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w O. Introduction 

Consider an ideal fluid occupying all of R 3 with axisymmetric velocity field q. 
A vortex ring r is a toroidal region in R a such that curl q = 0 in R 3 \ ~t 
while curl q 4= 0 in N. 

In cylindrical coordinates, in terms of the Stokes stream function 7 z the problem 
can be reduced to a free boundary problem on the half plane / / =  {(r, z) : r > 0} 
of the form (el w 1): 

~ r / r  - +  - -  r e ,  

- - L ~  = 0 on I I \  A, (0.1) 

--Lg t = 2r2 f (7  -t) on A, (0.2) 

~v(o, z) = - k  < o ,  (0.3) 

7zlo ~ = 0 ,  (0.4) 

~ / r  -+ 0 as r 2 + z 2 - +  ~ .  (0.5)  

Above, L stands for a second order elliptic differential operator. A is the 
(a priori unknown) cross section of the vortex ring. f i s  called the "vorticity func- 
t ion" with coupling strength parameter 2 > 0. k is the flux constant measuring 
the flow rate between the z-axis and ~A. The constant W >  0 is the "propaga- 
tion speed", namely the limit of the velocity field q at infinity. Subscripts denote 
partial derivatives. 

When k = 0 and f is a positive constant, an explicit solution of (0.1-0.5) 
was found by HILL [l 2]. It corresponds to a spherical vortex, Hill's vortex. 

Papers [6, 14] deal with the existence of vortex rings bifurcating from Hill's 
vortex and [4, 5] study uniqueness questions. 

Global existence of vortex rings was first established in [10] to which we also 
refer for a description of the physical significance of the problem. However, in 
[10] a nonlinear eigenvalue problem is solved and the coupling constant 2 arises 
as a Lagrange parameter which is left undetermined. For physical applications, 
however, existence results for fixed 2, say 2 ----- 1, are desirable. 



98 A. AMBROSETTI ~r M. STRUWE 

Motivated by [10], problem (0.1-0.5) for fixed 2 = 1 has been studied in 
[13], and, independently, in [1] assuming that the vort ici tyf is  superlinear. In both 
[1] and [13] it is assumed that f(0) = 0, even if from the physical point of view 
a strictly positive vort ici tyfis  more appropriate. Lastly, the case of a superlinearf 
with f(0) > 0 small is investigated in [8]. Let us point out that when the free 
boundary problem (0.1-0.5) is translated, as usual, into a semilinear elliptic prob- 
lem on R 2 by extending f(s) = 0 for s < 0, then if f(0) is strictly positive the 
corresponding nonlinearity will be discontinuous at 0. 

Besides [6] and [14], where f - ~  constant, we do not know any existence 
results for vortex rings for given strength parameter 2 and bounded, positive vor- 
ticity function f .  

The purpose of this paper is to study such a case. More precisely, in our Theo- 
rem 4.1 we establish the existence of a solution }P of (0.1-0.5), corresponding 
to a bounded, symmetric vortex core A, under the assumptions that k, 2, W are 
prescribed and the vorticity function f is bounded and positive, and so gives 
rise to a discontinuous nonlinearity, as in [10]. 

Our approach would apply to superlinear f as well; also for this case in the 
present generality the existence of vortex rings would be new, extending the results 
of [1], [8], [13]. However, to timit the paper to a reasonable length, w e  discuss 
in detail only the case of bounded vorticity, which seems to be the most inter- 
esting one. 

Problem (0.1-0.5) is first approximated by a semilinear Dirichlet boundary 
value problem on a ball B R centered in 0, passing then to the limit as R--~ cx~. 
The approximate problem is accessible by variational methods and possesses, 
for R large, two nontrivial, cylindrically symmetric solutions: vR, the absolute 
minimum of the associated energy; and uR, corresponding to a "Mountain 
Pass" critical point [2]. 

It is worth noting that, strikingly, in the limit the energetically unstable solu- 
tions u R survive, while the stable ones, v R, diverge. To perform the limit procedure 
we use the variational characterization of the "Mountain Pass" solution uR 
and derive, by arguments somewhat related to those of [16], a uniform bound for 
IVuR[ in L 2 for a sequence R m -+ oo. W h e n f i s  superlinear, this bound could be 
obtained by a more direct argument from the equation itself (cf. [1]) but the latter 
approach does not seem to work in the case of a bounded f In contrast, the ap- 
proach we use here could be employed to solve more general semilinear elliptic 
variational problems in R '* under suitable symmetries. 

The rest of the paper is divided into 4 sections. In w 1 the problem is described 
in more detail; in w 2 the existence of solutions of the approximating problems 
is: derived; w 3 contains the a priori estimates which enable us to pass to the limit; 
ia w 4 we state the main results. 

A preliminary announcement of this paper has appeared in Applied Mathe- 
matics Letters. 

w 1. Setting of the problem 

A s  stated in w O, by axisymmetry the vortex problem can be formulated in 
the half space H = {(r, z) : r > 0}. As is shown for example in [10], if q is the 
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velocity field, there is a stream function ~ such that 

( '  - - ~  _ _  l ~  1 q =  r ~z , O , - -  r -'~-r " 

Let L denote the operator 

L =  r-~r -~r + ~ z  - - r ;  

then the vorticity of the flow, curl q, has cylindrical components (0, co = - - r  -1 L ~ ,  
0). Finally, the laws of hydrodynamics demand that m/r is constant on stream- 
surfaces ~g = constant. Thus the problem of  finding a vortex ring with cross 
section A ~ H, flux constant k >= 0 and propagation speed W > 0 ,  amounts 
to determining a function ~ E  C ! ( H ) •  C2(HX~ ~A) satisfying (0;1-0.5), for 
some function f and constants ~, k and IV. 

Without loss of generality we may take 2 = 1, W = 2. We also set ~0(r, z) = 
}P(r, z ) - t - r 2 +  k, the reduced flow potential, and introduce the functions 
h,g:  R - +  R 

h(s) = 0 if s <= O, h(s) = 1 if s >  0; 

g(s) = h(s) f(s). 

Ill this notation (0.1-0.5) become: 

--LTt = r2 g0P -- r2 -- k) i n / / ,  

~p(0, z) -~ 0, (1.1) 

]V~o]/r-+ 0 a s r  2 § z 2 - + 0 o .  

A solution of (1.1) is a ~oE C2(H\  8A)#~ CI(H) which solves the first equation 
in (1.1) almost everywhere. By the maximum principle any solution ~p of (1.1) is 
positive; the set A = ( 7 t >  0} = {(r, z):  ~p(r, z) > r 2 + k} corresponds to the 
vortex core. 

Following NI [13], we introduce as new unknown the function u, related to ~0 
by 

~p(r, z) = rZu(r, z). 

Then, formally, we have L~p = r 2 Au, where A denotes the Laplacian in cylindrical 
coordinates (r, z) in R s, with 

r = l /  + . + z =  x s .  

Hence if u(r, z) solves 

(P) - - A u = g ( r 2 u - - r 2 - - k )  ~ in R s, u-->O as [ x ] - + o o ,  

then ~p(r, z) = rEu(r, z) is the desired solution of (1.1). 
Observe that if the vortex c o r e  {(r, z)" u(r, z) > 1 + k/r 2} is bounded, then 

the decay condition " u - +  0 as lx t-+ cx~" implies (0.5), 
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Let B ( R ) = { x E R S : I x [ < R )  denote the ball in R5 centered at x = 0  
with radius R. It is natural to approximate of (P) by the following boundary value 
problem: 

(P)R - -Au  --- g(r2u -- r 2 -- k) in B(R), u = 0 on ~B(R), 

This problem has a physical interest in itself. It will be studied in the following 
section. 

w 2. The approximate problem 

Problem (P).~ will be solved by variational methods. We will use standard 
notations for Lebesgue spaces LP(O) and Sobolev spaces Hm'p(-O), for any domain 
Y2 Q R 5. The norm in LZ(B(R)) will be denoted by ]ul2,R. H(R) will denote the 
space of cylindrically symmetric u in HIo'2(B(R)) and wilt be equipped with scalar 
product and norm, respectively 

((u, v))R = f Vu. Vv, 
BfR) 

II ul[~ = ((u, ~, ) ) . .  

In the sequel we will suppose 

( f )  f is bounded, continuous, positive and nondecreasing on ]0, oo[. 

Let 

G(r, u) = : g(r2v --  r 2 --  k) dv 
~o 

and define JR, ER:H(R)--> R by setting 

JR(u)-- f a(r,  zO, 
B(R) 

ER(u)  = �89 llull~ - JR(u). 

Note that E n is well defined on H ( R ) a n d  is the difference of a quadratic and a 
Lipschitz continuous and convex term. Therefore, although ER is not Fr6chet 
differentiable in H(R), it possesses a set-valued super-gradient dER(u ) = u -- 
d JR(u)Q H(R) at any point u E H(R), where dJ R is the sub-gradient of JR, 
represented by g, the maximal monotone extension of the map u-+g(r2u -- r 2 
-- k) obtained by filling up the jump of g at 0. One has 

vC- dE2e(u) <=> E~(u + w) --  ER(u ) --  ((v, E))R <= o(IIwlIR), V w~ H(R).  

Moreover, the map u ~ dER(u) is weakly upper semi-continuous, see [9, Prop. 6, 
p. 105], and compact. 

A critical point of E R is a u E H(R) such that 0 E dEg(u). 

Lemma 2.1. u E H(R) is a critical point of  E R i f  and only i f  u is a positive 
solution o f  (P)~ almost everywhere. 
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Proof, I f  0 E dER(u) then t h e  results of Section 2.2 of  [4] imply readily, 

--Au E g(r2u -- r 2 -- k), u E H(R) A H2,2( B(R)). 

Let /~ = {(r, z) : r2u = r 2 + k}. By a theorem ofSTAMPACCnIA --Au --- --A(k/r 2) 
= 0  a.e. on F. Since we defined g ( 0 ) = 0 ,  - - A u = g ( r 2 u - - r  2 - k )  a.e. in 
B(R), and u is a solution a.e. of (P)R. By the maximum principle u > 0. The 
converse is obvious. [ ]  

Remark2.2. Actually, for the critical points obtained below one has 
meas ( F ) =  0, and therefore the value g(0) could be defined in an arbitrary 
way. [ ]  

Note that (P)R always has the trivial solution u == 0. In order to prove the 
existence of solutions u ~ 0 'we next derive some lemmas wi~ich will enable us 
to employ variational principles. Some of the arguments are rather standard 
and will be  sketched only. 

Lemma 2.3. Suppose (f)  holds. Then 

(i) for any R > O, E R is bounded from below, weakly lower semicontinuous and 
coercive on H(R); 
(ii) for  any R > 0 the .function u ~ 0 is a (strict) relative minimizer of E R and 
for any ~o > 0 there exists 0 < ~ < ~o, oc > O, such that ER(U) ~ or Yu: I[ u ]JR = ~; 
(iii) 3 Ro > 0 and ul E H(Ro) such that ERo(Ul ) < 0[ Moreover, setting ui = 0 
outside B(Ro), then ut E H(R) and ER(ut).< 0, u R ~ Ro. 

Proof. (i) is trivial because g is bounded. 

(ii) From the fact that g(r, u) is monotone in u and vanishes for rau < r 2 -~- k,  
by the Sobolev inequality we have 

10 10 

f G(r,u)<= f g ( r 2 u - - r 2 - - k ) u < = C  f u ~ C  f lul~<=cllull~. 
B(R) B(R) {x: u(x) ~ 1 } B(R) 

Hence (ii) follows, 

(iii) Let 4~E H(1) satisfy J~(4~)>0. Scaling ~R(x)=  r H(R), we have 
t~ 12 ~__R 3 11 R,IR I[~lI~. (2.0) 

Moreover, by the monotonicity of g 
[r } 

J.(r f [o f g(~=(s-1) -- k) ds dx 
B(R) 

= RS J,(dp), 

for all R ~  1. Hence 
ER(4~R) --> -- oo (R -+ oo), (2.2) 

and (iii) follows. [ ]  
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The next lemma is concerned with the Palais-Smale condition which for non- 
smooth functionals l ike ER can be replaced by the following: 

Lemma 2.4. Let f satisfy ( f )  and suppose that u m E H(R) is a sequence such 
that 

[ER(Um) [ ~ C, inf{llvl[ R : vE dER(um)}----~ O. (2.3) 

Then, up to a sub-sequence, u m -+ u in H(R) and 0 E dEn(u). 

Proof. Use the fact that E R is coercive on H(R) and dE R is weakly upper semi- 
continuous and compact. [ ]  

In the sequel a sequence u m in H(R) satisfying (2.3) will be referred to as a 
PS-sequence2 For U E H(R), u >= O, we denote by u* the Steiner symmetriza- 
tion o f u  with respect the z = x5 axis, namely u* E H(R), u*(r, z) = u*(r, z), 
u* is non-increasing in [z I and equi-measurable with u for fixed r: 

meas {z: u*(r, z) > c} = meas {z: u(r, z) > c}, V c ~ O, r >= O. 

Note that Ilu*I1R =< IIulIR, JR(u*) = JR(u) for uE H(R). Hence, in particular, 

ER(u*) <= ER(u), V u E H(R).  (2.4) 

We are now in position to state the main result of this section: 

Theorem 2.5. Suppose (f) holds. Then for R >= Ro defined in Lemma 2.3(iii) 
problem (P)R has at least two positive symmetric solutions u R = u* and v n = v* 
satisfying: 

JR(VR) = rain (JR(u):u E HR}< 0; 

JR(uR) ~ inf max {Jn(p(t)) : 0 <-- t <_ 1}, (2.5) 
pea (g) 

where 

A(R) = CpE C([0, l];/-/(R)) : p(0) = 0,p(1) = u d .  

Moreover, for UR the free boundary ~1~ has zero measure. 

Proof. By Lemma 2.3(i) JR attains the minimum on some v e E H(R). By 
Lemma 2.3(iii) JR(VR) < 0 for R large and hence v R 4= 0. By (2.4) we may 
assume that v R = v*. 

Lemmas 2.4, 2.3(ii) and (iii) enable us to apply the "Mountain Pass" theorem 
[2] in the form stated in [9] (suitable for Lipschitz functionals) yielding the existence 
of a critical point uR 4 = 0 satisfying (2.5). Similarly, (2:4) and the arguments of 
[7, Theorem 3.4 p. 403-405] allow us to find a critical point u R = u* satisfy- 
ing (2.5) and such that C~UR/~Z < 0 for z > 0. In particular it follows that 
meas (/ ' )  ~ 0. 

B o t h  u R and v R give rise to positive solutions of (P)R according to Lemma 2.1 
(see also Remark 2.2). [ ]  
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Remarks 2.6. (i) The preceding theorem is related to the results of [3], where 
an approach based on a dual variational principle is employed. Actually, the 
approach of [3] furnishes an alternative proof  of  Theorem 2.5. 
(ii) Let us point out that the symmetry of the solutions does not follow (at least 
in a direct way) from the result by GIDAS, N~ & NIRENBERG [11] because g is dis- 
continuous. In [3] a rather simple proof  of  the symmetry results needed here can 
be found. [ ]  

w 3. A priori estimates for ua 

In order to obtain a priori bounds on suitable critical points u e characterized 
by the min-max principle (2.5) and suitable for passing to the limit R --~ oo we 
need to take a closer look at the mechanism for constructing u R. 

We set 

7(R) = inf sup ER(U ) > 0 
pEA(R) u~p 

where A(R) has been defined in the preceding section. 
Recall that, for R ' <  R, we may regard H(R')Q H(R) (simply extend 

u E H(R') by setting u = 0 outside B(R')) and, still denoting the extended func a 
tion by u, we conclude that Ee,(u ) = ER(U ). It follows that A(R' )Q A(R), 
whence 7(R') => v(R). In other words v(R) is non-increasing, hence a.e. differ- 
entiable and 

d j --~7(R) dR <= 7(Ro) - - l im inf 7(R) ~ 7(Ro) < cxz. 
R-+oo 

As a consequence, there is a sequence R m --> cx~ such that 

d 
7!inloo R m - .~  ~(Rm) = O .  (3.i) 

Before stating the a priori estimates, we need some preliminary results. 

Lemma 3.1. For Ro < R' = sR < R and u E H(R) we let u~(x) = u(x/s) E 
H(R'). Then, if s < 1 and sufficiently close to 1, 

7(sR) = inf sup EsR(us). 
p~A(R) uCp 

Proof. Let us consider the maps 

u ~ h = u ( . / s ) ,  

v - +  b = v ( s . ) .  

which yield an isomorphism between H(R) and H(sR) and induce mappings 
A(R)-+A(sR)  and A(sR)-->A(R) as tollows: for p E A ( R )  with p ( 1 ) = u ~  
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let /~E A ( s R ) b e  the p a t h  
~ 

Conversely, for p E A(sR) let ~ E A(R) be the path 

((t)) 
/3(0 = p for 0 _<_ t ~< s; /3(0 = ux(t.) 

for s~< t_<_ 1. 

for s ~  t ~  1. 

It is easy to verify that for  all s sufficiently close to i and all s ~< t _< 1 there 
results EsR(ul('/t)), ER(ul ( t . ) )< 0. Moreover, given a path p EA(sR), let 

q = ~ E A(sR) b e  the path obtained composing the above maps ~b and ~b. Note 
that ~.:~ 

sup E,R(u) = sup E~I~(U) >= ~'(sR) > O. 
u~q u=_p 

Hence if we let A = ~/5 : p E A(R)} and define 

= inf sup E~R(u ) = inf sup E~R(h), 
p~A UCl~ peA(R) u~p 

it follows that ~ = ~,(sR). [] 

Proposition 3.2. Suppose R ~ v(R) is differentiable at R, R > Ro. Then there 
is a (positive) soh~tion u R o f  (P)R satisfying 

[I UR I12 ~ C" (~(R) -? 2R [ v'(R) I -k 5), 

with a constant C independent o f  R. 

us(x) = u(x/s) for 0 < s < 1 close to 1. By the pre- Proof. Step 1. We set 
ceding lemma, for any eE ]0, 1] there exists p E A  = A(R) such that 

sup EsR(u~) ~ "/(sR) + e(1 -- s~). (3.2) 
tt~p 

Moreover, let u E p satisfy 

ER(u) ~ y(R) -- e(1 -- sS). (3.2') 

From (3.2-2') it follows: 

E~R(u~) -- ER(u ) ~ y(sR) -- y(R) + 2e(1 -- sS). (3.3) 

First we estimate the left-hand side of (3.3). By (2.1) YsR(us) -<_- s 5 JR(u) and 

S 5 

1 - s * (SR(u) LR(u3) > a;R('O. 

On the other hand, by (2.0) one has 

Ilus]l~R = s 311u~[12 
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whence 
S 5 $'2 - -  S 5 

1 s ~ (/lul[~ Ilu~II~R) - 1 - s5 ifu~lt~g. 

As a consequence, for 0 < 1 --  s small, 

sS E~g(u~) -- Eg(u) > J~g(u~) -- ~-30 [I us !I2R 
1 - -  s 5 = 

This inequality and (3.3) imply that  for s close to 1 

- -  ,o  ~- IIusll~g + L ~ ( U s )  ~_ < R ly'(R) ] + 3e. 

From (3.4) we deduce 

1 EsR(Us) = ~- II us 112g - -  J~R(u3 
1 2 

whence: 

s 3 IIull~ = IIu~L�89 ~ 5(E~(u~) + R b,'(R)] + 3e) 

<~ 5@(sR) -k R [y'(R)[ + 4e) ~ 5(7(R) -+- 2R I)"(R) [ @ 5e). 

Step 2. We claim there is a PS-sequenee zt m ~ H(R) .such that 

ER(blm) ~ ~](R)'~ (i) 

and 

(ii) 

(3.4) 

(3.5) 

(3.6) 

l im sup Ilumll 2 ~ e* = =  5[~(R)  + 2 8  I~'(R)[ + 5] + 1. 
m - §  oo 

To see this, for ~ > 0  set 

f~ = {u~ H(R): IIulI~ <~ e* + ,~, l E g ( u )  - r(R) I =< ~) 

and suppose, by contradiction~ that  for some e* > 0 and any u E U~, 

i n f  {l lvl lg  : vE dER(u)} > e*. 

By [9, Lemma 3.4 and Theorem 3.1], corresponding to c : y(R), eo : 
8"* rain { , y(R)}, N = H(R) \ U,,, we can find t E ]0, Co[ and a homeomorphism 

: H(R) ~ H(R) such that  

~ ( u )  = u if lEg(u) - ~,(R)[ ~ 7(R); (3.7) 

ER(~(u)) <= ER(u) for all u; 
(3 .8 )  

E g ( ~ ( u ) )  < ~,(R) - ~ if  u ~ tL, ,  E~(u)  < ~/(R) + ~. 

For  s <  1 close t 0 1  choose p E A ( R )  such that  

sup {E~g(u~) : u E p} <~ ~(sR) -k (1 -- sS). 

Then by Step 1 any u E p  where Eg(u) ~ 7(R) -- (1 -- s s) satisfies []u[J 2 ~ c*. 
In particular, if s is sufficiently close to 1, by using (2.0) and (2.1) we can 
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arrange that for all such u 

ER(u ) ~ E~R(us) -}- el2 ~ 7(sR) -I- (1 -- s 5) q- e/2 ~ 7(n) -k e, 

and uE U,,. 
Applying qi to p, by (3.7) we obtain a comparison path p' = ~(p)E A(R)  

which satisfies 
sup (ER(u) : u E p'} < y(R). (3.9) 

In fact, if ER(U ) ~ y(R) -- (1 -- s 5) (otherwise there is nothing to prove), by 
the preceding remarks and (3.8) it follows that ER(q~(u)) <: y(R) -- e for any 
u E p. Clearly (3.9) contradicts the definition of 7(R) and the proof of Step 2 
is complete. 

The conclusion of Proposition 3.2 now follows immediately from Lemma 2.4. [ ]  

Combining Proposition 3.2 and (3.1) with the arguments of [7] we obtain 

Corollary 3.3. There exist a constant c, a sequence R m ---> oo, and a sequence 
of  symmetric solutions U m :  urn of  (P)R m with 

[[UmIIR m < C. (3.10) 

w 4. Existence of vortex rings 

In this final section we prove the existence of a solution of problem (P), or, 
equivalently, of problem (0.1-0.5), by a limiting procedure. 

Let um E H(Rm) be the sequence found in Corollary 3.3 and set 

A m = {(r, z) E B(gm) : r2um(r, z) > r z -k k}. 

Lemma 4.1. There exists R* > 0 such that A m Q B(R*) for aH integer m. 

Proof. The lemma would follow from Corollary 3.3 and the estimates of [10, 
w 5.2] or [13, w 5.3]. Below, taking advantage of the boundedness of f ,  we report a 
slightly different, short proof, to make the paper as self-contained as possible. 

Extend u m to all R s setting u m =--0 outsideB(Rm). Fix ro; then the following 
estimate holds (hereafter we use the symbol e to denote possibly differ ent constants, 
independent both of m and ro): 

m e a s  {z : Um(ro, z) ~ �89 

<=c j [Um(ro, 
- -  r  

f T d r d  z c [urn(r, z)] T dr ~ c [~THm I �9 
r o - - o o  r o - - ~  

" ~ C  ]VUm [ . T 3 d r d z <  _ _ l l u , . [ l R m l u m l ? o R  < _ _  T = Um r : c r3  ~ ~ ,  m : C r 3  IlumltRm" 
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By use of  (3.10) 

MoreoveL 

meas {z: Um(ro, z) ~ �89 ~ e r f  3 . (4.1) 

IIAUmlloo,Rm ~ sup f <  e (4.2) 

uniformly, and by the LP-regularity fheory the families (Um(. + Xm) ) are equi- 
bounded in C ~, locally in R 5, for any choice of  {Xm). 

First, let r m = max {r : (r, z) E Am for some z); by symmetry, rm is achieved 
for z = 0. Set xm = (r~, 0); then Um(Xm) ~ 1, and by equicontinuity there 
exists Zo > 0 (independent on m) such that um(rm, ZO) ~ 1/2. By (4.1) this implies 
the uniform bound 

r m ~ c z - L  

Likewise, choose x m = (rm, Zm) E Am, where z m = max {z : (r, z) E Am for some 
r). As before we conclude the existence of some ro > 0 such that Um(X ) ~ 1/2 
for x = (r, Zm) and Ir - -  rm[ ~ to. But then (4.1) implies that 

Z m ~ cro 3 

uniformly, and the conclusion follows. [ ]  

Next by (4.2) we also conclude that 

(a) u m converges in r~l+~roz~ �9 ~1oc ~-- J, 0 < or < 1, to some u, solving (P). 

Let us note that u ~ 0; otherwise for m large, u m < 1 on B(R*) ,  whence 
rZUm < r 2 § k. Since u m is a solution of (P)Rm and g(r, z) = 0 for all r Z z <  r 2 4- k,  
it would follow that u m ~ 0, a contradiction. Moreover remark that u ~ 0 
implies that the vortex core 

A = {(r, z) E R~ : r~u(r, z) > r ~ + Ic) 

is not empty. Finally, by Lemma 4.1, A Q B(R*)  is bounded. In addition, (a) 
and Theorem 2.5 imply that 

(b) u is symmetric because the um were so; moreover, Ou/gz > 0 for z > 0. 
Hence 0A has zero measure. 

Finally, also in view of  point (a) above, one has: 

(c) ~p = r2u is a solution of (1.1) in the sense specified in Section 1. 

We can conclude by stating: 

Theorem 4.2. Suppose ( f )  holds and let u R, v R be the solutions o f  (P)R, R large, 
found  in Theorem 2.5 and Proposition 3.2, respectively. Then 

(i) there is a sequence R m ---> cx~ and u E HI'Z(R 5) such that URm ---> U in H 1"2 ; 

u ~- u(r, z) and ~p = r2u is a positive, symmetr ic  solution o f  (1.1) corresponding 
to a non-empty bounded vortex core; 

(ii) ER(vR) --> --  c~ and I vR I2,R --> cx~. 
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Proof. (i) This follows from Lemma 4.1 and conclusions (a), (b), (c). 
(ii) by (2.2) it follows t ha t  ER(VR) ---> -- O0 (R--> (x)). 
Finally, let c > 0 be a constant such that G(r, u) < cu 2. Such a constant 

exists because g is bounded and g(r2u --  r 2 --  k)  ~-- 0 for all r2u < r 2 + ir 

Then 

0 < �89 v. !l~ = ER(vR)+ f G(r, vR) ~ ER(vR) + c~ I VR 122,R. 
B(R) 

Hence 

This completes the proof  of the Theorem. 

13 2 

[] 

Remarks  4.3. (i) The arguments concerning the existence of U R and its con- 
vergence to a solution u of (P) work if f is superlinear, as well. However, in such a 
case, the a priori estimates on I VUR 12,R can be obtained in a more direct way, as, 
for example, in [1]. 

(ii) It is clear that the procedure employed above can be used to prove the existence 
of nontrivial solutions of semilinear elliptic boundary  value problems in R" with 
bounded nonlinearity, in presence of a suitable symmetry. We leave it to the reader 
to carry out the details. 

(iii) Theorem 4.1 holds if k ~ 0. If  k = 0, the vortex is spherical2 If, in addi- 
tion, f is identically constant, we would- find Hill's spherical vortex, according to 
the uniqueness result of  [4]. 
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