
MELVIN FITTING Tableaus for Many-Valued 
Modal Logic* 

Abstract .  We continue a series of papers on a family of many-valued modal logics, a 
family whose Kripke semantics involves many-valued accessibility relations. Earlier papers 
in the series presented a motivation in terms of a multiple-expert semantics. They also 
proved completeness of sequent calculus formulations for the logics, formulations using a 
cut rule in an essential way. In this paper a novel cut-free tableau formulation is presented, 
and its completeness is proved. 

1. I n t r o d u c t i o n  

If we have a many-valued logic L whose t ruth  values const i tute a complete 
lattice, a natural  many-valued version of a Kripke model  can be easily con- 
structed.  The notion of a frame is as usual, but  now truth values at possible 
worlds are members  of L and not just  true and false. Proposit ional  connec- 
tives are dealt with in the  obvious way. And for the modal  connectives, one 
sets the t ru th  value of [:]X at a world to be the inf of the t ru th  values of X 

at all accessible worlds. This kind of generalization of Kripke semantics has 
been explored by several people [16, 19, 15, 9, 11, 10, 12]. The key thing to 
note  is that ,  al though a many-valued t ru th  value space has been introduced,  
the underlying notion of a Kripke frame remains classical. 

In [5] and especially [6] I introduced a somewhat more complicated gen- 
eralization in which the notion of frame itself was modified: the classical 
accessibility relation is replaced by a many-valued relation. For this to work 
it is not  enough that  the many-valued logic have the s tructure of a com- 
plete lat t ice - -  now we need a complete Heyting algebra. But the resulting 
family of modal  logics has a natural  interpretation: it can be thought  of as 
representing the opinions of a set of experts who are not necessarily indepen- 
dent of each other.  (In order to make this paper relatively self-contained, I 
sketch this motivat ion below.) Nonetheless, I feel this family of many-valued 
modal  logics is worth  exploring mathematically for its own sake, and not just  
because of a connection with multiple experts. For instance, just  as the clas- 
sical modal  logics have non-monotonic versions, there is a non-monotonic 
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version of this many-vAued modal logic as well [7]. Also, the details of the 
completeness argument  are of particular interest. I think we may  be able to 
bet ter  unders tand even the classical modal logics by looking at them in a 
broader context of 'similar' logics. 

As in [5, 6] I will confine things here to finite many-valued logics. In the 
papers just  cited I gave Gentzen calculi for the many-valued modal  logics, 
but  a cut rule played an essentiA role. In this paper I present a tableau 
formulation, though it is equivalent to a Gentzen-style system, of course. The 
key point is that  there is no cut rule. The gene ra  formulation is somewhat  
unusual for tableau t reatments  of many-valued logic, but  my  real interest  is 
in the form the modal rules take. I begin with a brief presentat ion of the 
background motivation in terms of multiple experts, then I tu rn  to a formal 
presentat ion of the tableau system. 

2. M a n y  E x p e r t s ,  M a n y  V a l u e s  

We give the informal background for the many-valued modal  logic we are 
considering, leading up to a formal presentation of the semantics in the next 
section. The material  here is developed more fully and rigorously in [6]. 

Suppose we have several experts and we are interested in the opinions of 
each, not just about how things are, but about how they might be. Tha t  is, 
we want to hear from each expert answers to questions like: "if the worm 
were thus-and-so, what do you think would be the case?" But this is not 
enough, since "thus-and-so" may be extremely unlikely. So we also want to 
hear  from each expert an answer to "do you think the world being thus-and- 
so is a serious possibility?" Now this can be represented rather  easily using 
Kripke models. We have a set of possible worlds; each expert has his or her 
own opinion on the t ru th  of atoms at each possible world; and each expert 
has his or her own accessibility relation. The details are straightforward. 

Now we complicate the picture. Suppose some experts dominate  others: 
anything a dominant  expert declares to be the case will also be asserted to 
be so by any dominated expert. To keep the discussion manageable,  say we 
have just two experts, el and e2, and el dominates e2. If el says A is true 
at world w, e2 will also say A is true at w. On the other hand, if el does not 
say A is true at w, e 2 is free to say anything: A is true at w, or A is false 
at w. Thus there is a lack of symmetry  built in: assertion ( t ru th)  outranks 
non-assertion (falsehood). What  was just  said about t ru th  of formulas at 
worlds applies as well to accessibility relations: if el says world v is accessible 
from world w, e2 will Aso say this. 

The picture just described has an intuitionistic flavor to it. For example, 
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suppose e2 believes A is true at world w but  B is not. Since expert  ex 
dominates e2, el can not believe that  A D B is true at w because otherwise 
e2 would also have to believe it, but  e2 does not. Thus the calculation 
of t ru th  values is no longer 'local,' an expert will accept A D B provided 
that  expert ,  and every expert that one dominates, accepts B provided he 
or she accepts A. This is essentially the t reatment  of implication in Kripke 
intuitionistic models. 

Non-locality carries over to modal  notions as well. For el to accept OA 
at world w it is not enough for el to accept A at all worlds el believes are 
alternatives to w; we also need that  the dominated expert,  e2, should accept 
A at all the worlds e2 believes are alternatives to w. The conditions on 
are s impler ,  but  we won' t  go into the details here - -  things are similar to 
the  characterization of V and 3 in Kripke intuitionistic models, including the 
impossibil i ty of inter-defining them in general. 

A formal version of the semantics sketched above can be found in [6]. 
In effect, the multip!e-expert modal  model has features that  are modal  and 
features that  are intuitionistic. It is, in fact, a version of the semantics of 
[17 ,13 ,1] .  

A natura l  way of simplifying the structure outlined above is to move to 
a many-valued picture, treating sets of experts as t ruth values. Instead of 
saying bo th  el and e2 accept A at world w, we could say the t ruth  value of 
A at w is {el,  e2}. Of course, not every set of experts gives us a t ruth value; 
since el dominates  e2, the set {el} can not be the value of any formula, since 
no formula can be true for el alone. Wha t  we want as t ru th  values are sets of 
experts closed under dominance. All we require of the dominance relation is 
tha t  it be reflexive and transitive. It is a s tandard result that  the collection 
of sets closed under such a relation is a Heyting algebra, [14]. (We give a 
definition in the next section.) Consequently, what we want to characterize 
is the notion of a many-valued modal  logic where the space of t ru th  values 

is a Heyting algebra. 

We can take the t ru th  conditions worked out for multiple-expert modal  
models and simply translate them into conditions appropriate for a many- 
valued modal  model.  Some of them are straightforward. For instance, if S1 
is the set of experts  who think A is true at w, and $2 is the set of experts  
who think B is t rue at w, clearly $1 ~ S~ will be the set of experts  who 
think A A B is t rue at w. Thus A in the formal language corresponds to g/ 
in the family of sets of experts,  and this in fact is the meet operation of the 

corresponding Heyting algebra. 

All the multiple-expert  t ru th  conditions convert into quite natural  many- 
valued conditions. This gives rise to a notion of many-valued modal model; 
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details can be found in [6]. We do not  repeat  t hem here. In this paper  we 
s tar t  the  formal work at this point .  

3. Syntax and Semantics 

In this section we give the formal syntax and semantics for our  many-va lued  
moda l  logic. First ,  however, we sketch the basic ideas of Heyting algebras, 
since these will be needed in what  follows. The  pr imary source for Heyting 
algebras is [14]. 

Suppose we have a lattice (we denote meet  and join by A and V). The  
pseudo-complement of a relative to b is the greatest  m e m b e r  of the  lattice, 
c, such tha t  a A c _< b. A pseudo-complement  for two members  need not  
exist in general. If the pseudo-complement  of a relative to b does exist, it 
is denoted a =~ b. Pseudo-complements  meet  the condition (and in fact are 
de termined by it): 

x < ( a ~ b )  i f f ( x A a ) < _ b .  

DEFINITION 3.1. A Heyting algebra is a lattice 7- with a b o t t o m  element 
(which we denote false), in which all relative pseudo-complements  exist. 

There  are several easy facts concerning pseudo-complements  which we 
will need. Since a =~ b _< a ~ b, it follows from the equivalence above, 
taking x to be a =~ b, tha t  a A (a =~ b) < b. Also, since x A false = false < 
false, it follows tha t  x < (false ~ false) for any x. Consequent ly if we set 
true = (false =~ false) we have a top element for the Heyting algebra. Since 
t rueA a = a, we have true <_ (a =~ b) iff a _< b. Finally, a _< (b ~ c) 
iff b _ (a ~ c), since the first is equivalent to (a A b) _< c, the  second is 
equivalent to (b A a) _< c, and the meet  operat ion is commuta t ive .  

It is shown in [14] tha t  Heyting algebras are distributive. On the other  
hand,  a finite distributive lattice must  be a Heyting algebra. We have been 
tacitly assuming we had a finite number  of experts - -  consequently we have 
finite Heyting algebras to deal with, and this t ranslates  into the  probably 
more  familiar not ion of a finite, distributive lattice. 

Notation Convention For the rest of this paper ,  T = (7", _<) is a finite, 
distr ibutive lattice; equivalently, a finite Heyting algebra. We write false for 
the smallest element of it; and true for the largest element.  

Now we begin the business of introducing a many-valued modal  logic, 
L (T) ,  based on the Heyting algebra 7". We begin with syntax.  Classical 
logic is in tended to be two-valued, and counterpar ts  of the two t ru th  values 
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are available in the language, AA~A for false and AV-~A for true. When more 
than  two t ru th  values are allowed it may  not be possible to find counterparts  
of  all the  t ru th  values in the language. We need them, so we build them in. 
From now on we assume the language of L(T) has propositional constants,  
corresponding to the members  of T.  To keep the notat ion simple, we will 
just  assume the members  of T themselves are constant symbols of L(T) .  

DEFINITION 3.2. The language of L(T) is specified as follows. 

1. Atomic formulas are the members  of 7", called propositional constants, 
and a countable list of propositional variables, A], A2, ....  

2. Formulas are built up from atomic formulas in the usual way, allowing 
the connectives A, V, D, [], and 0- 

Note that  there is no negation in the language of L(T). A standard way of 
introducing one in such a context is to set ~X  = (X D false). If 7" happens 
to be not  just  a Heyting algebra but a Boolean algebra, this yields the 
expected negation. We find it simpler to omit direct t rea tment  of negation 
here. W'e also use A and V to denote meet and join in 7"; there should be no 
confusion between their algebraic roles and their roles syntactically in L(T). 

Now we introduce the intended semantics for L(T) ,  beginning with the 
non-modal  part .  

DEFINITION 3.3. A valuation is a mapping v from propositional variables 
to T.  

We will refer to members  of 7 ~ as truth values, or T-truth values if it is 
necessary to be more specific. 

DEFINITION 3.4. Valuations are extended to all non-modal formulas as fol- 
lows. Let v be a valuation. 

1. If t is a propositional constant,  v(t) = t. 

2. v ( A A B ) = v ( A ) A v ( B ) .  

3. v(A V B) = v(A) V v(B). 

4.. v(A D B) = v(A) =~ v(S). 

Now we extend these notions to the full language, introducing a suitably 
generalized version of a Kripke model. This is taken from [5, 6]. 
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DEFINITION 3.5. A T-modal model is a s t ructure  (g,  TC, w} where ~ is a 
non-empty  set (of possible worlds), 7¢ is a mapping  from U × ~ to 7", and w 
maps  worlds to valuations. 

The  map  7~ should be thought  of as a many-valued accessibility relation. If 
7" is the  Boolean algebra {false, true}, 7¢ corresponds to a classical relation 
in the  obvious way. To keep nota t ion  simple, we will write w ( r ,  x ) i n s t e a d  
of w(F) (X) .  Now we extend w to arbitrary formulas. We use V and A for 
arbi t rary  V and A; meaningfulness of the operat ions is immedia te ,  since T 
is assumed finite. 

DEFINITION 3.6. Let (~, 7¢, w) be a T -moda l  model.  The  map  w is extended 
as follows. For any F E ~: 

1. The  action of w, at each world, with respect to A, V, and D is as in 
Definition 3.4. 

2. w ( r , [ ] d )  = h { n ( r , A )  ~ w ( A , A )  I A e G}. 

3. w(r, 0A) = V{n(r,  A) A w(A, A) I e 

Some examples of the calculation of t ru th  values for non-a tomic  formulas 
are given in [6]. We do not repeat  them here. 

DEFINITION 3.7. We say a formula X is validin the T -mo d a l  model  (G, TO, w} 
provided,  for each r E G, w(F, X)  = true. 

We re turn  to the non-modal  setting for a momen t ,  for some explanation.  
Generally, when working with many-valued logics one has some family of 
designated t r u th  values, say { d l , . . . ,  dk}, in mind,  and a formula  is consid- 
ered valid if it always takes on some designated t ru th  value. Suppose we do 
this, but  we also assume the set of designated t ru th  values is closed under  
meet  (a common  assumption) .  Set d = (dl A . . .  A dk). Then  saying X 
has a designated t ru th  value under  every valuation really amoun t s  to  saying 
tha t ,  if v is any valuation, d <_ v(X) .  Since we have proposi t ional  cons tants  
in our language,  this is equivalent to saying tha t  v(d) <_ v (X) ,  and this in 
tu rn  is equivalent to true < (v(d) ~ v(X)) ,  which finally is equivalent to 
v( d D X )  = true. 

W h a t  all this amounts  to is simple. The  notion of validity as we gave it 
above is general enough to capture the 'designated vMue' version of valid- 
ity. Of course we are using the Heyting algebra s t ruc ture  to carry out  this 
reduct ion - -  for many-valued logics with less s t ructure  such a thing is not  
generally possible. It also suggests a special role for implications involving 
proposi t ional  constants ,  and that  indeed is the case, as will be seen shortly. 
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4 .  N o n - M o d a l  T a b l e a u  R u l e s  

In presenting the tableau rules for the logic L(T)  we postpone tile modal  
rules for now, and concentrate  on the underlying non-modal many-valued 
logic. The rules we give are ra ther  straightforward, and are designed to serve 
as a f ramework to which we can add modal rules. We assume the reader is 
familiar with tableau systems for classical logic - -  if not, [18, 4] will serve as 
references. We use signed formulas, following the main development of [18]. 

To begin with, all formulas appearing in our tableaus will be implications 
of a special kind: a D A or A D a, where a is a propositional constant.  We 
call these bounding implications. Informally, think of a D A as asserting 
that ,  under  some many-valued valuation, the value of A is at least a, that  
is, > a; likewise A D a informally asserts that  the value of A is < a. The 
tableau completeness proof will show to what extent  the rules capture this 
intention. In addition we use signs, T and F,  familiar from classical logic. If 
X is a formula,  T X and F X are signed formulas. Think of T X as asserting 
X ,  and F X as denying X.  

Tableau systems are refutat ion systems. To establish something, we be- 
gin by denying it, and derive some sort of syntactical contradiction. In our 
case, if we want to show X is valid under all many-valued interpretat ions (in 
T) ,  we star t  a tableau with F(true D X),  thus informally asserting there 
could be an in terpreta t ion in which X is not (at least) true. Then a tree is 
constructed,  using the Branch Extension Rules given below. Think of the 
tree as the disjunction of its branches, and a branch as the conjunction of the 
signed formulas on it. A branch is closed if it contains an 'obvious' contra- 
diction, again specified below. If each branch is dosed, the tableau is closed. 
A closed tableau beginning with F (true D X)  constitutes a tableau proof 
of X .  Somewhat  more generally, a tableau proof of Z is a closed tableau 
star t ing with F Z, and we are specially interested in formulas Z of the form 
true D X .  

Notice tha t  we are allowing bounding implications of both forms, a D A 
and A D a, in tableaus, both lower and upper bounds. Now we have the 
formal presentat ion of the rules. We begin with those for closing branches 
- -  terminat ion rules, so to speak. 

Branch Closure Conditions A tableau branch is closed if it contains: 

T (a D b) where a ~ b 
F ( a D b )  w h e r e a < b  
and a ~ false, b ~ true 
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F (false D X)  
F (X D true) 

T(b D X)  I 
F ( a D X )  f w h e r e a - ~ b  

REMARK 4.1. The rule covering F(a D b) has the restrictions it does simply 
because these cases are covered by the two rules immediately following it. 

There is no negation symbol in our language. Even so, there are analogs 
of negation rules. Classically, X is equivalent to true D X and -~X is equiv- 
alent to X D false, so the usual classical rule, to infer T X from F - ~ X ,  is 
equivalent to a rule saying: infer T(true D X)  from F ( X  D false). What  
we need are more rules like this, suitable for 7", allowing us to switch signs 
by reversing implications. There are four such rules. 

R e v e r s a l  R u l e s  In these rules, X is restricted to be any formula other than 
a proposit ional constant.  

F >  

T >  

F_< 

T <  

F ( a D X )  
T ( X  Dt )I...IT(X D 

T ( a D X )  
r ( x  D 

F ( X  D a) 
D X) ] ... I D X)  

T ( X D a) 
F (ui ~ x )  

Where t l , . . . , t n  are all maxi- 
mal members  of 7" not above 

a, and a ¢ false. 

Where ti is any maximal mem- 
ber of 7" not above a, and a 

false. 
Where ul , . . . ,uk are all mini- 
mal members  of 7" not below 
a, and a ~ true. 

Where ui is any minimal mem- 
ber of 7" not below a, and a 
true. 

The intuition behind these rules is straightforward; consider F > as 
representative.  Suppose we have F ( a  D X )  on a tableau branch and so, 
under some valuation v, a ~ v(X). Let S be {z • 7" I a ~ z}; then 
v(X) • S, so S is not empty. Since 7" is finite, v(X) is below some maximal 
member  of S. If we designate the maximal members  of S by t l , . . . , tn we 
have v(X) ~_ tl or . . . o r  v(X) <_ t~, and so the tableau branches to the 
possible continuations T ( X  D tl), . . . ,  T ( X  D t~). 

We just  used an argument involving maximal members  of 7- meeting a 
certain condition. We will use such arguments frequently, and analogous 
ones concerning minimal ones. So once and for all we state the general 
principle involved. As noted above, it follows from the finiteness of 7". 
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General Principle If x ~ y then: (1) there is some w < x such that  w is 
a minimM member  of 7" not below y; and (2) there is some z > y such that  
z is a maximM member  of 7" not above x. 

Rule F _> does not  make sense if a = false since there are no members  
of 7` tha t  are not  above false. But this case is covered by the Branch Clo- 
sure Condit ion allowing closure of a branch containing F (false D X).  Rule 
T _> has a similar restriction bu t  for a different reason. A signed formula 
of the form T (false D X)  gives no useful information, since everything in 
7" is above false and so cannot be expected to enter meaningfully into a 
tab leau  construction.  The formM justification of the restriction comes when 
we show the system is complete in the presence of the restriction. Similar 
comments  apply to Rules F < and true. Finally we have rules for the various 
proposit ional  connectives, in which there are similar restrictions, for similar 
reasons. 

Conjunction Rules 

TA T ( t D ( A A B ) )  
T ( t D A )  
T ( t D B )  

FA F ( t D ( A A B ) )  
r(t  A) l r(t  B) 

Disjunction Rules 

Tv T ((A v B) D t) 
T ( A D t )  
T ( B D t )  

r v  F((A v B) t) 
F ( A  D t) [ F ( B  D t) 

Where t • false. 

Where t ~ false. 

Where t ~ true. 

Where t ~ true. 

Finally we have the rules for implication. These are somewhat  more 
complicated, bu t  the motivat ing idea is clear. Suppose we have F ( t D ( A D 
B) )  on a tableau branch,  so under some valuation v, t ~ iv(A) =~ viB)). 
Since 7` is a Heyting algebra this is equivalent to ( t A viA)) ~ viB ), Let 
t~ = t A v i A  ) . It follows that:  tl _< viA),  ti :~ v iB) ;  and ti <_ t. Thus  
we should be able to extend the tableau branch by adding T (ti D A) and 
F (ti D B),  for some ti <_ t. Of course we can rule out the case of t = false, 
since then a Branch Closure Condition applies, and similarly we do not  need 

to consider the possibility that  t~ = false. This should be enough to mot ivate  

the following rules. 
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Implication Rules 

F D  

T D  

F ( t D ( A D B ) )  
T( t ,  DA)  t .  ] T ( t n D A )  
F ( t l  D B) F(t  n D B) 

T ( t D ( A D B ) )  
F(ti D A) l T(ti D B) 

Where t ~ false and t 1, . . . , tn 
are all the members of 7- below 
t except false. 

Where t ¢ false and ti is any 
member of T below t except 
false. 

This completes the system of non-modal tableau rules. We conclude the 
section with a sketch of a proof of (A D (B D A)), or rather, of true D (A D 
(B D A)). The tableau begins with F true D (A D (B D A)). Since every 
member of T is below true, an application of F D yields many branches, 
each containing signed formulas of the form: 

T ( u D A )  
F ( u D ( B D A ) )  

where u ~ false. We continue with a typical such branch in Figure 1 In it 
we have used Rule F D, with t l , . . . ,  tk being all the members of 7" below u, 
except for false. Since ti < u for each i, each branch closes using one of the 
Branch Closure Conditions. 

T ( u D A )  
F(u D (B D A)) 

T(tl  D B) T(tk D B) 
F(tl  D A) F(tk D A) 

Figure 1: A Proof of (A D (B D A)) 

5. A Three-Valued Example 

A concrete example can often be an aid to understanding. The simplest 
example after the classical two-valued case is three-valued; we present this 
system here, and continue with it once we get to the modal rules. We take 
for truth values 7"(3) = {false, half, true}, with the ordering false < half < 
true. We observed in Section 2. that the kind of many-valued logics we were 
considering can be identified with a logic of multiple experts. This applies 
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to 7"(3) in the following way. Suppose there are two experts, A and B, 
with A dominating B. Then there are three sets that  can serve as t ru th  
values: ~, which corresponds to false; {B}, which corresponds to half', and 
{A, B}, which corresponds to true. If we had used the same set of experts 
but  assumed neither dominated the other, a four-valued logic would have 
arisen - -  we leave it to the reader to formulate rules for it. 

The  Branch Closure Conditions from Section 4. specialize to the follow- 
ing. A branch of a T(3)  tableau is closed if it contains 

T (hal/D false) 
T (true D half) 
T (true D false) 
F (half D half) 
F (false D X)  
F (X D true) 

T (half D X ) and F (half D X)  
T(true D X)  and F(true D X) 
T(true D X)  and F(half D X)  

There are eight ReversM Rules. 

F half D X T X D false F true D X T X D half 
T X D false F half D X T X D half F true D X 

T half D X F X D false T true D X F X D half 
F X D false T half D X F X D half T true D X 

The Conjunction and Disjunction Rules are straightforward, and we omit 
them here. Finally, there are five Implication Rules for T(3) .  

F(half  D (A D B)) 
T (half D A) 
r (half D B) 

T(half D (A D B)) 
F(half D A) l T(half D B) 

F(true D (A D B)) 
T ( half D A ) l T (true D A) 
F ( half D B) I F ( true D B) 
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T(true D (A D B)) 
r (true D A ) 1 T (true D B) 

T (true D (A D B)) 
F(half D A) l T(half D B) 

Figure 2 shows an example of a tableau proof for T(3) .  We leave it to 
the reader to provide justifications for the various steps. 

FhalfD {[(halfD A) A (true D (A D B))] D B)  

Thalf  D [(half D A) A (true D (A D B))] 

F half D B 
T halfD (halfD A) 
T half D (true D (A D B)) 

F half D half T half D A 

F half D true T half D (A D B) 

F half D A T half D B 

Figure 2: A Non-Modal Proof in 7"(3) 

6. Non-Modal  Soundness and Completeness  

All entries in tableaus are signed bounding implications. We want  to show 
that  there is a closed tableau for F (a D A) if and only if every valuation v 
assigns A a value that  is > a. (And similarly for A D a, and for a sign of 
T instead of F.)  We begin with the 'only if,' or soundness half. All tableau 
soundness  proofs are essentially the same. One defines what it means for a 
tableau to be satisfiable, proves the rules preserve satisfiability, but  a dosed 
tableau is not satisfiable. There are no surprises here. 

DEFINITION 6.1. A non-modal tableau is satisfiable if at least one branch 
is satisfiable. A branch is satisfiable if the set of signed formulas on it is 
satisfiable. A set of signed formulas is satisfiable if some valuation v satisfies 
each member.  A signed formula is satisfiable under  the valuation v if it is 
T ( X  D Y) and v(X) <_ v(Y); or if it is F ( X  D Y) and v(X) ~ v(Y). 
(Recall that  for propositional constants, v(c) = c.) 
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Each of the tableau rules from Section 4. preserves satisfiability. We 
leave the verification of this to you (there was a sketch of the argument  for 
the rule F D immediately before that  rule was given in Section 4.). 

It is also easy to verify that  a closed tableau is not satisfiable. Now we 
proceed in the cus tomary way. If we have a closed tableau for F (a D A) it 
must  be the case that  every valuation assigns A a value that  is > a. For if not, 
F (a D A) would be a satisfiable formula; the tableau construction would 
thus begin with a satisfiable tableau; every subsequent tableau would be 
satisfiable; and tableau construction would terminate with a closed tableau 
tha t  was satisfiable. 

Now we turn  to the completeness half. We begin with some terminology 

and notation.  

DEFINITION 6.2. Let S be a set of signed bounding implications. We say S 
is consistent if no tableau beginning with a finite subset of S closes. Also 
S is maximally consistent if it is consistent and has no proper consistent 
extensions. 

Next,  for each maximal  consistent set we define two mappings to 7". If 
a cut rule were part  of the tableau formulation, these two mappings would 
easily be seen to coincide, and each would be a valuation. As it is, we do 
not know this, and must  work with somewhat weaker properties. 

DEFINITION 6.3. Let S be a maximally consistent set of bounding implica- 
tions. For each formula X set: 

boundS(X) = A { a I T ( X  Da) E S} 
bounds(X) = V{aIT(a  D X) E S] 

Essentially we will show that  for a maximal consistent set S, any valu- 
ation between bounds and bound s satisfies S. First we must  establish that  
the very notion of 'between'  is meaningful. 

LEMMA 6.4. If S is maximally consistent, then for every formula X, 
bounds(X) < boundS(X). 

PROOF. It is enough to show that  for every a E {a I T ( a  D X)  E S} 
and for every b E { b i T ( X  D b) E S}, a _< b. So, we assume T ( a  D X )  and 
T (X D b) are both  in S, a ~ b, and we derive a contradiction. 

Since a :~ b, and T is finite, there must  be a minimal ui _< a such that  
u~ :~ b. S i n c e T ( X  D b) E S, b y R e v e r s a l R u l e  T_<, s u { r ( u ~  D X ) ) i s  
consistent. Then since S is maximally consistent, F (ui D X)  E S. But then 
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a tableau starting with members of S can close immediately by one of the 
Branch Closure Conditions, since T (a D X)  and F (ui D X )  are in S and 
ui <_ a, so S is inconsistent, a contradiction. • 

Next, some basic properties of bounds and bound s. These play a crucial 
role in the completeness proof both for the non-modal and the modal  cases. 

PROPOSITION 6.5. Let S be maximal consistent, and let X be any formula. 

1. I f T ( c  D X)  E S then c <_ bounds(X). 

2. I f T ( X  D c) E S then boundS(X) <_ c. 

3. I f  F (c D X )  E S then c ~ boundS(X). 

4. I f  F (X  D e) E S then bounds(X) ~ c. 

PROOF. Items 1 and 2 are immediate from the definitions of bounds and 
bound s. For item 3, suppose F (c D X)  E S but c <_ boundS(X); we derive 
a contradiction. Using Reversal Rule F >_, for some ti ~ c, S U {T (X D ti)} 
is consistent, so by maximality of S, T ( X  D ti) E S. Then by item 2, 
boundS(X) < ti. But then, c _< ti, and this is a contradiction. I tem 4 has a 
similar proof. • 

Note that  both the Lemma and the Proposition above use only the Rever- 
sal Rules in their proofs. Consequently both hold for the systems with and 
without modal rules. Now the main item we need to establish completeness 
of the non-modal system. 

PROPOSITION 6.6. Let S be a maximally consistent set of signed bounding 
implications, and let v be any valuation such that, for propositional variables 
P, 

bounds(P) <_ v(P) <_ boundS(P). 

Then for any non-modal formula X ,  

bounds(X) < v(X) < boundS(X). 

PROOF. The argument is by induction on the degree of X.  The atomic 
case is by definition. Now suppose X = (A A B) and the result is known for 
each of A and B; we show it for X.  (The other two cases are similar and 
are omitted.) 

Let a be an arbitrary member of T and suppose T ( a  D (A A B)) E S. 
Using Conjunction Rule TA (and maximality of S) it follows that  T (a D A) 
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and T (a D B) are both in S. By Proposition 6.5., a <_ bounds(A) and 
a < bounds(B). Then it follows from the induction hypothesis that  a < v(A) 
and a < v(B). But then a <<_ v(A) A v(B) = v(A A B). Since a was arbitrary, 
this establishes that  bounds(A A B) < v(A A B). 

For the other half of the conjunction case, to show v(AAB) <_ boundS(AA 
B) it is enough to show that  whenever T ((A A B) D a) E S it follows that  
v(A A B) < a. We do this by contradiction: suppose there is an a E 7" such 
that  T ( ( A  A B) D a) E S but v(A A B) ~£ a. From the set of members of T 
that  are below v(AAB) but are not below a choose a minimal member - -  call 
it ui. Thus ui < v(AAB),  and is minimal such that  ui ~ a. Now by Reversal 
Rule T < (and maximality of,Z), F(ui D (AAB)) E S. Then by Conjunction 
Rule FA, either F(ui  D A) E S or F(ui D B) E S. By Proposition 6.5., 
u~ ~ boundS(A) or ui ~ boundS(B). It follows from the induction hypothesis 
that  ui ~ v(A) or ui ~ v(B), and hence ui ~ v(d) A v(B) = v(d A B), and 
this is our contradiction. [] 

TIt EO R, EM 6.7. Any consistent set of signed bounding formulas is satisfiable, 
and hence the non-modal tableau rules are complete. 

PROOF. Suppose So is consistent. In the usual way it can be extended 
to a maximal  consistent set S by systematically adding each signed bounding 
implication that  preserves consistency. Pick an arbitrary valuation v such 
that  on propositional variables v is between bounds and bound s. Now, 
if F(c D X)  E So C_ S, by Proposition 6.5., c ~ boundS(X). But by 
Proposition 6.6., v(X) << boundS(X), so c ~ v(X). This means v satisfies 
F (c D X) .  The argument is similar for the other cases of signed bounding 
implications. Now completeness follows in the usual way. [] 

7. M o d a l  R u l e s  

There are several varieties of tableau rules for modal logics based on classical, 
two-valued logic. Here we are interested in the so-called destructive style, 
see [3], and also [2, 8]. We begin this section with a brief sketch of the rules 
for two-valued K,  then we present the many-valued analog. 

Let S be a set of signed formulas of modal logic in the conventionM sense, 
taking both  [] and 0 as primitive. We define a set S # as follows. 

S # = { T X I T G X  E S } U { F X I F O X  E S} 

The idea is, in a conventional Kripke model, if S is the set of formulas true 
at a world, and we move from that world to a generic alternative world, 
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the members of S# will be true there. Now the classical K-rules are easily 
given. They are destructive: instead of adding formulas to branches, whole 
branches are replaced with new ones. The branch replacement rules are 
these. 

Classical K Branch Replacement  Rules 

S, T OX S, F n X  

S#,  T X S#,  F S 

These rules are applied as follows: if S U {T ~)X} is the set of formulas on 
a tableau branch, that branch can be replaced with a new branch whose 
formula set is S # tA {T X) .  Similarly for the other rule. We assume the 
reader has some familiarity with this style of tableau, and do not elaborate 
further here. 

Now, to present modal rules in this style for a many-valued logic we first 
need an analog of the # operation. Classically # corresponds to a move 
from a world to an alternative one. But the classical accessibility relation is 
two-valued, while now we have a many-valued one. Consequently we need a 
# operation for each of the truth-values (other than false). 

DEFINITION 7.1. Let S be a set of signed bounding implications, and c be 
a propositional constant other than false. 

S#(c) {T ((a A c) D X )  I T (a  D C]X) e S and a A e ¢ false) 
0 
{T (X  D (c ~ a)) I T ( O X  D a) E S and c ~ a ¢ true} 

Caution: the expressions (aAc) and (c ~ a) in the two parts of the definition 
above are not syntactic. They are intended to be the propositional constants 
resulting from evaluating these expressions in T. Similar considerations 
apply to the tableau rules below. In the first clause above, if we allowed 
a A c = false the formula added to S # would be T false D X which is 
harmless to allow, but of no use in closing a tableau branch. We rule it 
out in the interests of efficiency. Similarly for the restriction in the second 
clause. Now, we have the following branch replacement rules. The idea is, if 
the set of formulas above the double line is the set on some tableau branch, 
that branch may be replaced by the branches below the double line. 
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Many-Valued Modal Branch Replacement Rules 

FD 

FO 

S 
F (a D [:IX) 

""1 F((aAtl) DX) F((aAtn) DX) 

S 
F (0X D a) 

S#( t l )  1""]  S#(t~) 

R e s t r i c t i o n s  In the Modal Rule Fc3, a A ti ~ false. In the F0  Rule, 
t~ ~ a ~ true, or equivalently, ti ~ a. 

The reasons for the restrictions are similar to those above. In the FO rule, 
branch closure is immediate if a branch contains F ((aAti) D X) and aAt~ = 
false, so this case can be omitted. Similarly for the other rule. Note that 
if ti = false both restrictions arise, since a A false = false, and false <_ a. 
Consequently we never consider ti = false, which is compatible with the 
omission of the false case in defining the # operation. 

An intuitive justification for the first rule, FO, is as follows (the other 
rule is treated similarly). Suppose S U {F (a D ~X)}  is a set of signed 
bounding implications, and its members are satisfied at the world F of a 
many-valued modal model (~,T4, w) - -  so in particular, a ~ w(F, OX). 
Now, w(P, taX) = h{n(r ,  A) X) l e so for some world A0, 
a ~ T4(F, A0) =:~ w(A0,X).  Say T4(F, Ao) = ti; then a ~ (ti ~ w(Ao, X)) ,  
so aAti ~ w(A0, X).  This means the signed formula F (aAti) D X is satisfied 
at /No. Continuing the rule justification, assume T (0Y D b) is one of the 
members of S, and so is satisfied at F. Then w(F, 0Y) <_ b, so V { n ( r ,  A) A 
w(/N, Y) t /N E ~)  _< b, and it follows that n ( r ,  a0) A ~(/No, r )  ___ b, or 
ti A w(Ao, Y) < b. It follows from this that w(A0, Y) < (t~ ~ b), and so 
T (Y D (ti ~ b)) is satisfied at A0. A similar argument applies to each of 
the members of S. 

What  we have shown is that if the members of S U {F (a D EIX)} are 
satisfied at a world of a many-valued model, then for some t~ E T,  the 
members of S#(t~)U {F( (a  A ti) D X)} are also satisfied at some world. In 
other words, if we have a satisfiable tableau, and we apply one of the modal 
rules, we get a satisfiable tableau back. 
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8. The Three-Valued Example Continued 

In Section 5. we gave non-modal rules for a three-vMued logic, 7-(3). We 
continue that example, give modal rules, and present a tableau example. We 
begin with the # operation, which has two cases since false is omitted. 

s # ( hatl) 

S#( true) 

{T(half D X) l T(half D OX) E S}U 
{T(half D X) l T(true D DX) e S}U 
{T (X D false) [ T (OX D false) E S} 
{T(haIf D X)" I T(half D OX) E S}U 
{T(true D X) l T(true D OX) e S}U 
{T (X D false) I T (OX D false) E S}U 
{T (X Z hall) IT (OX Z hall) • S} 

There are four Modal Branch Replacement Rules for 7"(3), as follows. 

S 
F(half D OX) 

S#( h*all) S#( true) 
F ( half D X) F ( half D X) 

S 
F (true D ~ x )  

S#(hal]) [ S#(true) 
F(half D X) r( true D X) 

S 
F (OX D false) 

S#( hall) ............. S~{ tr.e) 
F (X D false) F (X D false) 

S 
r (OX D hall) 

s#(true) 
r ( x D hall) 

Finally we present a tableau proof for 7"(3) that uses the modal rules. It 
is a proof of: 

half D {[(half D (}X) A (true D {:]Y)] D O(X A Y)}. 
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The proof is divided among several Figures for convenience. 
Figure 3 

81 

It begins in 

T halfD {[(halfD OX) A (true D bY)] D 0(X A Y)} 

T half D [(half D OX) h (true D []Y)] 
F half D O(X A Y) 
T half D (half D <)X) 
T half D (true D OY) 

F half D half T half D OX 

F half D true T half D n y  
T O(X A Y) D false 
FOX D false 

Figure 3: A Modal Tableau, Part  One 

All of the steps in Figure 3 are propositional, and we omit most expla- 
nations. Note that  the left two branches are closed because of their final 
nodes. Also the last two entries on the rightmost branch result from Re- 
versal Rule applications. Now a modal rule applies to the signed formula 
FOX D false on the rightmost branch, taking for S the remaining formulas 
on that  branch. This replaces the rightmost branch by the pair shown in 
Figure 4 

In Figure 4 the left main branch begins with S#(hal]) and the right 
main branch with S#(true), which happen to be the same in this case - -  
this gives the first two signed formulas on these branches. In each case the 
third formula is F X D false, which comes from F 0 X  D false in Figure 3 
On the left branch (4) is from (2), and (5)is  from (3), by Reversal Rules, 
and (6) and (7) are from (4) by FA. The right branch is similar. Finally, 
each of the four branches is dosed. 

9. M o d a l  C o m p l e t e n e s s  

We omit proof of the soundness of the modal tableau rules - -  this is straight- 
forward and may be left to the reader. We proceed directly to their corn- 
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(1) T half D Y 
(2) T ( X  A Y) D false 
(3) F X D false 
(4) F half D (X A Y)  
(.5) T half D X 

/ \  
(6) F half D X (7) Fhalf D Y 

(8) T half D Y 
(9) T ( X  A Y) D false 
(10) F X D false 
(1]) Fhal/D (X A Y) 
(12) T half D X 

/ \  
(13) F haft D X (14) Fhalf D Y 

Figure 4: A Modal Tableau, Part  Two 

pleteness. As usual, the proof amounts to showing that a consistent tableau 
is satisfiable. Consistency was characterized in Definition 6.2.; we continue 
to use that definition (with the understanding that modal rules are allowed 
now). Similarly for maximal consistency. Likewise satisfiability was charac- 
terized in Definition 6.1. We continue to use essentially that definition, with 
obvious modifications to relativize things to possible worlds. Thus, a set S is 
satisfiable if there is a T-modal model (G, 7¢, w} and a world F E ~ such that 
each member of S is satisfied at F. And so on. With all this understood, we 
need the following extension of Theorem 6.7. 

THEOREM 9.1. Allowing the modal tableau rules, and using T-modal mod- 
els, any consistent set of signed bounding formulas is satisfiable, and hence 
the modal tableau system is complete. 

The proof of this occupies the rest of the section. Not surprisingly, it is 
Mong the 'canonical model' line, suitably modified for the space T of truth 
values. Let g be the set of all maximally consistent sets of signed bounding 
implications. This will be the set of possible worlds of our canonical model. 
We carry over the notation of Definition 6.3., and use it to define a somewhat 
unusual many-valued accessibility relation. For F, A E G: 

TC(F,A) = A{boundr(DY) =~ bounda(Y) ] all formulas Y} 
h 
A{bounda(Z) ~ boundr(~)Z) ] all formulas Z} 

Finally, let w be any mapping such that on propositionM variables: 

boundr(P) <_ w(F, P) <_ boundF(P). 
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This defines a canonical model (~,T¢, w). The proof is finished once we 
extend Proposition 6.6. and show that for any formula X (even allowing 
modal operators): 

boundr(X) <_ w(r ,  X) <_ boundr(X). (1) 

The proof of the sequence of inequalities (1)is, of course, by induction on 
the complexity of X.  The propositionM connective cases are treated exactly 
as in the proof of Proposition 6.6., and are not repeated here. The new 
things are the [] and 0 cases, which we give in detail. 

T h e  [] Case  Suppose (1) is known for X; we show it for DX. Let F0 be a 
fixed member of ~. We begin with the easier half. 

By definition of 7¢, for an arbitrary A E ~, 

7¢(ro, a)  < bo~dro([]X) ~ bo~nda(X). 

By the properties of o ,  

boundro(~X) < 7¢(F0, A) =~ bounda(X). 

By the induction hypothesis, boundz~(X) <_ w(A, X),  and it follows that 

boundro(GX) <_ 7~(ro, z~) ~ ~(Z~,x). 

Since A is arbitrary, 

boundro(DX) <_ A{~(ro ,  A) . ~(z~,x)  I ~x • a) = ~(ro, o x ) .  

Now for the harder half; to show w(P0, o X )  ___ boundro(oX) it is enough 
to show that whenever T (DX ~ c) E F0 then w(F0, DX) _< c. To show this, 
suppose there is some propositional constant c such that T (DX D c) E F0, 
but w(F0, DX) ~ c - -  we derive a contradiction. 

Since w(Fo, [::IX) ~ c, there is some ul such that ul _< w(ro, DX),  and 
u~ is minimal with ui :~ c. Since T (DX D c) E Fo, by ReversM Rule T _<, 
and maximal consistency of F0, F (ui D DX) E F0. Then by Modal Rule 
F[:], for some tj the set F0#(tj) O {F((ui h tj) D X ) )  is consistent. Extend 
it to a maximM consistent set A0. Then A 0 E G and by Proposition 6.5., 
ui A tj ]~ boundA°(X), so by the induction hypothesis, u~ A tj ~ w(A0,X) .  

Subordinate Result  tj < 7~(Fo, Ao). 
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P r o o f  o f  S u b o r d i n a t e  R e s u l t  
The argument is in two parts. First we show tj < A{boundro(DY) 
b°und~o t all formulas Y}. So, let Y be an arbitraxy formula; we show 
tj <_ boundro(ClY) ~ bound~o(Y), or equivalently, that tj A boundro(QY) <_ 
boundAo(Y ). Since T is a distributive lattice, 

t jAboundro(OY ) = t j A V { a I T ( a D  OY) eFo}  
= V{(a A tj) 1 T (a D o r )  e to} 

Suppose T (a D n y )  E F0. Then by construction, T((a  A tj) D Y)  E Ao, so 
a A tj < boundAo(Y ). It follows that 

tj /~ boundro(OY) <_ boundro(Y). 

For the second part of the Subordinate Result argument we show tj < 
A{boundZ~°(Z) ~ boundr°(oZ)[ all formulas Z}. Let Z be an arbitrary 
formula; we show tj < boundA°(Z) ~ boundro(~Z), or equivalently, that 
tj A bound ~° ( Z) <_ bound ro ( ~ Z). To show this we argue that tj A bound z~° ( Z) 
is a lower bound for {a I T (OZ D a) e Fo}. 

Suppose T(OZ D a) E F0. Then by construction, T ( Z  D (tj ~ a)) E 
Ao, so bound~°(Z) <_ (tj =~ a). But then, tj A boundA°(Z) <_ tj A (tj ~ a) <_ 
a, and this gives us what we need. 

This ends the proof of the Subordinate Result. 

Now that we have established t d _< 7~(F0, Ao) we return to the main 
argument. By definition, 

w(ro, []x) 

Then 

= A{n(ro, A) ~ ~(A,x)  I A e G} 
< n(ro,/,0) ~ ~(Ao, x)  

w(ro, ox)  A n(r0, ~o) _< w(Ao, x). 

But by the Subordinate Result, tj <_ 7~(Fo, A0), and by our choice of u~, 
ui < w(ro, oX) .  But then, 

ui A tj < w(Ao, X )  

contradicting the fact that u~ A tj ~ w(A0,X),  established above. 
This contradiction ends the argument that w(F0, OX) _< boundr°(oX) 

and finishes the • case. The argument for the 0 case is similar, but since it 
is short we give it anyway. 

T h e  (} Case  Suppose (1) is known for X; we show it for 0X.  Again ]et F0 
be a fixed member of ~. 
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For an arbitrary A E G, 

TC(ro, A) _< boundA(x) ~ boundr°(OX). 

Then, using the basic properties of =~ and the part of the induction hypoth- 
esis that says w(A, X)  <_ boundS(X), we have 

TO(F0, A)/~ w(A,X)  _< boundr°(oX). 

Since A is arbitrary, 

W(Fo, 0 X ) =  V{T~(Fo, A)A w(A,X) I  A E G} _< boundr°(OX). 

For the other half, boundro(OX) < w(Fo, 0X), it is enough to show that 
from T (c D 0X)  E r0 and c ~ w(Fo, 0X) we can derive a contradiction. 
Under these assumptions, there must exist some ui >_ w(Fo,0X) where ui 
is maximal not above c. Then by Reversal Rule T > and the maximal 
consistency of to,  F (0X D ul) E to. Now, using Rule F0,  for some tj E T,  
Fo~(t/)U{F (X D (tj ~ u0) } is consistent. Extendit  to a maximal consistent 
set Ao; so A0 ¢ ~. 

By the Subordinate Result (which still applies) tj <_ TC(Fo, Ao). Now, 

t~ A w(Ao, X) < n(r0,ao)  A w(ao, X) 
< V{n(r0, a)  A w(a, x )  I A E a} 
= ~(ro, 0x)  
<_ ui 

so w(Ao, X) < (tj ~ u~). By induction hypothesis, bound~ o <_ W(Ao, X), 
so  

bound~o(X) < (ti ~ uO. 

But by construction, F ( X  D (tj ~ ui)) E A0, so by Proposition 6.5., 
boundao(X) ~ (tj ~ ui), and we have the desired contradiction. 

Now the proof of Theorem 9.1. is essentially done. If a set S is con- 
sistent, extend it to a maximal consistent set F. F will be a world in a 
canonical model, and the inequalities (1) directly imply that S is satisfied 
at F. Completeness now follows in the usuM way. 
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