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Consider the infinite system of nonlinear differential equations zi,= 
f(un 1,un, u,+l), n~Z, where f ~ C  1, D l f > O  , D 3 f > 0  , and f (0 ,0 ,0 )=0=  
f(l ,  1, 1 ). Existence of wavefronts--i.e., solutions of the form un(t)= U(n + ct), 
where c e N, U( - oe ) = 0, U( + oe ) = 1, and U is strictly increasing--is shown for 
functions f which satisfy the condition: there exists a, 0 < a <  1, such that 
f ( x , x , x )<O for 0 < x < a  and f(x, x ,x)>0 for a < x < l .  

KEY WORDS: Traveling waves; Nagumo equation; cooperative systems; 
comparision principles. 

| .  I N T R O D U C T I O N  

Consider  the infinite system of coupled nonlinear  differential equat ions 

i G = d ( u ,  1 - 2 u ~ + u , + l ) + f ( u , , ) ,  n~2_ (1) 

where d is a positive number  and f is a Lipschitz cont inuous function for 
which f ( O ) = f ( a ) = f ( 1 ) = O ,  f ( x ) < 0  for 0 < x < a  and f ( x ) > 0  for 
a < x <  1; e.g., f ( x ) = x ( x - ~ ) ( 1 - x ) ,  Note  that system (1) is the discrete 
analogue to the well-known N a g u m o  equat ion (McKean,  1970), 

•u 02u 

~[  = D -~Sx2 + f ( u ) 

The discrete N a g u m o  equation, system (1), was proposed by Bell 
(1981) as a model  for conduct ion  in myelinated nerve axons and was 
studied by a number  of  authors  (Bell, 1981; Bell and Cosner,  1984; Chi 
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et aL, 1986; Keener, 1987; Zinner, 1991, 1992). In particular, the existence 
of a traveling wave with positive speed was shown under the additional 

1 assumptions that ~of(S)ds > 0 and d is sufficiently large (Zinner; 1992). 
It is the aim of this paper to show the existence of wavefronts for a 

more general discrete Nagumo equation. More precisely we will consider 
the tridiagonal system 

fz,---f(u~ 1, u,, Un+x), n ~ Z  (2) 

where f is of class C 1 and satisfies the following conditions: 

(C1) Dl f ( x , y ,  z)>0  and D3f(x,y ,  z)>0  whenever O<~x<<.y<<.z<~ 1. 

(C2) There exists a~(0 ,1 )  such that f(O, O, O)= f(a,  a, a)= 
f ( 1 , 1 , 1 ) = 0 ,  f ( x , x , x ) < O  for x~(O,a), and f ( x , x , x ) > O  
for x~(a,  1). 

(C3) Z~=lDif(a,a,a)>O. 

Condition (C1) says that (2) is cooperative, condition (C2) captures the 
important features of the Nagumo dynamics, and condition (C3) is a 
technical assumption needed in the proof. The main result is the following 
theorem. 

Theorem 1. Suppose that the function f :  ~3 ~ ~ satisfies the condi- 
tions (C1), (C2), and (C3). Then there exist c ~ ~ and a strictly increasing 
function U with U ( -  oo)= 0 and U ( ~ ) =  1 such that system (2) has a 

t oD - - o o  solution u(t) {un( )},= satisfying u,(t) U(n+ct) for all nEY_ and 
t~R.  

Note that the existence of waves with speed c of system (2) is equiv- 
alent to the existence of a solution of the functional differential equation 

c U ' ( z ) = f ( U ( z - 1 ) ,  U(z), U(z + 1)), z 6 ~  (3) 

with U ( - o o ) = 0  and U ( ~ ) =  1. The existence theory for this type of 
functional differential equation is not well developed yet, and to our 
knowledge results are known only for linear functions or small perturba- 
tions of linear functions f (Rustichini, 1989a, b). 

The main idea for the proof of Theorem 1 can be traced back to the 
classical paper by Kolmogoroff et al. (1937). They showed that the solu- 
tion u(x, t) of a certain initial value problem of Fisher's equation has 
the property that U(Xo, to)=u(y, t) and t> t o imply ux(xo, to)>~ux(y, t) 
(Kolmogoroff et aL, 1937, Thm. 11). We will prove the analogue result for 
system (2). The approach taken here is also closely related to the idea of 
the lap number or integer valued Liapunov function which have been used 
by many authors (see, e.g., Smith, 1990, and references therein). 
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2. COMPARISON OF SOLUTIONS 

Discussions concerning existence, uniqueness, and continuous 
dependence are given by Walter (1970). For  our purposes, it suffices to con- 
sider the following case. Let a < b ~ Y _ w  { + ~ } ,  let O =  { n ~ Z l a < n < b } ,  
and let B be the space of bounded sequences (x.).~a___~ with the 
supremum norm. The partial order on B is component-wise; that is, u ~< v 
if and only if un ~< v~, n ~ O. 

Assume that J is an interval, 0 ~ J c  [0, or), and f = f ( t ,  u) is a 
cont inuous  function from J •  B to B which satisfies a Lipschitz condition 
with respect to u. In addition, assume that f is quasi-monotone increasing 
in u; that is, f,,(t, u ) ~  f , ( t ,  v) whenever u<-Gv and u~=vn. Then we have 
local existence, uniqueness, and convergence of successive approximations 
for the initial value problem fi = f ( t ,  u), u(to)= u ~ (Walter, 1970, Sec. 12). 

Further, the following monotonicity result holds: If u and v are 
functions from J to B satisfying u(0) ~< v(0) and f i - f ( t ,  u) <~ b - f  (t, v) in 
J, then u ~ v in J (Walter, 1970, Th. 12.XIV). As a consequence, we obtain 
a comparison result. 

Lemma 2. Let  f ( t ,  u) be a continuous function from J•  B to B which 
satisfies a Lipschitz condition with respect to u, where f = ( f . ) . ~ a  has 
the form f . ( t ,  u )=fn ( t ,  un_l ,  u.,  un+l) [ i f  n = a +  1, then we mean that 
f . ( t , u ) = f . ( t , u ~ , u , , + l ) ;  a similar statement holds in the case t h a t  
n = b - 1 ] .  Assume that f . ( t ,  x l , y , z ~ ) < ~ f . ( t ,  x2, y, z2) i f  x l<~x 2 and 
zl <~ z2, where the inequality is strict i f  x l  < x2 or z~ < z2 (again, i f  n = a + 1, 
then the "x" term is not present," a similar statement holds i f  n = b - 1  ). 
I f  u = u(t) and v = v(t) satisfy 

(a) u(O) <-G v(O) and u(O) ~ v(O), 

(b) fi<~f(t, u) andf;>~f(t ,  v) on J, 

then un(t) < vn(t) for  all 0 < t ~ J. 

Proof. The monotonicity result mentioned above shows that u~<v 
in J. Suppose, on the contrary, that there exist t > 0 and n ~ 12 such that 
un(t)=vn(t).  Consider the case that a +  1 < n < b -  1. Since un_~(t)<~v._~(t ) 
and u.+ ~(t) ~< v.+ l(t), it follows that 

ft,,(t) <<. fn(t, Un_ l(t), Un(t), U,+ l(t)) <~ f~(t  , Vn_ l(t), vn(t), V,+ l(t)) <~ b~(t) 

Using the monotonicity condition, we see that lJn(t ) = b,,(t). The conditions 
of f then imply that u,,_ 1(0 = v~_ ~(t) and u n + ~(t)= v n + ~(t). The process 
can be repeated to show that u-- v, contradicting the uniqueness condition. 

865/5/2-12 
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The cases n = a + 1 and n = b - 1 are similar and will be omitted. This 
completes the proof. | 

Corollary 3. Assume (u=) is the solution of  the initial value problem 
(2), 

u=(O)=O, for n<~O,  u , (O)=l ,  for n>O, n672 (4) 

Then O<u=(t)<u~+l(t)< 1 for all t > 0 ,  n~77. 

Proof. Standard arguments using Lemma 2 prove the corollary. | 

We now use Lemma 2 to compare solutions u and v for which con- 
dition (a) in Lemma 2 does not hold. 

Definition. Let x = ( X n ) n r  a sequence in ~. We define the following 
types for the sequence x. 

(T1) 

(T2) 

(T3) 

(T4) 

(TS) 

There exists noe77 such that x , < 0  for n < n o ,  xn0~<0, and 
x , > 0  for n>no. 
There exists n o t  77 such that xn < 0 for n < no, and x ,  = 0  for 
n>~no. 

x=<O for all n e Z .  

There exists no e Z such that xn = 0 for n ~< no, and xn > 0 for 
n > n  o . 

x~>O for all n~77. 

Lemma 4. Let f ,  =fn( t ,  x, y, z) have partial derivatives which satisfy 
Of,/~x > 0  and ~fn/Oz > O. Further, assume that u = (u=) and v= (v,) are 
solutions to the equations 

.gn=f , ( t ,Y , -1 ,  Yn, Y,+I), n~77 

Set x = u - v .  I f  x(O) is of  type TI, then x(t)  may change its type with 
increasing t only according to the following diagram." 

4) 

) 
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Proof. It follows from Lemma2 that T2 changes to T3 and T4 
changes to T5. In addition, the lemma shows that no change of type is 
possible from T3 and T5. It remains to be shown that the only possible 
changes from T1 are to T2, T3, T4, and T5. 

Let T =  inf{t ~> 0: x(t) is not of type T1 } and suppose that T <  ~ .  We 
will show that x(T) is of type T2, T3, T4, or T5. The proof uses only the 
comparison result. 

First, we claim that if X(to) is of type T1, then there exists ti > to 
such that x(t) is of type T1 for all t~ [to, ta). To see this, note that, by 
definition, there exists n o ~ Z such that x~(to) < 0 for n < no, Xno(to) <<. O, 
and x . ( t 0 )> 0  for n>no. Let t l=inf{ t~ to:  X.o_l(t)>~O or x.0+l(t)~<0 }. 
Note that t 1 > to and that the following hold: 

(i) u.(to)<V.(to) for all n<.no-2,  and U.o_i(t)<v.o_l(t ) for all 
t~ [-to, tl), and 

(ii) un(to)>V.(to) for all n~>n0+2, and u.o+l(t)>v.o+m(t ) for all 
t~ [to, tl). 

Lemma 2 applied to (i) and (ii) establishes the claim. 
It follows that T > 0  and x(T) is not of type T1. Necessarily, there 

exists n 0 ~ Z u  { - 0 %  Go} such that x.(T)<~O for n<~no and x.(T)>~O for 
n>no. 

Next, consider the case that x.(T)=O for some n. We claim that 
xn_~(T)<~O. Suppose that the claim is false; then xn_~(T)>0 and it 
follows that ~ ( T ) > 0 .  Hence, x n ( T - e ) < 0  for e > 0  sufficiently small. 
Thus, there exists e > 0  such that x n _ l ( T - e ) > O  and x . ( T - e ) < O ,  in 
contradiction to x ( T - e )  is of type T1. A similar argument shows that 
x,,+l(T)>~O. 

As a consequence, if x.(T) = 0 and x .+ I(T) > 0, then x.,(T) > 0 for all 
m>~n+ 1. Similarly, if x . ( T ) = 0  and x . _ l ( T ) < 0 ,  then Xm(T)<O for all 
m<~n-1.  

Finally, suppose that x(T) is not of type T2, T3, T4, or T5. Then there 
exists n,m ~ Z, n < m, such that 

x._ ,(T) < x,,(T) = 0 = x,, + ,( T) . . . . .  xm(T) < xm + ,(T) 

Hence, An(T)< 0 and .~m(T)> 0 and it follows that there exists e > 0 such 
that x n ( T - e ) > 0  and x.~(T--e)<O, which contradicts the fact that 
x ( T - e )  is of type T1. This completes the proof. ] 

Since the variational equation of (2) also satisfies condition (C1), one 
may apply Lemma 4 to the difference between the trivial solution and the 
derivative of a solution of (2) to obtain the following corollary. 
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Corollary 5. Suppose that (un) is the solution of the initial value 
problem (2). (4). I f  fino(to) >10 for some n o ~ Z and t o > O, then fin(to) >~ O for 
all n < n o. Similarly, i f  fino(to) ~< 0 for some n o E 7/and to > O, then ftn( to) <~ 0 
for all n > no. In both cases, the inequality on ftn( to) is strict if  the inequality 
on fin0(t0) is strict. 

Proo~ 

where 

Set v n = fin and wn = 0. Then (vn) and (wn) are solutions of 

~n=h,(t ,  yn_ l , yn ,  yn+l), n E Y  

3 

hn(t, Xl, x2, x3)-- ~ Dif (un- l ( t ) ,  un(t), Un+l(t))xi 
i = 1  

Condition (C1) guarantees that the functions hn satisfy the hypotheses of 
Lemma 4. From (C1) and (C2), it follows that 

wn(0) = 0 = fin(0) = vn(0) for n < 0 

Wo(0) = 0 < f ( 0 ,  0, 1) -- rio(0) = Vo(0). 

Set ~2= { n s T / I n < 0  } and let B be bounded real sequences (Xn)n~. Let 
g = g ( t , x )  be defined on [ 0 , ~ ) x B b y g  1 ( t , x ) = h _ l ( t ,X_ z , x _ l ,Vo ( t ) ) ,  
and, for n < - l ,  g n ( t , x ) = h n ( t , x , _ l , x , , x n + l ) .  Let T > 0  be such that 
Vo(t) > 0 on [0, T]. By considering the natural projection of v(t) onto B, 
which is also denoted by v(t), we may write ~( t )= g(t, v(t)) on [0, T]. 
Similarly, ~(t)  ~< g(t, w(t)) on [0, T]. An application of Lemma 2 shows 
that 0 = wn(t) < vn(t) for t > 0 sufficiently small and n < 0. 

Similar arguments show that 0 > vn(t) for t > 0  sufficiently small and 
n > 0 .  Hence, - v ( t )  is of type T1 for all t > 0  sufficiently small, and the 
result follows by Lemma 4. | 

Note that if u(t) = (un(t)) is a solution of (2), then so is w(t) = (wn(t)), 
w , ( t )=un( t+ to )  for any constant t o ~ .  Applying Lemma4  to the 
difference of these, we obtain the following corollary. 

Corollary 6. Suppose that (un) is the solution of the initial value 
problem (2), (4), and assume that uk(tl) = Urn(t2) for some k, m ~ 7/ and 
0 <~ tl <~ t2. Then for all n ~ N, [um_,(t2), Um+,(t2)] C [U~-n(tl), Uk+n(tl)]. 

3. AN A PRIORI B O U N D  

In this section, an a priori bound is established on the number of 
terms which can lie in a given interval for the solution u of (2), (4). We 
begin with two supporting lemmas. 
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Lemma 7. Suppose that (u~(tk)) converges and (t~) diverges to 
infinity. Then lim(um~(Sk))=lim(u,k(tk)) and l i m ( s k ) = ~  imply that 
lim(fi,,k(sk) ) = lim(fi,k(tk) ). 

Proof. Assume that Lemma 7 is not true. Then we may assume 
that lim(umk(Sk))=lim(u,~(tk)), (fi,,(tk)), and ( t~(sk))  converge, and 
lim(fi,,k(sk)) # lim(~nk(t~)). 

At least one of the sequences (ftm,(Sk)) and (fi,~(t~)) does not converge 
to zero. It suffices to consider the case where lim(~m~(S~))r 0. 

We may assume that (Um~_~(S~)), (Un~_l(t~)), (Um~+~(S~)), and 
(u~+~(t~)) converge, otherwise we take suitable subsequences. Since 
lim(fi~(s~)) ~ lirn(fi,~(t~)), at least one of the following holds: 

(i) lim(um~_ ~(s~)) < lim(u,~_ ~(t~)), 

(ii) lim(um,_ 1(s~)) > lim(u,~_ l(te)), 

(iii) lim(um~+ ~(s~)) < lim(u,~+~(t~)), 

or  

(iv) lim(umk+ ~(Sk)) > lim(u,,k+ l(t~)). 

Suppose (i) holds; the other cases are treated similarly. One may 
assume that sk > tk + 1 for all k; otherwise one takes suitable subsequences. 
Since lim((tmk(Sk) ) r  there exists a sequence (/tk) such that lim(/~k)=0 
and Um,(S~ + l~-) = Un~(tk). It follows that um~_ ~(sk +/~k) ~> u,k- l ( tk)  for 
/~k<l  by Corollary6. Hence lim(u,,~_l(Sk))=lim(umk_l(s~+t~k))) 
lim(u,~_l(tk)), in contradiction to (i). | 

Lemma 8. Given T > O and # > O, there exist N 6 ~ and 6 > O such 
that fin +j(t0) < ~ for j = -N,..., N, implies fin(to + t) </~ for all t ~ [0, T]. 

Proof. Let N ~  ~, p, q > 0 ,  and consider the following initial value 
problem: ~ j = q w j _ l + q w j + q ~ ) + i ,  w _ N ( 0 ) = p ,  w j ( 0 ) = 0  for j =  
- N + I  ..... N - - l ,  wN(0)=p ,  whereW_u 1 = w _ u a n d w u + l = w N .  

Note that by symmetry wj(t) = w i(t ) for t ~> 0, and using comparison 
methods it can be shown that W N ( t ) ~ W N + I ( t ) ~  . . .  ~ W o ( I  ) for t ~ 0 .  

Therefore ~ _ ~  ~< 3 q w  N and ~_~+~ ~< qWN+k- 1 + 2qW--u+k for k = 
i,..., N. One shows by induction that for k = 1,..., N, ( - il 

W_N+k(t )<~ p e q' eZq, 
,=o-f f-./ 

and in particular, for k = N, 

U_l(qt)J ~ eZq, Wo(t) <.p Z / 
j=0  
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Let #, T > 0 .  Since (zN--01 ((qt)J/j!)) converges uniformly on [0, T] 
to e ut, we conclude that for sufficiently large N~ ~, Wo(t)<#/2 for all 
t 6 [0, T]. 

If follows by continuous dependence on initial data that there 
exists 6 > 0  such that the solution (w.(t)) of the initial value problem 
~bj=qwj_l+qwj+qwj+l, W_u(O)=p, Wj(0)=O for j = - N +  1 , . . . , N - I ,  
W N(O ) = p, where w_ u_ ~ = W- N and W N + 1 -- W N, satisfies wo( t ) </~ for all 
t~ [-0, T]. 

Let vj(t)=fi .+j(t) ,  a j ( t ) = D l f ( u . + j _ l ,  u.+j, u.+j+,), bj(t)= 
D z f ( u . + j _ l ,  u.+j, u.+j+l ) ,  and c j ( t )=D3 f (u .+ j _ l ,  u.+j, u.+j+l). Then 
f;j=ajvj_ l W bjvj W ejvj+ l. 

Let p=sup{vj( t ) :  j~Y_, t>~0}, q=sup{aj( t ) ,  bj(t), ej(t): j~Y_, t>~0}, 
and assume that f~.+j(to) < 6 for j =  - N ,  .... N. Then v.+j(to) <~ 6 = wj(O), 
and by the comparison principle vn +j(to + t) <<. wj(t) for j = - N ,  .... N, t/> 0. 
In particular, ft.(t0 + t) < # for all t ~ [-0, T]. | 

Lemma 9. Suppose that (un(t)) is the solution of the initial value 
problem 

Y . = f ( Y . - 1 , Y . , Y . + I ) ,  y . ( 0 ) = 0  for n<~O, y . ( 0 ) = l  for n > 0 ,  n E Z  

where f satisfies (C1), (C2), and (C3). Then the number of u.'s of  (u.(t)) 
which are in J = [e, 1 - ~], ~ > 0 is a priori bounded where the bound depends 
on e but not on t. 

The proof is presented in a series of claims. Claim 1 points out a sym- 
metry in the problem and so reduces the number of cases to consider in the 
proofs of Claim 4 and Claim 5. 

Claim 2 states that the number of u.'s in [e, 1 - ~], e > 0, is finite and 
therefore well defined. The proof consists in showing that the time it takes 
for two consecutive un's to enter J is bounded away from zero. 

Claim 3 states that if there is a large number of u.'s in an interval 
contained in [-0, 1 ] at some time, then there is also a large number of un's 
in this interval at any future time. So in order to prove Lemma 9 it suffices 
to show that the number of u.'s is a priori bounded for all sufficiently 
large t. Claim 3 follows easily from Corollary 6. 

We use a divide and conquer strategy. The interval J =  [e, 1 - e ]  is 
divided into the three subintervals Jl  = I-e, a - ~ ] ,  J2 = [ - a -  e, a + el, and 
J3 = [a+e,  l - e ] .  

Claim 4 states that the number of u.'s in J1 and J3 must be a priori 
bounded. The proof proceeds by showing that if the number of u.'s were 
not a priori bounded in J3, then there would exist an interval in [0, 1] 
which more u.'s would leave than enter. 
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The proof that the number of u,'s is also a priori bounded in J2 is 
accomplished as follows. Claims 5-8 show that one may assume that the 
derivatives of the un's which are leaving J2 are positive and bounded away 
from zero. Claim 9 shows that one may also assume that the derivatives of 
the u,,'s which are entering J2 are positive and bounded away from zero. 
Using (C3) it is shown in the conclusion of the proof that all derivatives 
in J2 are positive, from which it then follows easily that the number of u,'s 
must be a priori bounded in J2- 

Claim 1. Let g(x ,y , z )= - f ( 1 - z ,  l - y ,  l - x ) .  Then (un(t)) is the 
solution of the initial value problem 

Y~=f(Y, - I ,Y , ,Yn+~) ,  y , ( 0 ) = 0  for n<~0, y n ( 0 ) = l  for n > 0 ,  ne2~ 

if and only if (w,(t)), w,(t)= 1 - u _ ,  + ~(t) is the solution of the same initial 
value problem, except that f is replaced by g. Furthermore, g satisfies con- 
ditions (C1), (C2), and (C3). In particular, Dig(b,  b, b)=D3f(a, a, a), 
D3g(b, b, b)= D1f(a, a, a), and g(b, b, b) =0,  where b = 1 - a .  

The proof of Claim 1 is a straightforward calculation. 

Claim 2. The number of un's in [e, 1 - e], e > 0 is finite for each t > 0. 

Proof. Let tk=inf{t~>0: u_k(t)=e}, X=U_k_2(tk), y = u  ~_l(tk) , 
and z = U_k(tk). Then by (C1) and Corollary 3, 

f (y ,  y, z) >~f(x, y, z) = fi_~_ l(t~) ~> 0 

Since f (y ,y ,y )<O,  by (C2), there exists 61>0  such that z-y>~61, 
where ~1 is independent of k. Hence 

(~l~U--k--l(tk+l) - u  k-- t( tk)~ I~_~_~(S)l(tk+~--tk) 

for some s e (tk, tk+ ~), by the mean value theorem. This implies that there 
exists 62 > 0 such that t~+ ~ - t~/> 62 for all k, because [ J -k -  l(s)l is a priori 
bounded. 

One infers that only finitely many of the un's with negative index can 
enter [e, 1 - e ]  in a finite time. The proof for the u,'s with positive index 
is similar. | 

Claim 3. Let 0 < b l < b 2 <  1 and suppose that at some time t 1 the 
number of u,,'s in [bl,  b2] is K. Then the number of un's in [bl, b2] at any 
time t > tl is at least K - 2 .  
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Proof. Assume the contrary of Claim 3; i.e., assume that at some time 
t~ the number of un's in Ebb, b2] is K, and at some time t2 > t~ the number 
is less than K - 2 .  Then at least three of the u,'s which were in Ebb, b2] at 
time t~ must have left [bl ,  b2] during the time interval (t~, t2) and at least 
two of those three must have left through either bl or b2. More precisely, 
there exist m,k~Y_, t3, t4G(tl ,  t2), t3<t4 ,  such that the number of un's 
in [bl ,  b2] at time t 3 is larger than at time t 4 and either (i) uk(t3) = 
b 1 = b/m(/4) , o r  (ii) Uk( t3 )=  b 2 = Urn(t4). In either case we obtain a contra- 
diction from Corollary 6. | 

Claim 4. The number of un's in J~ and J3 is a priori bounded. 

Proof. The proof is by contradiction. We consider one of the con- 
trary cases; specifically, we suppose that the number of un's in J3 is not 
a priori bounded. The first step is to show that the number of un's in J~ is 
a priori bounded. 

Since f ( x ,  x, x )>O for all x ~ J 3 ,  we may choose v > 0  such that 
f ( x , y , z ) > O  whenever Y~J3,  x<.y<~z, and z - x < v .  Choose N E N  suf- 
ficiently large so that whenever N points are chosen from J3, there are at 
least three points in some interval of length v. Choose to such that at least 
N +  2 terms of (un(to)) are in J3. By Claim 3, there are at least N terms of 
(u,(t)) in J3 for all t>~ to. 

For  t>~ to, we must have t in( t )>0 whenever un(t)~J 1 t_)J 2. To see 
this, note that if un(t) ~ J~ w J2, then there exists p > n such that Up(t) ~ J3 
and Up+ ~(t) - up_ l ( t )  < V. It follows that tip(t) > 0, and hence tin(t) > 0 by 
Corollary 5. Since f ( x ,  x, x ) <  0 for x G J1, it follows that the number of 
un's in J~ is a priori bounded. 

At this stage, we see that (i) the number of u,'s in J~ is a priori 
bounded, (ii) tin(t)> 0 whenever un(t)e J1 w J2 for t>~ to, and (iii) f is 
bounded. It follows that the rate at which the u,'s enter J~ w J2 is bounded, 
say by K -~ 1. (More precisely, the number of u,'s which enter J1 w J2 is 
less than K during one unit of time.) 

We may assume that v has been chosen so that un(t+ 1/K))Un+l( t  ) 
whenever un(t)~J3 and Un+~(t)--Un_l(t)<v. Choose no such that 
u,o(to)~J 3 and Uno+~(to)-U,o_l(to)<V. Note that there exists to< t~< 
to + 1/K such that u,0 l(tl) = U,o(to). By Corollary 6, Uno(tl) - Uno-2(t~) < v. 
Inductively, we obtain a sequence (tin) satisfying u,, o m(tm)= Uno (m 1)(tin 1), 

tm_l <tm<~tm_l  + l /K,  and Uno_m+l(tm)--blno_ m l ( / m ) < V .  
Hence, the rate at which the u,'s leave [ a + e ,  un0(to)] through the 

right-hand end point is at least K. However, we have shown above that the 
rate at which the un's enter J~ w J2 is bounded by K - 1 ,  and we have 
reached a contradiction. | 
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Claim5.  Let m6(t)=sup{~'t.(t): u~(t)>~a+3}. Given e > 0 ,  there 
exist 6 > 0 and KE ~ such that m6(t) <<. 6 implies that the number of terms 
of (u.(t)) in [a, 1 - e ]  is less than K. 

Proof. Suppose, on the contrary, that there exist e > 0 and a sequence 
(tk) such that the number of terms of (u~(tk)) in [e, 1 - -e ]  is larger than 
k and ~,(tk)< 1/k whenever u, ( tk )>a + 1/k. A routine argument using 
Claim 4 shows that there exists a sequence (x,,)~ such that x o >a ,  
x ,  l ~ x , ,  l i m x ~ = a ,  andf (x , ,_ l , x , , x~+l )<~O.  

Consider first the possibility that there exists no such that x ,0=a .  
Without loss of generality, assume xno_l =x ,0<x~0+, -  There exist 
sequences {sj} and {rj} such that u~j(sj) ~ xno, urj_l(Sj) ~ x n  0_1, and 
u~j+ l(Sj) ~ x,~0+ 1. Since 

f ( x .o -1 ,  X.o, x~o+ 1 ) = f ( a ,  a, x.o + 1) > 0 

it follows that tirj_ l(sj) ~ O, i%(sj) ~ e > 0, and /~j_ i(sj) ~ fl > 0. Conse- 
quently, there exists ~ > 0 and j > 0  such that i % ( s j - ~ ) > 0  and 
t i~ j_ l ( s j -6 )<0 ,  which contradicts Lemma 5. Hence, we conclude that 
x ~ > a  for all n e  {0, - 1 ,  - 2 , . . } .  

Let L = Dl f (a ,  a, a), M = D2f(a,  a, a), and R = D3f(a,  a, a). Then 
L + M + R > O  by (C3), and we may assume by Claim 1 that s  
Consider 

O >>- f (x , ,_  l, xn, x.+ ~) 

= R ( x n + l - x n ) - L ( x , , - x n  1 ) + ( L +  M +  R ) ( x n - a ) + o ( x n + l - a )  

Then 

R L + M + R  
--{(xn+~-x,,)+ L - -  (x - a ) + o ( x n + l - a ) < ~ x n - x . _  1 

Setting q =  ( L +  M + R ) / L ,  we see that 

( x . + , - x , , ) + q ( x n - a ) + o ( x . + l - a ) < ~ x , , - x , ,  

and hence 

x,~+ l - a  + o(x.+ l - a )  <<. 2 ( x n - a )  

It follows that 

(5) 

x , , - a ~  l ( x . + x - a )  
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for xn+l sufficiently close to a. Substituting this estimate in (5), we obtain 

Xn + l - -  Xn ~ Xn - -  Xn 1 

This leads to 

O ~ X n + l - - X n ~  lim ( X k - - X k  1 )=0  
k ~  - - ~  

for - n  sufficiently large; i.e., x ,  = a for - n  sufficiently large, which is a 
contradiction. This completes the proof. | 

Claim 6. For  every # 1 > 0  there exists #o, 0 < # o < # 1 ,  such that 
(i) fin < #o implies fin + 1 < #1, and (ii) [finl </to implies fin- 1 < #1- 

Proof. Assume the contrary of (i). Then there exist (tk), (nk), and 
e 0 > 0  such that fin~(tk)< 1/k  and ~nk+,(tk)>>.eo. Let b l = i n f D 3 f ( x , y ,  z )  
and b2 = i n f D 2 f ( x ,  y ,  z) ,  where the infima are taken over all x, y, z which 
satisfy 0 ~< x ~< y ~< z ~< 1. Since fi,k(tk) >~ 0 by Corollary 5, it follows with 
(C1) that 

3 

i~n k = ~ D i f ( U n k - 1 ,  Unk, Unk + 1)/ ' Ink + i - -2  ~ bl so - b2 /k  
i = 1  

Hence f in~( t~-s )<0  for sufficiently large k and sufficiently small s > 0 ,  
which contradicts Corollary 5. The proof of (ii) is similar. I 

C l a i m 7 .  Given N E ~  and #N>0, there exists #o,#1 ..... PN-1, 
0 < # 0 < # 1  < "'" <#N,  such that f in<#o implies f t ,+ j<  ~tj for j =  1, 2 ..... N. 

Claim 7 follows from Claim 6 (i) by induction. 

Claim 8. One may assume that for all sufficiently small e > 0, 

lim inf{fin(t): un(t) <<. a + ~ < un+ l(t)} > 0 
t--* ov 

(6) 

Proof. Let 6 > 0  and K e ~  be as in Claim 5 and let e e ( 0 , 6 )  be so 
small that inf{fi,(t): 1 - E  ~< un(t)<~ 1, t >>. 0} < 6. By Claim 4 the number of 
u,'s in [a + 5, 1 -  5] is a priori bounded, say by N, and by Claim 7 there 
exists #oe  (0, 6) such that fin < #0 implies ~ + j <  6 for j =  1, 2 ..... N. It 
follows from Claim 5 that fin < #o and un(t) <~ a + e < un + l ( t )  would imply 
that the number of un's in [ a -  5, a + s] is bounded above. If (6) does not 
hold, then Claim 3 can be applied to complete the proof of Lemma 9. 
Hence, we assume (6) holds. 

Claim 8 follows now from Claim 3. [ 
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Claim 9. One may assume that there do not exist sequences (nk) and 
(t~) such that l im(tk)= ~ ,  lim(u,,k(tk))~ l-t, a -  el, and lim(fi~(tk))= 0. 

Proof. Assume the contrary of the claim; i.e., assume that there exist 
sequences (nk) and (tk) such that l im(tk)= ~ ,  lim(u,k(tk) ) ~ [e, a - - t ] ,  and 
lim(fi,k(tk))=0. Recall that by Claim 8 and Corollary 5 we may assume 
that u,(t) s (0, a + e] implies fin(t) > 0 for all sufficiently large t. 

Let b=lim(un~(t~) ) and for each n~[~ let s , = { s u p s :  u_,(s)<b}. 
Then by Lemma7,  lim(fi , ( s , ) )=0 .  Using Claim 6 we conclude that 
l im(f i_n_j(s , ) )=0 for j =  - N ,  .... N, NE ~. 

If follows from Lemma 8 that the rate at which the u,,'s enter the inter- 
val [b, a + e] converges to zero. This is impossible because by Claim 8 the 
rate at which the un's exit the interval [b, a +  e] is bounded away from 
zero. I 

To conclude the proof of Lemma 9, let e > 0 be such that a -  ~ ~< u~_ 1 ~< 
u.<-~u.+l <~a+e implies ~?t= 1 Dif(u._ 1, u., un+l)> tg "~i=3 1Dif(a ,  a, a) 
> 0 and Claim 8 holds. Then according to Claim 6, Claim 8, and Claim 9, 
there exist # o > 0  and T > 0  such that for all t~> T, 

(i) u.(t)<a+e<~u.+l(t) implies ~n+l(t))po , and 

(ii) u. i(t)<-~a-e<un(t) implies fi._l(t)~>#0. 

Let p(t) = min{po, min{fi.(t): a - e < u~(t) < a + e} }. Note that #(t) > 0 for 
all t~> T. If t>~ T, a - e < u . ( t ) < a + e ,  and ftn(t)=#(t), then 

3 3 

/~.(t)= ~ D~f(u~_l,Un, U~+1)ft ~ 2+~>~ y' DJ(U._l ,U. ,U.+l)#( t )>O 
i = 1  i : 1  

Hence #(t)~#(T)>O for all t~> T. 
If the number of u.'s would not be a priori bounded, then by 

Claim 4 there would exist sequences (nk) and (tk) such that l im(tk)= ~ ,  
lim(un~(tk))=a, and lim(fi.~(t~))=0, in contradiction to /~(t)>0 for all 
t/> T. This completes the proof of Lemma 9. 

4. CONCLUSION 

In this section, we complete the proof of Theorem 1. For the solution 
u of (2), (4), one of the following cases must occur. 

(A) There exist sequences (nk) in Z and (t~) in ~ with lim(t~)= ~ ,  
0 < lim(u,k(t~) ) < 1, and lim(t~,k(tk) ) = 0. 

(B) There exist sequences (nk) in Z and (tk) in ~ with lim(tk)= ~ ,  
0 < lim(u,,k(tk) ) < 1, and lim(fi,k(tk) ) > 0. Let b = lim(u,,k(tk) ). 
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(C) There exist sequences (nk) in 7/ and (tk) in ~ with l im(tk)= ~ ,  
0 < lim(u,~(tk)) < 1, and lim(fink(tk)) < 0. Let c = lim(u,k(t~) ). 

In the case that (B) holds, it follows from Lemma 7 that there exist 
positive numbers 6 and T such that un(t)= b implies ~ ( t ) >  6, and further- 
more, for each n ~ ~ there exists a real number t n such that u_n(tn) = b. 

Similarly, case (C) implies that there exist positive numbers 6 and T 
such that un(t)=c implies ~ , , ( t ) < - 6 ,  and furthermore, for each n~ 
there exists a real number tn such that u,(t , )= c. 

Assume that (B) and (C) hold. Then either b < c or c < b. If b < c, then 
there exists T >  0 such that infinitely many un's enter [b, c] and none of 
them leaves during the time [ T, ~ ), which contradicts Lemma 9. If c < b, 
then there exists T >  0 such that infinitely many un's must exit It ,  b] and 
no u, enters during the time [ T, ~ ), which is also not possible. One infers " 
that (B) and (C) exclude each other. 

Suppose that (A) holds. Then there exist sequences (nk) in Z and 
(tk) in ~ such that l im(tk)= ~ ,  0<lim(u~k(t~))< 1, lim(fi,k(tk))=0, and 
(Unk+j(tk))~l converges for all j~77. Let xj=lim(u~k+j(tk)) for all j~7/.  
Then limj~ -~(XJ) = 0  and lim]~ ~(xj) = 1 by Lemma 9, f ( x  1, Xo, xl)  = 0, 
and f (xj_l ,  Xj, Xj+I)~>0 for all j e T / o r  f ( x j  1, Xj, Xj+I)~<0 for all j e Z ,  
because (B) and (C) exclude each other. Using condition (C1) one can 
show that f ( x j _ l ,  xj, x j + l ) > 0  or f ( x i - , ,  xj, x j + l ) < 0  for some j would 
imply (B) and (C). Hence f ( x j_  1, xj, xj+ 1) = 0 for all j e  7/; i.e., Theorem 1 
holds with c = 0. 

Suppose now that (A) does not hold but (B) holds. Then there exists 
a sequence (t,) in ~ such that u n(t , , )=b for all n e ~. Let X be the 
Banach space of all bounded sequences in ~ equipped with the 'supremum 
norm. Then (x"), given by x~=u n+j(t,), converges in X to some 
x= (xj)j~ Z by Corol lary6 and Lemma9.  In particular, it follows from 
Lemma 9 that limj~ ~(xj)= 0 and limj_~ ~(xj)= 1. Denote by u(x, t)= 
(u,(x, t)),~ Z, x = (x,) ,~ z, the solution of the initial value problem 

f i , = f ( u n _ l , u , , u , + l ) ,  u,(O)=x~, n e Z  

and let r , = t , + ~ - t , .  Since (A) does not hold, the sequence (r~) is 
bounded and thus contains a convergent subsequence (r,~), with 
lim(r~k)=z. Let S : X ~ X  be the shift operator given by (Sx) ,=x ,_~ .  
Then u(x%v,k)=Sx ~k+l and hence u(x , z )=Sx .  Note that r > 0 .  This 
proves Theorem 1 with c = 1/r. 

Finally, if (A) does not hold but (C) holds, then one proves similarly 
that Theorem 1 holds for some c < 0. 
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