(q)) = {F/F ~ q)} is 
definable by a formula of  the first-order language L0 for structures 

(W, R) .  
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First-order definability is not decidable even for 50 (see Chagrova 

(1989)) that is why no exact syntactic characterization of  this property 
exists. However, there are several strong and useful sufficient syntactic 
conditions, e.g., the so called "Sahlqvist forms" and some generaliz- 
ations (see Sahlqvist (1975), van Benthem (1986)). It is a routine pro- 
cedure to check that, as a rule, they apply without further ado to 50<., 
having in mind the first extension of ST given above. This is because 
the names behave just as universally bounded individual variables 
when we consider validity in a frame. Besides we have the following 
important fact: 

PROPOSITION 3.1. All pure formulae are first-order definable. 

Indeed, if cp is a pure formula, then ST'(cp) is the required first-order 

equivalent. 

4. MODAL DEFINABILITY IN 2'< 

In this section we give a model-theoretic characterization of the 
expressive power of 50c with respect to definable classes (properties) of 
frames. 

DEFINITION.  (1) Let ~ be a class of frames. E is modally definable 
[MD] in 50~ if there exists a set F of  fomulae of 50c such that for each 

frame F, F e E iff F ~ F. 
(2) A (first-order) property of e of frames is modally definable [MD] 

in 50c iff the class of frames satisfying ~ is MD in 50c. # 

Modal definability in Yc is hardly decidable (being not decidable for 
50), so we can only hope for modal-theoretic characterizations of  the 
properties, definable in this language. Classical results in this direction 

or 5 ~ can be found in Goldblatt  and Thomason (1974) and van Ben- 
them (1986); for some enriched modal languages - in Goranko (1990), 
Goranko and Passy (1992). Unfortunately, the algebraic semantics 
which should correspond to 50c is rather awkward and this is an 
obstacle to apply the so far developed technique for obtaining such 
results here. However, it became possible to avoid this drawback due 
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to the circumstance that 50, turned out equivalent, with respect to 
modal definability, to another enrichment of 50, viz. 50([#--]) (see 
below). Recently this latter language has been actively investigated 
(see Gargov et al. (1987), Goranko (1990), Koymans (1989), de Rijke 
(1989)). 

4.1. Equivalence with respect to modal definability between 
50c and 50([~) 

The language 50([}[]) extends 50 by an additional modality [ ]  with 
the semantics: ~ k [~0 [x ]  iff Vy(x ~ y ~ ~ ~ (0[y]). 

Let us observe that �9 (and hence 41') is definable in 50(V~): 
�9 (0 = [ ~ o  /x (o .  

Note that the notion of valuation does not depend on the language 
since it initially concerns only the propositional variables. Fixing a 
language we can readily extend any valuation to a valuation of all 
formulae of  the language, having in mind the intended semantics of 
the modalities. That  is why we will freely consider the same valuation 
in different languages. For  the same reason we can view models as 
models for different languages. 

In this section we shall give a constructive proof  that 50c and 
50([-~--1) are equivalent with respect to modal definability. 

I. We shall define a translation a: 5~ --* 50c such that for each 
model 93l, TJI ~ qo iff 9]l k a(~o). 

1. Let us order the formulae from 50(F-#--]) in a sequence: qh, ~o2, �9 �9 �9 �9 
Let n(~o) be the number of (p for each (o ~ 50([~). 

2. Define a translation r': 50([}[]) --* 50c inductively by the complex- 

ity of the formulae. 

r ' ( p )  = p; 

~ ' ( ~  q0 = ~ ~'(~0); 

~'(~0 A ~,) = ~'(~o) ^ ~ '(~) 

~ ' ( O )  = O ~ ' @ ) ;  

~ ' ( ~ ( p )  = ( . ~ ' @ ) )  A (c~(~) --. , ( - ~ c . ( ~  A r '@))) .  

hence, r'(I~q)) = (Iz'(q))) v (cn(~) A �9 v T'(q)))). 
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3. Put  

0 0  occurs 
in ~o 

4. Finally put  a(~o) =~F ~ ~(--] (P)- 

( ~ ' ( e )  ~ ~ (~ ' (0 )  ~ c ,~)) .  

P R O P O S I T I O N  4. I. 

v( ,~  ~) : \ {x} 

/f  v(~o) = 0 

, f  v(~o) = {x}. 

otherwise 

L E M M A  4.2. For every model ( W, R, V )  there exists a named model 

(W, R, V, Z) such that for every formula qo ~ S([Z]), V(q)) = 
v(~'(~o)) = v(~(~o)). 

Proof. Let w be an arbi t rary fixed element of  W. We shall define a 

valuation o f  the names Z as follows: for every c there exists a formula  

~b such that  c = cn(~). I f  V(~b) # 0 then we choose some v e V(~b) 

and put  Z(c) = v; otherwise put  Z(c) = w. 

N o w  we prove by induct ion that  for each formula  q), V(~0) = 

V(~'(qo)). The only non-trivial  case is q~ = ~> ~. Provided V(r = 

V(Y(~b)) we shall prove that  V ( ~  r  = V(r ' (@ r 

v ( r ' ( < ~  ~,)) = 

v ( . ~ ' ( r  n (v(-Tc,<~p u ( v ( . ( ~ c , ( ~ ) )  n v(~'(r  = 

v ( . ~ )  n (v(~e,,t~) u ( v ( * ( ~ c , ~ ) )  n v(4'))). 

We distinguish the following cases: 

(a) V(r  = 0. Then V ( v ' ( ~ ) )  _~ V ( * r  = 0. 

(b) V(r = {x}. Then V(%:)) = {x} hence 

v(~'(<~0))  = W\{x}  u . ( ( W \ { x } )  ~ {x}) = Wk{x}.  
(c) Otherwise. Then V ( . r  = W a n d  V(-nc,,(~,,)) n V(r # 0 

hence V(O(~%, )  /x ~b))= W a n d  V(z'(<~r = W. 
This completes the induction. Moreover ,  by the definition of  Z, 

V(!I~z'(r ---> lt~(v'(r /~ %o))) = W. Thus for every ~p, V(q~) = 
v(~'(~o)) = v(~(~o)). 

# 

# 
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LEMMA 4.3. For every named model ( W, R, V, Z) and formula qo 

L.~r tf  V(z((p)) # 0 then V(q0 = V(r'(q0) = V(z(~0)). 
Proof. Let x e V(z(q0). Then x e V(ll~z'(~b) ~ l~(z'(O) /x e,(o))) for 

each subformulae O ~ of  ~o. Hence if V(v'(O)) # 0 then )~(e,(ol) 
V(z'(O)), so one can inductively prove, as it was done in the proof  of 
Lemma 4.2, that V(q)) = V(v'(q))); moreover, V(v'(q0) = V(v(~o)). # 

T H E O R E M  4.4. For every model ( W ,  R, V )  and formula ~o ~ L(E]),  

Proof. Let 93l y ~o. In virtue of Lemma 4.2 there exists Z such that 
in (gJ~, Z> V(r (~  q))) = V(~  cp) # 0 hence V(a(q0) # W. Vice versa, 
let 9J/y o-(q)), i.e. V(~(~ (p)) # 0. Hence, according to Lemma 4.3, 
V(z(-n q))) = V(~  q)), and therefore V(~o) # W. # 

C OR OLLAR Y 4.5. For every frame F and q) ~ L([-~--]), F ~ ~o l f f F  
~r(~o). # 

So, definability in ~ ( [ ~ )  is not stronger than that in L~. 

II. The opposite is true as well. Indeed, one can easily enforce a 
propositional variable p to serve as a name in 5e(TCq), putting as 
an antecedent O ( p  /~ ~ - l p ) .  More formally, we shall define a trans- 

lation 7c: 5r ~ ~([-#--1). First the names are coded with variables, by 

4: P w C ~ P as follows: ~(Pi) =Dr P2i and ~(ci) =DF P2~+1 for each 
i E ~. r is accordingly extended to r for each formula ~0 ~ ~c. For  

each q ~ P u C, put v(q) =Dr O(q /X [-~-l~q). Now let q~ ~ ~ and 
d~ . . . . .  dk be the names occurring in q). Put 

~(q0 = ~  v(~(d,))  A . . .  A v ( ~ ( d ~ ) ) ~  ~(~o). 
This syntactic translation yields a semantic one. Let 9J/ = (W, R, 

V> be a model. We define a model 991~ = (W, R, V~ > where 
V~ (p) = V(~ l(p)) for each p e P. 

The following two propositions are easy exercises. 

PROPOSITION 4.6. Let 9~ be a model. 
(1) For every p ~ P, ~ ~ v(p) if  V(p) is a singleton and gJl ~ -nv(p) 

otherwise. 
(2) For every c ~ C, 93l ~ v(c). # 



M O D A L  LOGIC WITH N A M E S  617 

PROPOSITION 4.7. I f  ( W, R,  V, ~)  is a named model, go ~ ~ and 

V~ is the valuation defined as above then V((p) = V~ (~(q~)). # 

For  convenience we will use a notion of 2#~-valuation as a valuation 

both for the variables and names. 

T H E O R E M  4.8. Let  F = ( W, R )  and qo ~ ~c.  Then: 

(1 ) fo r  every ~c-valuation V in F, V(~o) -= Ve (~((p)); 
(2) f o r  every valuation V in F there exists an ~c-valuation V~ in F 

such that V~ (~o) ~ V(~(cp)). 
Proof. (1) Let V be an fc-valuation.  Then V, (~(d~)) is a singleton, 

hence Ve (v(~(d~))) = W for i = 1 . . . . .  k. Therefore Ve (v(~(d l))) /~ 

. . .  A V ~ ( v ( ~ ( d ~ ) ) )  = W ,  s o  V ~ ( ~ ( ~ o ) )  = V ~(~ (q~ ) )  = V(~o).  

(2) Let x r V(~(~o)), i.e. x ~ V(v(~(d~))) A . . . /~ V(v(~(dk))) and 

x r V(~(q0)) hence x ~ V(v(~(di))) for i = 1 . . . . .  k and, in virtue of 
4.6, V(~(d~)) is a singleton, hence V(v(~(d~))) = W. Therefore 
V(v(~(d~))) A . . .  /X V(v(~(dk))) = W whence V(~(cp))= V(~(~0)). 
Then we can define an 5~ Vo as follows: 

{ V(~(q)) if ~(q) occurs in rc(cp), 

V~(q) =~F {W} otherwise, 

where w is an arbitrary fixed element of W and q e P w C. V~ is an 

We-valuation and V,(cp) = V(~(cp)) = V(~(q))). So x r V,(cp). # 

C OR OLLAR Y 4.9. Let  F = ( W, R ) ,  x ~ W and q) ~ Sc .  Then." 

(1) F g g0[x] l f fF  ~ rc((p)[x]; 
(2) F ~ q~ / f f F  ~ ~(~o). # 

The last result shows that the definability in 5~ is not stronger than 

that of  S([Z]). So we have 

T H E O R E M  4.10. The languages ~ and S([-~)  are equivalent with 

respect to modal definability. # 

4.2. Modal  definability in 5e([~) 

We shall characterize modal definability in 2'([5[]) in the model- 
theoretic style of  Goldblatt  and Thomason (1974). All statements 
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without proofs below are obtained by simple calculations based on 
corresponding results from Goranko (1990) where languages contain- 
ing modalities over a relation (in our case equality) and its complement 
are investigated. First, we shall define the analog in Lf(Vr of the 
notion of SA-construction, introduced by Goldblatt and Thomason. 

DEFINITION (cf. Goranko (1990), 3.7, 3.10). F '  = (W' ,  R ' )  is an 
C-collapse of the general frame ~ = (W, R, W )  iff F '  is a substruc- 
ture of F = (W, R)  (i.e. W _ W' and R = R '  ~ W2), and there 
exists a general subframe (5 of ~ such that F '+ ~ (5+ and for each 
x ~ W', R(x) c_ [R'(x)]~+ where [X]~+ is the least element of (5+, 
containing X. # 

In particular, when ~ = (W, R, . r  we obtain a definition of 
C-collapse of the frame (W, R).  

DEFINITION. General ultraproduct of frames is an ultraproduct of 
the corresponding full general frames (see, e.g. van Benthem (1986) or 
Goldblatt (1976). # 

DEFINITION. Let ~ be a class of frames. The modally definable 
closure of ~ in ~([Z]), [~]e, is the smallest MD in s176 class con- 
taining g. # 

THEOREM 4.11. For every class o f frames ~, [~] ~ consists of all iso- 
morphic copies of C-collapses of general ultraproducts o f frames from 
~. # 

COROLLARY 4.12. g is MD in ~ ([~)  iff it is closed under isomor- 
phisms and ~-collapses of general ultraproducts of frames. # 

COROLLARY 4.13. I f  E is a A-elementary (defined by a set of first- 
order conditions) class then ~ is MD in S ( [~ )  iff it is closed under 

-collapses. # 

In particular, a first-order property is definable in Y([Z]) iff it is 
preserved under ~-collapses. (E.g. all universal first-order conditions 
are.) 
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COROLLARY 4.14. Every fnite frame is distinguishable (up to iso- 
morphism) by a set of Y([~)-formulae. 

Proof. From 4.13, since no finite frame has proper C-collapses. # 

The essential difference between the above characterization and the 
classical result of Goldblatt  and Thomason is due to the fact that in 
5e([~) the notions of  generated subframe and disjoint union of frames 
are trivialized. 

Again following Goldblatt and Thomason (1974) and Goranko 
(1990) we can obtain another characterization of  the A-elementary 
classes MD in 5e([]~), which is somewhat more convenient to use. 

DEFINITION.  A bi-relational frame (W, R, S )  is a nonstandard 
~([~)-frame if S u {{x, x} /x  e W} = W 2. # 

DEFINITION.  An ~(V~)-morphism is any bi-relational p-morphism 
of a frame of  the type (W, R, r ). # 

Note that the image of any ~( [~) -morphism f is a nonstandard 
5r It is standard i f f f  is an isomorphism. 

DEFINITION.  An ultrafiher extension of an 5~([Z])-frame F = 

(W, R, r  is the frame F* = {W*, R*, S*}, denoted ue(F), where 
W* is the set of ultrafilters in W and R*, S* are canonically defined 
on R and r respectively. # 

It is easy to see that (W*,  R*, S* )  is a nonstandard Y([Z])-frame. 

DEFINITION.  F is an ultrafilter contraction of  G iff G ~ ue(F). 

T H E O R E M  4.15 (cf. Goranko (1990)). A A-elementary class ~ is 
MD in 5~(V~) iff ~ is closed under uhrafiher contractions of ~([~)-  
morphic images. # 

In virtue of Th. 4.10 all these results directly apply to ~c- Other 
results concerning definability in ~ ( [ ~ )  can be found in de Rijke 
(1989). 
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We shall finish this section with a strengthening of  4.14 which gives 

an addit ional evidence on the expressive power of  ~ .  

Denote  

P,= V #(ci /, c~); 
i r  

l<~i,j<~n+l 

~, = ~ I ( q  v . . .  v c,_~); a, = Pn A ~ .  

It is a s tandard exercise to see that  i f F  = (W,  R )  then: F ~ p, iff 

[]WI[ ~< n; F ~ z, iff []Wll ~> n, and hence F ~ an iff ]]W[] = n. 

D E F I N I T I O N .  A well-named frame is a countable  frame F = 

(W,  R )  provided with a valuat ion Z: C ~ [F[ such that: 

(a) if F is finite and II wII = n then W = {Z(q), . . . ,  X(c~)}; 

(b) if F is infinite then Z is a bijection. 

D E F I N I T I O N .  A diagram of  a finite well-named frame F = (W,  R )  

with n points is the formula  

D(F) = A{O(c l  A ~c j ) :  1 ~< i , j  <~ nandRz(ci )z(c j )}  A 

A {O(cl A ~ O C j ) :  1 ~< i , j  <~ n and-nRz(ci)z(cj)  }. 
# 

Clearly, there are finitely many  non- isomorphic  frames with n points. 

Let us fix some well-named frames over each of  them: F~ . . . .  , F~n). 

N o w  let F = (W,  R )  and [[ WIL = n. Denote  

tc'(F) = I ( q  v . . .  v c,) A V{D(F/n) : I  <~ i <<, f (n)  

and F ~ F~" } 

and ~:(F) = a, A ~ # ( F ) .  (F  N F7 means that  F is not  isomorphic  

to the underlying frame of  the well-named frame F, ~ .) 

T H E O R E M  4.16. For any frame G and finite frame F, G ~ ~:(F) iff 

G ~ - F .  
Proof. (1) Let G ~ ~:(F). Then G consists o f  n points. Assume 

G z~ F. Then  there exists a valuat ion Z in G such that  (G,  Z) - F," 

for some i. At  that  (G,  Z) ~ I ( q  v . . . v c,) and (G,  Z) ~ D(F~ ") 
hence (G, Z) ~ ~c'(F) therefore (G, Z) Y x(F)  - a contradict ion.  
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(2) Vice versa, let G y ~c(F). Assume G - F. Then G ~ an, hence 

for some well-named model  (G,  V, Z) r K'(F)[w] for some w e IG]. 

Since ~c'(F) is a closed pure formula,  ~G, Z) ~ ~c'(F) hence (G, Z) 

� 9  . . . v G) and (G,  Z) ~ D(F/") for some i such that  F ;~ FT. 

But then (G,  Z) ~ F~ " and so F~" =~ F - a contradict ion.  

C O R O L L A R Y  4.17. Each finite f rame  is definable in 5~< by means o f  
a single pure formula.  # 

The "pure"  definability in 5~< is impor tan t  f rom the point  o f  view of  

axiomatizabili ty - it automatical ly  ensures completeness as we shall 
see later. Tha t  is why we raise a problem: 

P R O B L E M  2. Find syntactic or (at least) model- theoret ic  charac- 

terization o f  the L0-formulae, definable in Sc  with a pure formula.  Is 

the problem of  pure definability decidable at all? 

5. DEDUCTIVE SYSTEMS IN s 

5.1. Necessity and possibility fo rms  in 5~ 

Let $ be a symbol,  not  belonging to s c. We define (following Gold-  

blatt (1982) and Gargov  et al. (1987)) inductively the not ions o f  

necessity and possibility forms  in ~ .  

D E F I N I T I O N .  (1) $ is a necessity f o r m  (NF)  o f  $. 

(2) I f  l is a NF ,  (p e G'~ and n is either [] or [] then 4o ~ I and nl 

are N F ' s  o f  $. 

D E F I N I T I O N .  (1) $ is a possibility f o r m  (PF) o f  $. 

(2) I f m  is a PF, rp e Y~ a n d p  is either O or  �9 then (p /x m and 
pm are PF ' s  o f  $. 

We will present each N F  and PF  o f  $ in the following uniform way: 

l($) = 4~ --" nl((Pi --+ �9 . �9 nk(qOk -+ $) �9 �9 �9 ) and m($) = ~o o /~ 
Pl(q)l /x . . . pk(~ok /X $) . . . ) where ~o~ is T when necessary. The 
number  k is the depth of  the form. 

# 

# 
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If  l ( $ ) / m ( $ ) / i s  a fo rm and  0 e 5( ,  by  I (0)  /mOP)/ we will denote  

the result  o f  the rep lacement  0 /$  (of  $ by ~,) in the form. 

Let  m($) = (P0 /x &(q)l  /~ . �9 �9 Pk(q0k /~ $) �9 �9 �9 ), 9l be a named  

mode l  and  x e 19ll. I f  91 ~ m(O)[x] then there exists a cha in  o f  po in ts  

x l ,  �9 �9 �9 , xk such tha t  9l ~ qoi /x pi+t(qoi+~ /x . . . pk(q0k A $) . . . )[Xi] 

for  i ---- 1, . . . , k and  x, xl . . . .  , xk are successively connec ted  by  R 

or  W 2 accord ing  to  p~, . . . , Pk. Such a chain  will be cal led a witness 
of the truth o f  m(0)  in (91, x ) .  

No te  tha t  if  1 ( $ ) / m ( $ ) / i s  a n e c e s s i t y / p o s s i b i l i t y / f o r m  then -7 l@)  

/ 7  m(O)/is equiva len t  to a p o s s i b i l i t y / n e c e s s i t y / f o r m  l ' ( ~  $) 

/m'(~ $ ) / c a l l e d  the dual of  I/m/. 

5.2. 

The  min ima l  n o r m a l  logic 

G a r g o v  et al. (1987)): 

A X I O M S .  

(0) 

(1) 

(2) 

(3) 

(4) 
(5) 

R U L E S .  

K c. Simple extensions 

Kc of  ~c  is ax iomat ized  as fol lows (cf. wi th  

Enough  p ropos i t i ona l  tautologies .  

K(D) 

s s ( t )  

(incl): mp --+ ~p.  

(naml ) :  @c 

(nam2): O @ / x  (p) --+ I ( c  --+ q)) 

SUB: ~ where sub (q)) is an ins tant  o f  q0; 
sub (q~) 

MP: (p' r ~ ~" ' 

NEC= : - -  ; 
II(o 

COV: l(-n c) for each c e C where  I is a N F  in 2 '  c. 
1(• 

N o t e  tha t  NECD follows f rom N E C = ,  M P  and  (incl). 
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D E F I N I T I O N .  Simple extensions of K c (L#c-logics) are extensions o f  

Kc by means o f  axioms only. 

I f  L is an L-at-logic, by L -  we will denote the weakening of  L 

obtained by dropping  the rule COV. 

P R O P O S I T I O N  5.1. Validity in a frame is preserved by CO V. 
Proof. Let F ~ l ( ~  c) for each c E C. Suppose F y l(L). Then for 

some named model  9l = (F,  V, Z) and x ~ F, 91 y l(• hence 91 

l'(T)[x]. Let x, x~, . . . , xk be a witness o f  this truth. Let d E C and d 

does not  occur in l ( l ) .  Define )(: C -+ F as follows: 7~'(d) = xk, 

)((c) = )~(c) for each c ~ at. Let 91' = (F ,  V, ) ( ) .  Then 91' ~ l'(d)[x] 
hence 9l'  y l ( ~  d)Ix], therefore F y l(-q d) - a contradict ion.  # 

D E F I N I T I O N .  A frame F is said to be a frame for an Y~-logic L (an 

L-frame) if F ~ L (i.e. all theorems of  L are valid in F) .  The class o f  

all L-frames is denoted by FR(L).  # 

C O R O L L A R Y  5.2. For any L/'~.-logic L, FR(L)  = F R ( L - ) .  # 

N o w  one can be easily persuaded in the use o f  COV. 

E X A M P L E  1. Consider  the 5(i-logic D C = K c + c --+ ~ T.  D c }- ~ T 

but  D c  ~ �9 T since there exist non-surjective named models for D7 
in which ~ T is not  valid, e.g. over the f rame �9 e-E-+ �9 with Z(c) = 1 for 

1 2 
all c e C. Therefore,  by 5.2, D c  is incomplete. Indeed, to complete D (  

it is sufficient to add a weaker (as we shall see) rule COV0: 

c --+ ,co for each c ~ C 

q~ 

This rule is even weaker than COVe: 

n(c  -+ ~o) for each c e C 

[](q,) 

as one can see f rom the next example. 
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EXAMPLE 2. Consider the model 91 = (F, V, )~) where F is: 

xl �9 

X2 ~ ~ _ _ _ ~ e  y 

X n 

and X(ci) = xi, V(pi) = {xg}, for each i ~ N. One can see inductively 
on cp that V(~0) is either finite set of named points or a complement 

of  such a set. (Note that V(D~0) is 0 in the first case and W in the 
second.) So, COV0 preserves validity in 9l while COVj doesn't since 
9l ~ D-n c but 91 y []_L, hence (Kj  + COV0 + D--q c) ~ []_1_ but 

(Kg + COV~ + ~-mc) ~- D J_. 
Let us now denote by COV n the restriction of COV to necessity 

forms with depth not exceeding n. 

PROBLEM 3. (a) Find a syntactic criterion for redundancy of COV 
in a particular ~c-logic. Is this redundancy problem decidable? 

(b) Find a syntactic criterion for restrictibility of COV to some 

COV, in particular 5~ 

Having Example 1 in mind, it is a plausible guess that the hierarchy 

COV0,. � 9  C O V , . . .  cannot be restricted in general to any COV,. 
In the temporal language with names, however, the picture is radically 

simplified: this hierarchy collapses to COV 0. The reason for that is 
the following observation (see Gabbay and Hodkinson (1990)): over 
the minimal temporal logic any necessity form q00 --, nl (qol ~ . �9 �9 
nk(q)~ ~ $) �9 �9 �9 ) is deductively equivalent to its "converse" --n $ --* 
(% ~ n~(%_1 ~ . �9 �9 n*-n%) . . . ) where G* = H, H* = G, 

m*=m. 

R E M A R K  (cf. Passy and Tinchev (1985)). Actually, COV is only 

prima facie infinitistic. Consider the finite rule 

COV*: l(-~c) for some c e C not occurring in I($) 

t(• 
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LEMMA 5.3. COV* is equivalent to COV on the basis of SUB. 
Proof. Of course, COV* is not weaker than COV. It is not stronger 

either: suppose L is an ~c-logic and L F- I(--1 c) for some c not occur- 
ring in l($). Then for each d ~ C: L ~- l(-7 d) by the substitution die. 
Thus one can infer by COV everything which can be inferred by 

COV*. # 

Although COV and COV* infer the same formulas, we have to stress, 
as the referee points out, that the systems with COV differ fi'om the 
corresponding systems with COV* regarding to compactness: due to 
the infinitary nature of COV is obviously lacks the usual compactness 
property and the notion of strong completeness branches, as the next 
section shows. 

5.3. Strong completeness of ~L#c-logics 

Let L be a fixed 5f c-logic and F be a set of formulae of &~ 

DEFINITION.  (1) An L-theory o f f  is the least set of formulae 
Thr (F  ) which contains L ~ F and is closed under MP. 

(2) A named L-theory ofF is the least set NThL(F ) which contains 
L u F and is closed under MP and COV. 

DEFINITION.  F is: 
(1) L-consistent if ,1, r ThL(F). 
(2) surjectively L-consistent if _1_ r NThL(F ). 

Note that for finite F, NThL(F ) = ThL(F ) and the last two notions 
coincide but, e.g. {-7 c: c ~ C } is Kc-consistent while not surjectively 

K C-consistent. 

DEFINITION.  L is: 
(1) strongly [surjectively] model-complete if every [surjectively] L- 

consistent set is satisfiable in a [surjective] named L-model. 
(2) [surjectively] complete if every L-consistent formula is satisfiable 

in a [surjective] named L-model based on an L-frame. 
(3) strongly [surjectively] complete if every [surjectively] L-consistent 

set is satisfiable in a [surjective] named L-model based on an L-frame. 
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T H E O R E M  5.4. Every 5~c-logic L is strongly surjectively model- 
complete. 

Proof. We closely follow Gargov et al. (1987). Here is a sketch: 

Let F be a surjectively L-consistent set. The standard deduction 
lemma holds for named theories: ~O ~ NTh(F w {~0}) iff q) ~ ~0 

NTh(F).  Now we shall prove an analog of Lindenbaum's lemma: 
every surjectively L-consistent set A can be included into a maximal 
consistent named L-theory. We enumerate the formulae of ~c: %,  
~01 . . . .  and define successively a chain of  consistent named L-theories 

To, T~ . . . .  as follows: To = NThL(A). Let T, be defined. Set 
Tn+l =DF NTh(T,  w {~o,}) if the latter is consistent. If  not, consider 

two cases: 
- ~0, has the form l(_k) for some N F  l. Then there exists a name c 

such that l (~  c) does not belong to T, since Tn is consistent. In this 

case put T,+I =Dr NTh(T,  w {-n l (~  c)}); 
- otherwise set T,+~ =DF T,. 
The union of the chain is the wanted maximal named L-theory. 

Note that every such theory contains (due to COV) at least one name. 
Now, the final step. Let w be a maximal consistent named L-theory 

containing F. Let W be the set of  all maximal consistent named L- 

theories m-connected with w, i.e. W = {x: IIw _ x} where IIx = 
{0: I1~ e x}. Clearly, by the $5 axioms for II, every two elements of  
W are I-connected.  Now consider the canonical surjective model over 
W: (W, R, V, Z) where Rxy iff Hx _ y; V(p)  = {x e W: p e x} and 
Z(c) is the only x E W (in virtue of (naml) and (nam2)) containing c. 

The truth lemma: V(q0 = {x e W: q) ~ x} is proved by induction as 
usual. The crucial point: if G~0 E x then there exists y ~ W such that 
n x  w {0} c_ y. It is because t~x is a named L-theory and hence 
t3x w {~} is surjectively L-consistent. The same arguments work for 

the case � 9  e x. 
Thus we obtain a surjective L-model satisfying F. # 

REMARK.  The proof  of the last theorem might be perceived to hint 
that COV ensures surjectiveness of the models. This is not the case: 
what COV ensured is that in each definable set of the model (set of 
the points in which some modal formula is true) at least one named 
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point can be picked. This doesn' t  imply surjectiveness - witness the 
following example. 

E X A M P L E  3. Let F = (N,  < ) and 931 = (F, V)  where V(pi )  = 

{i } for each i s N. Then, inductively by (p, we can prove that for 

each q), V(cp) is either finite or co-finite set. Now consider ue(gJ 0 = 

(N*,  <* ,  V*}. N* = Np w Nswhere Np consists of  the principal 
ultrafilters in N: Np = {u~: i s  N} and Nyconsists of  the free ultra- 
filters in N. Then: 

(i) f o r e a c h u e N  I a n d v e N * , v  < * u ;  

(ii) for each (p, V*(~0) is finite and V*(cp) _c Np or V*(~o) is a com- 
plement of such a set. 

Now define Z: C -+ N* as follows: Z(ci) = ui. It  is a standard 

induction on the depth of a necessity form l($), using (ii) above, to 

prove that for each i e N, u~ s V * ( l ( •  whenever u~ s V*(l(--qc)) for 
every c. Therefore, the validity in ue(gJl) is preserved by COV. # 

Anyway COV does ensure surjectiveness in finite models. 

L E M M A  5.5. Let  9l = (F,  V, 7.) be a surjective model  f o r  an Yc-  
logic L. Then." 

(1) 99l = (F,  V )  is a model  f o r  L. 

(2) i f  L is axiomatized by pure formulae  over K c then F ~ L. 

Proof. (1) Suppose 9J/y ~o for some q0 e L. Then for some 91' = 

(gJ~,)()  and x s 93l, 91' y q)[x]. Let dl . . . . .  d~ be the names, 

occurring in q). Let )~(el) = )((dl) , .  . . , z(ek) = x'(dk). Then 91 y 

qo(e~/dL . . . . .  ek/d~,~)[x] but ~o(el/dl . . . .  , e~/dk) s L by SUB - a 
contradiction. 

(2) I f  ~0 is a pure formula then (F, V )  ~ ~o iff F ~ ~0. # 

T H E O R E M  5.6. Every ~c-logic L is strongly model-complete. 

Proof. Let C '  _~ C be an infinite set of  names and f :  C --, C '  be a 
bijection. Let F _c Sac. Call the set f ( F )  obtained after replacement of  
every name c in every formula of  F by f ( c )  a bijective renaming o f  F. 

Clearly, every such a renaming preserves L-0n)consistency. 
Now let F be an L-consistent set. Take c s C and a bijection 

f :  C ~ C \ {c}. Then f (ThL (F)) is a consistent named L-theory. 
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Thus, by 5.4, f (F )  is satisfied in a surjective L-model 9l. Now, forget 
about the valuation of c and rename 91 by f -1 .  Thus we get a named 
L-model which satisfies F. # 

COROLLARY 5.7 Every ~- logic  L is strongly [surjectively] complete 

with respect to its countable models. 

THEOREM 5.8 Every ~c-logic L, axiomatized over Kc by pure 
formulae, is surjectively strongly complete. 

Proof. Every surjective �9 canonical model constructed as 
in the proof of 5.4. is based on an L-frame, by 5.5. # 

The same trick as in the proof of 5.6 shows that every surjectively 
strongly complete logic is strongly complete. 

COROLLARY 5.9. Every purely axiomatized ~c-logic is strongly 

complete. # 

At the end of this section, let us demonstrate the usage of COV in an 
inference. Let MOD be an arbitrary fixed sequence of modalities t~, 
0 ,  � 9  �9 with length k, POS be an arbitrary fixed sequence of ~ and 

�9 and NEC be its dual. 

PROPOSITION 5.10. (Kc + POSc --* MODc) ~- POSp ~ MODp. 
Proof. We will sketch the inference modulo some tautological 

calculations. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

POS(p A c) ~ POSc; 

POSc ~ MODc; 

POS(p A c) ~ MODc by (1) and (2); 

POS(p A c) ~ O(P A c) by (incl) and $5(�9 

POS(p A c) ~ �9  ~ p) by (4) and (nam2); 

POS(p A c) ~ �9 . . . � 9  ~ p ) / k � 9  $5(�9 

POS(p A c) ~ MOD(c A p) by (3), (6), K(D), $5(�9 
(incl), (nam2); 

POS(p A c) ~ MODp by (7); 
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(9) 

(10) 

(11) 

M O D p  ~ N E C ( p  ~ ~ c) by (8); 

- 1 M O D p  ~ NEC -qp  by (9) and COV; 

POSp ~ M O D p  by (10). 

6. MINIMAL EXTENSIONS AND TRANSFER PROBLEMS 

D E F I N I T I O N .  Let L be an ~~ i.e. a simple extension (by 

means of  axioms only) of  K. The minimal extension of  L in ~o is the 

5r c-logic Lc axiomatized over Kc by the axioms of L over K. 

Let ~3 be a property of  logics. Then the following 7~-transferring 
problem arises: 

I f  L satisfies 7i) whether Lc does, too? 

It is not difficult to obtain partial answers to such problems (or 

complete answers fbr particular logics) but still there are very few 

general results even for some quite simple and natural enrichments 
(cf. Goranko  and Passy (1990)). 

# 

6.1. ,Conservativeness of  minimal extensions 

T H E O R E M  6.1. For every ~-logic L, L c is conservative over L. 
Proof Let go ~ 5e and L ~ go. Then go is refuted in some L-model 9J~ 

= (F, V)  at some point x. Let p not occur in go. Consider a 

valuation V' in F, such that V'(p) = t3 and V' coincides with V for 

all other variables. Then 9X' = (E, V ' )  again is an L-model (indeed, 
if ~(p)  ~ L then ~((q /x -7 q)/p) ~ L hence 9X ~ g,((q /~ ~ q)/p) so 

~ '  ~ q)) which refutes go at x. Now let FI = ({w), RI ) be a singleton 
frame for L (it exists due to a well-known result of  Makinson (1971)) 
and V~ be any valuation in F1, such that V~ (p) = {w). Let 9X 1 = 

(F1, V~ ) and 9X 2 be the disjoint union of 9Jl and 93l 1 . Then ~(J~2 is an 

L-model refuting go and such that Vz(p) = {w}. Now, clearly the 
named model (9X2, Z) such that Z(c) = w for every name c validates 

Lc and refutes go, so Lc ~ go. # 

C O R O L L A R Y  6.2. I f  L is incomplete then L C & incomplete, too. 
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6.2. Transferring completeness 

Unlike the above result the completeness-transferring problem in 
general seems to be rather hard. Here we shall prove an important 
sufficient condition for a positive solution of this problem. 

DEFINITION (Goldblatt (1976)). A general frame ~ = (F, W )  is 
descriptive if for every ultrafilter u in 5 + the following hold: 

(i) nu  is a singleton; 
(ii) N{~X/J (E  u} c_ ~(nu) .  # 

DEFINITION (cf. Goldblatt (1976)). An 5~-logic L is canonical if for 
every descriptive frame ~ = (F, W),  ~ ~ L implies F ~ L. The same 
definition holds for canonical 5~ # 

In Y canonicity implies strong completeness since the canonical 
general frame is descriptive. The same holds in 5Pc. By a canonical 
named model of an 5r L we shall mean every named model 
(not necessarily surjective!) constructed as in the proof of 5.4 from 
maximal L-theories (not only named ones). Every L-consistent set is 
satisfied in such a model, hence the corresponding general frame 
which is descriptive. Thus every canonical Q-logic is strongly 
complete. 

The opposite is not true in general but, as the next result state, it is 
true in an important case. 

i 

FACT 6.3 (see van Benthem (1979) and Fine (1975)). I f  an ~-logic L 
is complete and its axioms are preserved under elementary equivalence 
then L is canonical. # 

THEOREM 6.4. (1) I f  an ~-logic L is canonical then Lc is canonical, 
too. 

(2) I f  an 5~-logic L is complete and first-order definable then Lc is 
surjectively complete. 

Proof (1) Every descriptive Lc-frame is a descriptive L-frame, too. 
(2) Let L be complete and first-order definable. Then, by 6.3 L is 
canonical, hence L c is canonical, too. Now, let cp be an Lc-consistent 
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formula. Then ~0 is satisfied in a canonical named Lc-model. This model 

is based on an Lc-frame F. Let T be the first-order theory of the class 

of  Lc-frames FR(Lc) and c~1 . . . .  , c~k be the names occurring in ~0. 

Then F is a first-order model of  T '  = T ~ {3x3y~l . . . ~y~kST'(cp)}.  

By downward L6wenheim-Skolem theorem there exists an at most  

countable model F '  of  T ' .  F '  is an Lc-frame which yields a countable 

named model satisfying at most  r It  can be easily renamed into a 
surjective model satisfying ~o. # 

Now we can show that not every first-order property even modally 
definable, can be defined by pure formulae only. A counter-example is 
the Church-Rosser  property 

CR: V x V y g z ( R x y  & R x z  ~ 3 t ( R y t  & R z t ) ) ,  

modally defined by ~ []p ~ [] ~ p .  Following Hughes and Cresswell 

(1984) let us denote K + G D p  ~ D O p  by G1. Glc is complete since 
is canonical. I f  CR were defined by a set of  pure formulae Z then 

every surjective model for Glc would be based on a CR-frame, by 5.5. 

However, this is not the case, witness the following example, due to 
Yde Venema (1991). 

E X A M P L E  4. Consider the frame F = < W, R> as on the picture: 

. . . O . . 0  �9 . . . . . .  
V n 7J l VO W 0 W 1 Wn 

\ T /  
�9 Q 

o 
bl 

L e t C  = { a , b , c , d }  w {bi, c i : i t  N} .Le t  V ( p )  --- W f o r e v e r y  
propositional variable p, and z(a) = u, z(b) = v, Z(c) = w, z(d) = u, 

x(bi) = v~, Z(ci) = w~. Thus we obtain a surjective model 9~ = 
<F, V, Z> which is a model for Glc. Indeed, for every q~ e ~ . ,  9t 

~O~o ~ [ ] ~ o .  The only non-trivial task is to check this validity at u. 
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It holds due to the following observation, proved by an easy induc- 
tion on (p: the sets 

V~ = {n ~ N: vn ~ V(~0)} and W~ = {n e N: w. ~ V((p)} 

are both either finite or co-finite. 
Thus F must be a CR-frame which is not true. Hence no set Z of 

pure formulae defining CR exists. 

6.3. Transfer of filtrations, finite model property and decidability 

The notion of filtration is smoothly carried out in 5e c. Moreover, the 
property of  an Y-logic to admit a particular filtration (cf. Hughes 
and Cresswell (1984)) is transferred to its minimal extension in an 
obvious way since the names harmlessly go through this construction. 
Hence, all 5~ proved by a filtration to have the finite model 
property and to be decidable have their minimal extensions with the 
same properties. However, the general problems remain still open: 

PROBLEM 4. Is the finite model property always transferred? 

PROBLEM 5. The same question for decidability. 

6.4. Some axiomatizations in ~Lf c 

1. First of all let us note that, in virtue of  4.17 and 5.9 we have right 
away strongly complete finite axiomatizations of all logics of single 
finite frames. Of course, all these logics have the finite model property 
and hence are decidable. 

2. Moreover, the minimal extensions of most of the famous modal 
logics such as T, K4, B, $4, E, $5 etc. have pure axiomatizations as 
instances of 5.10 hence are proved to be/surject ively/strongly com- 
plete independently from Th. 6.4. As it follows from the above note 
on filtrations Kc and all these logics are finitely complete and 
decidable. 

Here are two more particular ~c-logics of certain interest which are 
readily strongly complete by 5.9: 
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The logic of  strict linear orderings: 

Lslin = K c + 
(irref) c ~ CI~ c 
(tran) O O c ~  Oc 
(slin) ~ (c  A ~ d )  ~ (~ (c  /x Od)  v ~ ( d  1", Oc)). 

The above axioms determine strict linear ordering. 
The logic of rationals (Q, < ): 

L~ ---- Lslin 4- 

(suc) 0 T 
(pred) �9 Oc 
(dens) Oc -~ OOc .  

By Cantor's theorem, Le describes up to isomorphism Q as a 
countable dense linear ordering without ends. 

Let us notice that these two examples show the advantage of 2'c in 
comparison with Y([Z]): although they have the same definability 
power, the former seems to be much better both to find the axiomatics 
and to prove its completeness (cf. de Rijke (1989)). 

7. P O L Y M O D A L  L O G I C S  A N D  N A M E S  

The deductive machine developed here and the main results are easily 
conveyed to the polymodal setting. Let us just mention several impor- 
tant examples: 

1. Combinatory dynamic logic (dynamic logic with names). Actually, 
this is the origin of our usage of the names in the modal framework. 
For a quick reference, see Passy and Tinchev (1985) and for a close 
acquaintance, the excellent and more than comprehensive Passy and 
Tinchev (1991). 

2. Boolean modal logic with names. A polymodal logic with a set of 
modalities over a Boolean algebra of relations (Boolean analog of the 
dynamic logic) has been axiomatized in Gargov and Passy (1990). 
Using constants one can give a pure axiomatization of this logic over 
the polymodal version of Kc and thus to obtain straightway a com- 
pleteness theorem. 
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3. Tense logic with names. Extending the usual tense language (with 
modalities G - "always in the future", H - "always in the past" 
and their duals F and P)  with the universal modality and names, we 
have the minimal normal tense logic axiomatized analogously to Kc 
even without using necessity forms due to the reduction of  COV men- 
tioned in Section 5.2. The proof  of  the completeness of this logic and 
its minimal extensions follows the same scheme as in ~c. 

Let us mention another approach to tense logic with names (called 
there nominals) we had the occasion to acquaint ourselves after com- 
pleting this paper - that of  Blackburn (1989). The universal modality 
and COV are not used there and the deductive system is simpler. The 
minimal logic is axiomatized with the only additional scheme 
SWEEP: E(c  /x (p) ~ A(c  ~ qo) where E ranges over arbitrary 

sequences of P ' s  and F's and A ranges over G's and H's.  (Of course, 
in the presence of  �9 the scheme SWEEP can be replaced by the single 
axiom (ham2).) No wonder that COV is redundant there (as in Kc); 
its essentiality and the usefulness of [] exhibit themselves truly in the 
simple extensions (the example after 5.2 is only a hint for that). 
For  instance, the extensions with c ~ ~ Fc (irreflexivity) and c 
G(Fc ~ c) (antisymmetry) in our deductive machinery are readily 
proved to be complete while in Blackburn's one the proofs require 
additional efforts and use some involved techniques, e.g. bulldozing. 
Nevertheless, it is worth investigating where the weaker apparatus 

suffices. 
4. Since, Until and the general perspective. Let us finally notice that 

the languages endowed with names are a fertile soil for axiomatiz- 
ation of  more sophisticated modal operators. A famous example are 
Kamp's  operators Since and Until (see, e.g. Burgess (1982)). With 
the help of  names they can be "conditionally" defined, as this has 
been essentially done in Gabbay and Hodkinson (1990) by means 
of  the formulae c ~ (S (p ,  q) ~ P ( p  /x G(Fc --. q))) and 

c --* (U(p ,  q) ~ F ( p  /x H ( P c  ~ q))). 
These pseudo-definitions do not enable elimination of  S and U 

from the language but still give readily axiomatizations of the mini- 
mal Since-Until logic and all of its pure extensions, and thus avoid 
the standard but heavy technique involved in the "nameless" lan- 
guages with Since and Until (cf. Burgess (1982)). Moreover, applying 
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the equivalence 4.10 to the results from G a b b a y  (1981) one can 

obta in  a un i fo rm procedure for finite ax iomat iza t ion  in named  lan- 

guages of an arbi t rary  first-order logical connective. 
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