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A b s t r a c t .  The notion of unsharp orthoalgebra is introduced and it is proved that the 
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1. I n t r o d u c t i o n  

Orthodox quantum logic as well as many other standard logics can be de- 
scribed as total, both from the syntactical and the semantic point of view. 
Namely, the language is generally closed under the basic logical constants, 
whereas sentences receive, in the semantics, a well determined interpretation. 
In the framework of the logico-algebra~c approach to quantum mechanics, 
many authors have noticed that  the structure of the quantum events cannot 
be adequately represented as closed under conjunction and disjunction. This 
is a natural  consequence of the non existence of joint distributions of strongly 
incompatible observables. Suppose that  c~ and/~ describe two strongly in- 
compatible events (for instance: "the value for the spin in the x- direction 
is up"; "the value for the spin in the y- direction is down"). It is quite nat- 
ural to regard the conjunction of c~ and/~ as meaningless, since it represents 
an experimentally non conceivable event. However, from a strictly logical 
point of view, partial logics (where the basic connectives are semantically 
described as partial operations) turn out to be somewhat problematic. 

Among the partial structures that  have been analysed as good candidates 
in order to represent the quantum events one should mention at least the 
following: 

1) partial Boolean algebras and transitive partial Boolean algebras (intro- 
duced by S. Kochen, E. Specker ([11]) and J. Czelakowski ([3])). 

2) orthomodular posers (which P. Suppes has called quantum mechanical 
algebras). 
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3) orthoalgebras (investigated by D. Foulis, C. Randall ([7]), G. Harde- 
gree, P. Lock ([10]) and D. Foulis, It. Greechie, G. Riittimann ([6])). 

4) unsharp orthoalgebras and D-posers, which turn out to be equivalent 
structures ([8], [5], [12]). 

Transitive partial Boolean algebras are orthomodular posets which are 
orthoalgebras, which in turn are unsharp orthoalgebras; but not the other 
way around. 

In this paper we will study three forms of partial quantum logic, which 
are based respectively on the class of all unsharp orthoalgebras, of a~ or- 
thoalgebras and of all orthomodular posets. 

2. S h a r p  a n d  U n s h a r p  O r t h o a l g e b r a s ,  D - p o s e r s  a n d  O r t h o -  
m o d u l a r  P o s e t s  

Sharp and unsharp orthoalgebras, D-posets and orthomodular posets are 
examples of partial algebraic structures, where the basic operations are not 
always defined. When an operation o is defined for two elements a, b we will 
write 3(a o b). Let us first investigate the notion of unsharp 6rthoalgebra. 

DEFINITION 2.1. An unsharp orthoalgebra is a partial algebraic structure 
A = (A, ~), 1,0) ,  where 1 and 0 are two distinct elements of A and @ is a 
partial binary operation on A which satisfies the following conditions: 

(U1) Weak commutativity 
3(a®b) ~ 3(b~a) and aGb=b@ a.  

(U2) Weak associativity 
[3(b®c) and 3 ( a e ( b @ c ) ) ]  .... :-  [3(a@b) and 3 ( ( a ® b ) ® c ) )  and 
ae(b c)=(aeb)ec]. 

(U3) Strong excluded middle 
For any a, there exists a unique x s.t. a ® x = 1. 

(U4) Weak consistency 
3 ( a @ l )  ~ a = 0 .  

An orthogonality relation, a partial order relation and a genera~zed comple- 
ment can be defined in any unsharp orthoalgebra. 

DEFINITION 2.2. Let A = (A, @, 1 ,0)  be an unsharp orthoalgebra and let 
a, bE A. 

(i) a is orthogonal to b (a ± b) iff a ~ b is defined in A. 
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(ii) a precedes b (a U b) iff 3c E A s.t. a _L b and b = a(9 c. 

(iii) The generalized complement of a is the unique element a'  s.t. a $ a  I = 1 
(the definition is justified by the strong excluded middle condition 
(U3)). 

The notion of unsharp orthoalgebra morphism (UO morphism) is defined in 
the s tandard way. 

DEFINITION 2.3. Let ,41 = (A1, @1,11,01)  and A2 = (A2, ( ] )2 ,12 ,0J  be 
two unsharp orthoalgebras. An UO morphism is a map h : A1 ~ A~ s.t. 

(i) h(11) = 12. 

(ii) 3 ( a ~ l b )  ;. [3(h(a)@2h(b)) and h(a@lb)=h(a )@2h(b ) ] .  

It is easy to see tha t  the class of all unsharp orthoalgebras with the UO 
morphisms determines a category. This category will be denoted by L/C0. 

LEMMA 2.1. Let .A = (A ,  @, 1,  O) be an unsharp orthoalgebra and let a, b 6 
A. The following properties hold: 

(i) a ± b=:~ b 3- a. 

(ii) a" = a. 

(iii) 1' = 0 and O' = 1. 

(iv) a 3- O and a @ O = a. 

(v) a3_b, a ® b = O = : ~  a = b = 0  

PXOOF. (i) follows from U1). 
(ii) By U3), a®a'  = 1 and a'@a" = 1. By U1), we have a'@a = 1; hence, 
by U3), a = a n . 
(iii) By U3), 1 ® 1' = 1. Thus, by U1) and U4), 1' = O; therefore, by (ii), 
01 = 1 "  = 1 .  

(iv) 1 =  l @ l ' = ( a ® a ' ) ® l ' = ( a ( D a ' ) @ O = ( a ' @ a ) ( D O = a ' ~ ) ( a ( D O ) .  
Hence, by U3): a ® 0 = a" = a. 
(v) S u p p o s e a  3_ b a n d  a ( g b =  0. Now, a = a @ 0 =  a @ ( a @ b ) .  Thus,  
1 = [ a @ ( a @ b ) ] @ a ' =  a@[(a@b)@a']  = a@(b@ 1). Thus, b@ 1 is defined; 
by U4), we obtain b = 0. Similarly, one can prove that  a = 0. [] 

LEMMA 2.2. Let A = (A,  0 , 1 , 0 )  be an unsharp orthoalgebra and let a, b 6 
A s.t. a ± b. Then, 

a ± ( a O b ) '  and b ' = a G ( a O b ) '  
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PROOf. 1 = (a O b) (~ (a E) b) t = a O [ b ( D ( a ( ~ b ) q  = [ b ( ~ ( a ( D b ) ' ] O a =  
b ( ~ [ ( a ( ~ b ) ' ( ~ a ] - - b O [ a O ( a f ~ b ) ' ] .  Whus, b y U 3 ) , b ' = a @ ( a @ b ) ' .  • 

LEMMA 2.3. Let A = (A,  @, 1,  O) be an unsharp orthoalgebra and let a, b E 
A.  Then, 

a , L b  if f  a E b  f 

PROOF. Suppose a ,L b. Then,  by L e m ma  2.2, b t = a @ (a @ b)C Thus ,  
by Definition 2.2(i) a E bC Viceversa, suppose a E bC Then,  3c E A s.t. 
a_L c and b ' =  aE) c. Thus,  1 = ( a @ c ) @ b  = ( c @ a ) @ b  = c ® ( a @ b ) .  
Therefore,  a • b is defined so tha t  a _l_ b. • 

L e m m a  2.3 shows tha t  the or thogonat i ty  relation has here the  usual  
meaning.  

LEMMA 2.4. (Orthomodularity) 
Let .4 = ( A , ~ , 1,  O) be an unsharp orthoalgebra and let a, b E A.  Then, 

a E b  ~ . b = a G ( a @ b t )  ' 

PROOf. Suppose a E b. Then,  a E b~J. By L e m m a  2.3, a ,L bq Thus ,  
by L e m m a  2.2, b = b" = a @ (a @ bl) I. • 

LEMMA 2.5. (Cancellation law) 
Let A = (A,  @, 1 , 0 )  be an unsharp orthoalgebra and let a, b, E s.t. a ,L c 
and b 2. c. Then, 

(i) 

(ii) 

a O  c = b (~c:=~ a = b. 

a @ c E b @ c : = ~ a E b .  

P t t o o r .  (i) Suppose a @ c =  b@c .  Then,  1 = ( a ® b )  O ( a @ b ) '  = 
( b ® c ) ® ( a @ c ) ' .  Thus, a ® [ c @ ( a @ c ) ' ] = b @ [ c @ ( a ® c ) ' ] =  l .  B y U 3 ) ,  
we get a = b. 
(ii) Suppose a ® c  E b@c .  Then,  3d E A s.t. d_L ( a ® c )  and b ® c  = 
( a ® c ) ® d = a ¢ ( d ¢ c ) = ( a C d ) ¢ c .  B y ( i ) , b = a @ d ,  s o t h a t a E b .  • 

THEOREM 2.1. Let A = (A,  O,  1 , 0 )  be an unsharp orthoalgebra. Then, 
(A,  E ,r , 1 , 0 )  is an involutive bounded poset. 

PROOF. Let us first prove that  E is a part±a] order. The  reflexivity of 
E follows from L e m m a  2.1(iv). 
Let a E b and b _U a. We have to prove tha t  a = b. By hypothesis:  3c, d E A 
s.t. a ,L c, b_L d a n d  b =  a ® c , a =  b@d.  Then, (a@O) = a = b O d  = 
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(a @ c) (9 d = a ® (e (9 d). By the cancellation law, c ® d = 0. Thus,  by 
L e m m a 2 . 1 ( v ) , c = d = 0 .  Then,  a = b @ d = b ( 9 0 = b .  
Let a E b and b E_ c. We have to prove that  a E c. By hypothesis: 3d, e 6 A 
s.t. a 3- d, b _l_ e and b = a@d,c = b@e. Then, c = (a@d)@e = aG(d®e).  
Thus a v- c. 

Tha t  0 is the minimum of the poset follows from Lemma 2.1(iv). That  1 is 
the m a x i m u m  of the poset follows from U3). 
Finally, let us prove tha t  ' is an involutive antiautomorphism. 

(i) By Lemma 2.1(ii): Va 6 A: a " =  a. 
(ii) Suppose a E b. We have to prove that  b' _E a'. By Lemma 2.3, a 3- b' 
and therefore, b' 3_ a. Again, by Lemma 2.3, b' E_ a'. I 

The  notion of unsharp orthoalgebra turns out to be equivalent to the 
notion of weak orthoalgebra, that  has been first investigated in [8]. 

DEFINITION 2.4. A weak orthoalgebra is a s tructure A = (A,  3-, @ , ' ,  1, 0>, 
where ± is a binary relation on A, @ is a partial operation whose domain is 
t and 1, 0 are two distinct elements of A. The following conditions hold: 

( W l )  a ± b 

(W2) a 3- 0 

(W3) a 3_ a' 

(w4)  a ± b  

(W5) a 2 _ ( a ' O b )  ~ b = 0 .  

( w 6 )  [a ± b c ± (a • b)] 
(aeb)ee]. 

b ± a and a O b = b ® a .  

and a @ 0  = a. 

and a @ a ' =  1. 

a3- (aOb) '  and b ' = a O ( a O b ) ' .  

[b3_c, a ± ( b @ c )  and a ® ( b ® c ) =  

Similarly to the case of unsharp orthoalgebras, one can define the notion of 
WO morphism. The category determined by the class of all weak orthoalge- 
bras and the WO morphisms will be denoted by }4;0. We want to show that  
HO are W O  are isomorphic. This result is a direct consequence of Lemma 
2.7. 

LEMMA 2.6. Let A = (A,  3-, @ , ' ,  1, 0) be a weak orthoalgebra. The follow- 
ing conditions are satisfied: 

(i) O' = 1 and 1' = O. 

(ii) V a 6 A :  a " = a .  
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PROOF. (i) By Wl) ,  W2) and W3), 1 = 0 ¢ O' = O' ¢ 0 = 0'. By 
W3) and W2), O' @ 0" = 1 and 0 .L (0' @ 0"). Thus, by W5), O" = O; hence, 
OP= 1. 
(ii) ByW3),a@a'= l. ByWn),a"=a@(a@d)'=a@l'=a®O= 
a.  [] 

LEMMA 2.7. 

(i) Let A = (A, _L, @ , ' ,  1, O) be a weak orthoalgebra. Then, (A ,  @, 1, O) 
is an unsharp orthoalgebra. 

(ii) Let .A = (A,@,  1,0) be an unsharp orthoalgebra. Let _L and ' be 
defined according to Definition 2.2 (i)-iii)). Then, the structure ,4 = 
(A, _L, @ ,~ , 1, O) is a weak orthoalgebra. 

PROOF. (i) U1) is W1) and U2) is W 6 ) .  
U3) Let a E A. By W3), a O a  ~ = 1. Suppose 3b E A s.t. a @ b  = 1. 
B y W 4 ) , a  I (a @ b)' and b' = a @ ( a @ b ) ' =  a @ l '  = a@O = a. Thus, 
b = b" = a I. 
U4) Suppose a .L 1 = a@ a I. Then, by W5), a = O. 
(ii) W1)is  U1); W2)is  Lemma 2.1(iv); W3) is  U3). W4)is  Lemma 2.2. 
W5) Suppose a _L (a'Gb).  When, a @ ( a ' @ b ) = ( a @ a ' ) @  = 1. By U3), 
we obtain b = 0 . 
W6) is U2). [] 

Recently, KSpka and Chovanec [12] have proposed a new (partial) al- 
gebraic structure, called D-poser, as a "natural generalization of quantum 
logics, reM vector lattices and orthoalgebras". We will show that  the cate- 
gory of D-posets is isomorphic to the category b/O of unsharp orthoalgebras. 

DEFINITION 2.5. A difference poset (shortly, D-poset), is a structure 
(A, _C, 0 , 1 ) ,  where: E is a partial order with maximum (1), and O (the 
difference) is a partial operation s.t. Va, b E A, b O a is defined iff a E b. 
Further, the following conditions hold Va, b, c E A: 

(D1) 

(D2) 
3(bea) (bea) E b. 

3(bea) ---+ [3(be(bea))  and be(bea)=a]. 
aEbEe-.:-+  ebEeeaand( ea)e(ceb)=bea. 

DEFINITION 2.6. Let ,41 --- (A1, E l ,  O1,11) and .42 = (A2, E2 ,02 ,121  be 
two D-posets. A DP morphism is a map h : A1 -+ A2 s.t. 
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(i) h ( l l )  = 12. 

(ii) a E1 b '.- [3(h(b) 02 h(a)) and h(b 01 b) = h(b) e2 h(b)]. 

The class of all D-posets with the D morphisms form a category. The fol- 
lowing s ta tements  have been proved in [12]: 

LEMMA 2 . 8 . . A  = (A,  E ,  O,  1) . Then, the following properties hold: 

(i) 1 9 1 (denoted by O) is the minimum of j4. 

(ii) a e o = a . 

(iii) a 0 a = o . 

(iv) aU__b '; [ b O a = 0  ¢=2z b=a].  

(v) a E b  ~ [ b O a = b  ==v a=O].  

(vi) a E b E c  ~ b ( ~ a E c ( ~ a a n d ( c O a ) ( ~ ( b e a ) = c O b .  

(vii) b E c ,  a E c e b  ==v b E c O a a n d  ( e ( ~ b ) @ a = ( c ( ~ a ) e b .  

(viii) a E b E c  ---., a E e e ( b e a )  and ( c e ( b e a ) ) e a = e e b .  

REMARK 2 . 1 .  A D-poset can be equivalently defined (see [13]) as a 
bounded poset (A,  E ,  1 ,0 )  with a partial binary operation e on A s.t. 
b O a is defined iff a E b, and the following conditions hold Va, b, c E A: 

( i )  a 0 0 = a . 

(ii) a E b E c  ~ c O b E c e a  and (c@a) O ( c e b ) = b O a .  

A generalized complement ' can be defined in any D-poset ,4. It is 
sufficient to state Va E A: 

a' := 1 (3 a. 

One can easily check that  (A,  E ,~ , 1 , 0  / is an involutive bounded poset. 
Namely, a rl = a follows from D2). Suppose a E b. There holds: b E 1. 
Hence, b y D 3 )  a n d D 2 ) :  b = l g ( 1 O b ) = l O b ' _ l e a = a ' .  

THEOREM 2.2. Let (A,  E ,  O,  1 / be a D-poset. For all a, b E A s.t a E b I let 
a@b := (broa) 1 andO := 1'. Then, ( A , @ , I , 0 )  is an unsharp orthoalgebra. 

P R o o f .  For the proof of U1)-U3), see [13]. 
U4) Suppose 3(a O 1). Then,  a E 11. Hence: a = 0. m 

THEOREM 2.3. Let (A,  @, 1 ,0 )  be an unsharp orthoalgebra. Suppose a E b . 
By Definition 2.2(ii), 3c E A s.t. a @ e is defined and b = a @ c. We define 
b e a as follows: b 0 a = c. Then, the structure (A,  E ,  O,  1) is a D-poser. 
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PROOF. By Theorem 2.1, (A,  E ,  1) is a poset with max imum element 
(1). The operation (3 is well defined. Let us suppose a E b. Then,  3c E A 
s.t. a G c is defined and b = a @ c. Suppose 3d E A s.t. d ® a is defined and 
b = a @ d. Then, by the cancellation law, c = d. 
(D1) Suppose b (3 a is defined. Then, a E b so that  b = a @ e, for a certain 
c. Thus, b O a = c E a @ c = b .  
(D2) Suppose b O a is defined. Then b = a • c, for a certain c. By (D1): 
(b O a) E b. Hence, for a certain d: d @ (b O a) = b. Whence, d (~ (b O a) = 
d @ c = b = a • c. Consequently, by cancellation, a = d. Thus,  from 
b = d • (b O a), we obtain d = bG (bO a) and a = bO ( b O a ) .  
(D3) Suppose a E b and b E c. Then, 3d, e E A s.t. b = a ®  d and 
c = b @ e .  Thus, c = ( a @ d )  O e = a @ ( d @ e ) .  Further ,  b O a = d ,  c O b = e  
and C O d  = d ® e .  Hence, c o b  = e E d ® e  = C O d .  Then,  3 f  E A s.t. 
COd = f O ( c O b )  = f@e. Therefore, (cOa)O(cOb) -- f .  Now, COd = d@e. 
Thus, by the cancellation law, f = d = b O a. • 

COROLLARY 2.1. /40  and 7)79 are isomorphic. 

Unsharp orthoaigebras and D-posets represent "fuzzy" generalizations 
of the notion of orthoalgebras (or sharp orthoalgebras), first in t roduced by 
Foulis and Randall ([7]) and furtherly investigated in [6] and [10]. 

DEFINITION 2.7. An orthoalgebra is a partial algebraic s t ructure  .4 = 
(A,  O ,  1 ,0 ) ,  where 1 and 0 are two distinct elements of A and ® is a partial  
binary operation on A which satisfies the following conditions: 

(U1) Weak commutativity 
3(a@b) ~ 3(b@a) and a @ b = b ( ~ a .  

(U2) Weak associativity 
[3(b®c)  and 3(a@(b@c))] =:,'~- [3(a@b) and 3 ( ( a ® b ) ® c ) )  and 
a (~ (b O c) = (a ~) b) O c]. 

(U3) Strong excluded middle 
For any a, there is a unique x s.t. a (D x = 1. 

(U4) Consistency: 
3 ( a O a )  ~ a = 0 .  

We have seen that  any unsharp orthoalgebra gives rise to an involutive 
bounded poset (Theorem 2.1). Orthoalgebras, instead, always determine an 
orthoposet.  Let .A be an orthoalgebra. The s tructure (A,  _E ,~ , 1 , 0  / is an 
orthoposet. Namely, for any a E A: the infimum of a and a ~ (a M a t) exists 
and is equal to 0. At the same time, the supremum of a and a ~ (a [A a ~) exists 
and is equal to 1. 

The following theorems have been proved in [6]. 
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THEOREM 2.4. Let  A = ( A , @ , I , 0 )  be an orthoalgebra. I,f a, b E A and 
a ± b, then a @ b is a minimal  upper bound.for a and b in A, i.e., Vc E A : 
a, b r ' - c E  a @ b = : : ,  c =  a ® b .  

As a Corollary of Theorem 2.1, we obtain that if a 2 b and a U b exists, 
then a I1 b = a @ b. However, generally, a @ b is not the supremum of a and b. 

DEFINITION 2.8. An orthomodular poser is an orthoposet (A,_E, ~, 1,0} 
where Va, b E A s.t. a _E b t, a U b  exists in A. Further, the orthomodu- 
lar property holds: 

a E b  ==~ b = a U ( a U b ~ )  I. 

Any orthomodular poset (A,_E,~ , 1 , 0 )  determines an orthoalgebra 
( A , ® , I , 0 } ,  where: a ® b is defined iff a E b I. Further, when defined, 
a @ b = a U b .  

DEFINITION 2.9. An orthoalgebra .4 = {A, ®, 1 ,l}} is called orthocoherent 
iff Va, b, c E A: 

a ± b , a _ k c , b _ l _ c  ~ a ± ( b @ c ) .  

THEOREM 2.5. Let  A = { A , ® , I , 0 }  be an orthoalgebra. The .following 
conditions are equivalent: 

(i) (A, _E, ~, 1,0} is an orthomodular poser. 

(ii) A is orthocoherent. 

(iii) Va, b E A: a & b ==ez a U b exists. 

3. S o m e  c o n c r e t e  a n d  p h y s i c a l  e x a m p l e s  

In this section we will present some concrete and physical examples of un- 
sharp orthoMgebras, orthoalgebras and orthocoherent orthoalgebras. 

EXAMPLE 3.1. (Fuzzy sets) 
Let X be a non-empty set and let [0, 1] x be the class of all fuzzy sets, i.e., 
the class of all functionals 

,f: x [0,11 

A partial operation ® can be defined on [0, 11 x. For any ,f ,g E [0, 1IX: 

(1) 3 ( f  ® g) ¢==* Vx E X :  f ( x )  + g(x)  <_ 1 
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where + is the usual sum on the reals. 

(2) 3( f  @ g) =:~ f @ g - f + g 

where: Vx E X: 

( f  + g)(x) := f(x)  + g(x) 
Let 1 and 0 be the functionals defined as follows: 

V x E X :  l ( x ) = l ,  O(x):=O. 

= ([0, 1] x , 0 , 1 , 0 )  is an unsharp ortholgebra. The structure Y'(X) It turns 

out that Vf E [0, 1IX: 

f '  = ! - f  

where, Vx E X: 

f ' (x)  := 1 - f ( x )  

Further, the partial order relation _E, defined according to Definition 2.2(ii), 
coincides with the usual partial order of fuzzy set theory: 

f <_ g ~ Vx e X : f ( x )  <_ g(x) 

The structure ([0, 1] x ,_~,' ,1_, 0) is an involutive distributive bounded lat- 
tice (called also De Morgan lattice), where Vx E X: 

( f  n g)(x) = mince X { f ( x ) ,g (x ) )  

and 
( f  U g)(x) = ma~xex { f ( x ) ,g (x ) } .  

However, 5r(X) is not an orthoalgebra. As a counterexample, consider the 
functional 1 ~, defined as follows: Vx E X: . -  ~. I ( X  ) .__ 1 It turns out that 

3 (~@ ~); but i #  0- 

A standard Hilbert-space exemplification of an unsharp orthoalgebra can 
be constructed with the class E(:H) of all effects in a Hilbert space 7/. From 
an intuitive point of view, effects represent a kind of maximal possible notion 
of experimental property, in agreement with the probabilistic rules of quan- 
tum mechanics. Mathematically, an effect is a linear bounded operator E 
s.t. for any statistical operator W, T r ( W E )  E [0, 1]. In other words, effects 
are all and only the linear bounded operators for which a Born probability 
can be conveniently defined. Any projection is an effect, but not viceversa. 
An important intuitive difference between projections and proper effects is 
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the following: effects can be associated to unsharp properties asserting that 
"the value for a given observable lies in a certain fuzzy norel set" ([2]). As 
a consequence, there are effects E (different from the null projection) which 
are verified with certainty by no state (for any state W: Tr(WE)  ~ 1). A 
limit case is represented by the semitransparent effect 11[ (where lI is the 
identity operator) to which any state W assigns probability-value ½. 

EXAMPLE 3.2. (Effects of a Hilbert space) 
Let E(?-/) be the class of all effects of a Hilbert space ~ .  Let us introduce 
on E(7/) a partial sum @ in the following way. For any E, F E E(~) :  

(1) 3(E @ G) ¢=v E + F e E(?-/) 

(in other words, the orthoalgebraie sum E @ F is defined iff the usual 
operator-sum E + F is an effect operator). 

(2) 3 ( E ® F )  ==~ E @ F : E + F  

(if defined, the orthoalgebra~c sum coincides with the usual sum). 
Finally, 0 and 1 are identified with the null and the identity operator 
( O and 1I, respectively). It is easy to check that the structure E(?-/) = 
(E(7-/), @, 1 ,0 )  is an unsharp orthoalgebra. Differently from the case of 
fuzzy sets, the involutive bounded poset ( E ( ~ ) ,  _E , ' ,  1 ,0)  is not a lattice. 

The unsharp approach to quantum mechanics has been generalized by 
Bugajski ([1]) in order to provide a classical (phase-space) representation 
of quantum theory, by means of a "delinearization procedure". Mathemati- 
ca~y, this generalization is based on order-unit normed Banach spaces, which 
play a fundamental role in many statistical theories. 

EXAMPLE 3.3. (Effects of an order-unit normed Banach space) 
Let B be an order-unit normed Banach space with e (the unit), 0 (the origin) 
and the partial order ~. Let 

B[0,~l := {a E B I0 =~ a -( e} 

(B[p_,~] is the mathematical representation of the set of all effects of the statis- 
tical theory that B is supposed to describe). Similarly to effects in a Hilbert 
space, we can introduce a partial operation @ on Bio, e]; for any f , g  E B[0,e]: 

(1) 3(f • #) f + g ___ 
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where + is the restriction to BI0,e] of the corresponding linear operation on 
B. 

(2) 3(f@g) =~ f @ g =  f +g 

l \ 

One can prove that the structure ~B[.q,+], @, e,_0) is a partial unsharp or- 
thoalgebra. 

The smallest unsharp orthoalgebra which is not an orthoalgebra is given 
by the set A = {0 ,½,1}  equipped with the partial operation @ defined as 

follows: 

1 1 6+o=o, 1 1 
0 @ 1 = 1 @ 0 = 1  ~ @ ~ = 1 .  

The structure (A, @, 1,0) is an unsharp orthoalgebra that is not an orthoal- 
gebra. For 1 • 1 is defined; at the same time 1 ~ 0. 

Let us now present an example of a "genuine" orthoalgebra, which is 
based on a particular subset of E(;/-/). 

EXAMPLE 3.4. (Special effects of a Hilbert space) 
Let E(7-/) be the class of all effects of a Hilbert space %/. A special effect 
(unsharp property in Bush terminology) is an effect E s.t. for at least two 
density operators W1,W2: Tr(W1E) < 1 and Tr(W2E) > 1. Let E~(7/)  
be the class of all special effects with 0 and lI. As proved in [8], Es~(Tl) is 
not closed under the partial sum (~ defined on the class of all effects. Let 
us introduce a new partial sum @ p on Ese(Y/) in the following way; for any 
E, r C 

(1) 3(E@'F) ¢==v ( E + F )  e Ese(7-l) 

(2) 3(E @' F) ~ E @' F = E @ F 

It turns out that the strcture £(7-/)s e = (Ese(7-/),@, 1 ,0 )  is an orthoaI- 
gebra that is not orthocoherent ([8]). As a consequence, the orthoposet 
(E,e(7-/), ~ , ' ,  1 ,0 )  is not orthomodular. 

Finally, we will introduce two examples of orthocoherent orthoalgebras 
which represent a kind of "sharp counterpart" of the corresponding unsharp 
examples. 
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EXAMPLE 3.5. (Crisp sets) 
Let [0, 1] X be the class of all fuzzy sets of X (see Example 3.1) and let 
P ( X )  be the class of all characteristic functionals (crisp sets) of X.  In 
other words: f E P ( X )  iff f E [0,1] x and Vx E X: f (x )  = 0 or f ( x )  = 1. 
Clearly, P ( X )  C [0, 1] x.  Let OF(X) be the restriction to P ( X )  of the par- 

tial sum defined on [0,1] x. Then, the structure ~ P ( X ) , O p ( x ) , I , O )  is an 

orthocoherent orthoalgebra. Further, the orthoposet ( P ( X ) ,  E , ' ,  1 ,  O) is a 
complete Boolean algebra. 

EXAMPLE 3.6. (Projections in a Hilbert space) 
Let E(:H) be the class of all effects of a Hilbert space H (see Example 3.2) 
and let P(7-/) be the class of all projections in H. Clearly, P(H)  C E(?-/). 
Let OF(7/) be the restriction to P(7-/) of the partial sum @ defined on E(7/). 

Then, the structure /)(7-/)-- (P(7- / ) ,Op(~/ ) , l ,0  / is an orthocoherent o r -  

thoalgebra. Further. the orthoposet (P(7-/), _~, ' ,  1 ,0 )  is a complete ortho- 
modular lattice. 

As shown by R. Wright, the smallest orthoalgebra that is not orthoco- 
herent is given by the set 

A = (0 ,1 ,a ,b ,c ,d ,e , f ,a ' ,b ' , c ' ,d ' , e ' ,S ' }  

where, apart the obvious cases, the partial sum • is defined as folows: 

a @ b =  d O e  = c' 

b O c  = eO f = a' 

c o d =  f O a  = e' 
c O e = d  t, a O c = b ' ,  e O a =  f '  

Let us check that the orthoalgebra (A, (9 ,1 ,0 )  is not orthocoherent. By 
Theorem 2.5, it is sufficient to find two elements a, b s.t. a 3_ b but a • b 
is not the supremum of a and b. Let us consider the elements a, c E A. By 
construction, a @ c  = b/. Now, a E a @ S  = e I and c_E c o d  = eC But 
b / g el; hence, a @ c is not the supremum of a and c. 

4. P a r t i a l  q u a n t u m  logics  

How to give a semantic characterization for different forms of quantum logic, 
corresponding respectively to the class of all unsharp orthoalgebras, of all 
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orthoalgebras and of all orthomodular posers? We will call these logics: un- 
sharp partial quantum logic (UPaQL), weak partial quantum logic (WPaQL) 
and strong partial quantum logic (SPaQL). 

Let us first consider the case of UPaQL, that represents the "logic of 
unsharp orthoalgebras'. We wilt work in the framework of an algebraic 
semantics based on the following intuitive idea: interpreting a formal lan- 
guage essentially means transforming any sentence of the language into a 
proposition (or alternatively into a generalized truth value) represented by 
an element of a certain algebraic structure. The interpretation must preserve 
the logical form of the sentences. 

Let us first introduce the language of UPaQL, whose alphabet will con- 
tain: 
a) a denumerably infinite list of atomic sentences; 
b) two primitive connectives: the negation -~ and the exclusive disjunction 
@ (aut). 

The set of sentences is defined in the usual way. Let a ~, 7 , - . .  represent 
metalinguistic variables ranging over sentences. A conjunction is metalin- 
guistically defined, via De Morgan law: 

® Z := ® 

The intuitive idea underlying our semantics for UPaQL is the following: 
disjunctions and conjunctions are considered "legitimate" from a mere lin- 
guistic point of view. However, semantically, a disjunction a ~)~ will have 
the intended meaning only in the "well behaved cases" (where the values of 

and ~ are orthogonal in the corresponding unsharp orthoalgebra). Oth- 
erwise, a ~)j3 will have any meaning whatsoever (generally not connected 
with the meanings of a and 8). A similar semantic "trick" is used in some 
classical treatments of the description operator ~ ("the unique individual 
satisfying a given property"; for instance, "the present king of Italy"). 

As is customary in the algebraic semantics, we have to define the follow- 
ing basic semantic notions: model~ truth and consequence in a given model, 
logical consequence and logical truth. 

DEFtNITIO~ 4.1. A model of UPaQL is a pair ~ = (A,  v), where 

(a) ,4 = (A, @, 1,01 is an unsharp orthoalgebra (see Definition 2.7). 

(b) v (the interpretation function) satisfies the following conditions: 

v(a) E A, for any atomic sentence a. 
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v(-~fl) = v(]3)', where ' i s  the generalized complement defined in .A. 

v(~ ~) 7) = { v(fl) ~ v(7), if v(~) @ v(7) is defined in .A 
any dement,  otherwise 

DEFINITION 4.2. Truth and consequence in a model 91t 

(a) A sentence a is true in ~ ( ~ a )  iff v(a) = 1. 

(b) ~ is a consequence of a in ~]t (a ~-.~ fl ) iff v(a) E v(fl) (where _U is 
the partial order of A). 

DEFINITION 4.3. Logical truth and logical consequence 

(a) a is a logical truth of UPaQL (~e~Q~a) iff a is true in any model 9Yr. 

(b) fl is a logical consequence of a in UPaQL ( a ~p.QLfl ) iff fl is a conse- 
quence of a in any model of UPaQL. 

Weak partial quantum logic (WPaQL) and strong partial quantum logic 
(SPaQL) (formalized in the same language as UPaQL) will be naturally char- 
acterized mutatis mutandis. It will be sufficient to replace, in the definition 
of model, the notion of unsharp orthoalgebra with the notion of orthoalgebra 
and of orthomodular poset (see Definition 2.7 and Definition 2.8). Of course, 
UPaQL is weaker than WPaQL, which is, in turn, weaker than SPaQL. Par- 
tial quantum logics are axiomatizable. We will first present a calculus for 
UPaQL, which is obtained as a natural transformation of an axiomatization 
for orthodox quantum logic ([9] and [4]). 

Our calculus (that has no axioms) is determined as a set of rules. Any 
rule has the form: 

- 1  

(If ~1 is inferred from a l , . . . ,  fin is inferred from an, then fl can be inferred 
from a). 

The configurations al  [-/~1,... ,  a,~ [-- f~ represent the premises of the 
rule, while a ]- fl is the conclusion. An improper rule is a rule whose set of 
premises is empty. Instead of ~ ,  we will write a [- ~. 

av-p 

Rules of UPaQL 

(R1) a ~- a (identity) 
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a [-- fl fl ~- 7 (transitivity) a[-'t 

(R3) (weak double negation) 

(R4) -~-,a [- a (strong double negation) 

(R5) (contraposition) 

(R6) ~'b~®-~,~ (excluded middle) 

(RT) a ~- -~fl a @ "-,a 1- a @/3 (unicity of negation) 
-~,~ t--,~ 

(R8) fll }- fl(weak substitutivity) 

(R9) 
~®Zl--Z@~ 

(weak commutativity) 

(R10) ,8 t-- -w ~1- ~(Z®sO 

(Rll)  

(R12) 

(R13) 
(~ @ Z) @ ~') k ,~@ (Z @'y) 

(R10)-R13) represent a weak assodativity condition) 
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DEFINITION 4.4. A proof is a finite sequence of configurations a }- 8 where 
any element of the sequence is either an improper rule or the conclusion of 
a proper rule whose premises are previous elements of the sequence. 

DEFINITION 4.5. fl is a provable from a ( a  I--V'~QL 8) iff there is a proof 
whose last configuration is a [- 8. 

In order to axiomatize weak partial quantum logic (WPaQL) it is sufficient 
to add a rule, which requires an absurdum principle 

(R14) a (absurdum) 

Clearly, R14) corresponds to the axiom 4 (the consistency condition) of our 
definition of orthoalgebra (see Definition 2.7). 

Finally, an axiomatization of strong partial quantum logic (SPaQL) can 
be obtained, by adding the following rule to R1)-R14). 

(R s) o,I--,8 8t--"t' 

In other words, R15) requires that the disjunction @ behaves like a supre- 
mum, whenever it has the "right meaning". 

Let PaQL represent any instance of our three calculi. We will use the 
following abbreviations. Instead of a ~QL8 we will write a ~- 8. When a 
and 8 are logically equivalent (a ~- 8 and 8 [-" a) we will write a -- 8. 

Let p represent a particular sentential letter of the language: T will be an 
abbreviation for p @ -~p; whereas F will be an abbreviation for -~ (p ~) --p). 

Some important derivable rules of all calculi are the following 

(D1) F ~- 8 ,  8 [- T (Duns Scoto) 

(D2) a I" 
o, ko ®8 

(The weak sup rule) 

(D3) (Orthomodularity) 

a [- 7 7 8 [- -17 a (~) 7 ~- fl (~) 7 (Cancellation) (D4) a ~ 8  

As a consequence, the following syntactical lemma holds: 



20 M. L. Dalla Chiara, R. Giuntini 

LEMMA 4.1. Foranya, f l :  a ~ f l  iffthere exists a formula7 s.t. 

(i) ,~ t- -~'y; 

(ii) fl ~ a @ 7 .  

In other words, the logical implication behaves similarly to the partial 
order relation in the (sharp and unsharp) orthoalgebras. 

The following derivable rule holds for WPaQL and for SPaQL: 

(D5) a@fll--7 

5. Soundness and Completeness  

Our calculi turn out to be adequate with respect to the corresponding seman- 
tic characterizations. Soundness proofs are straightforward. Let us sketch 
the proof of the completeness theorem for our weakest calculus (UPaQL). 

THEOREM 5.1. Completeness 
For any formula ~, fl: 

PROOF. Following a standard procedure, it is sufficient to construct a 
canonical model 9Jr = (.A, v} s.t. for any formulas a, fl: 

~ k - Z  -~ ',- ~ t=--~Z. 

DEFINITION OF THE CANONICAL MODEL 

1) The 

1.1) 

1.2) 
1.~) 

2) Thb 

algebra M = (A, @, 1, O} is determined as follows: 

A is the class of all equivalence classes of logically equivalent for- 
mulas: A := {[a]= I a is a formula}. (In the following, we will 
write [a] instead of [a]=). 

[a] @ [ill is defined iff a ~ -~fl. If defined, [a] @ [ill := [a ~) ill. 

1 := [TI; 0 := IF]. 

interpretation function v is defined as follows: v(a) : [a]. 

One can easily check that 9)l is a "good" model for our logic. The op- 
eration ® is well defined (by the transitivity, contraposition and weak sub- 
stitutivity rules). Further, A is an unsharp orthoalgebra: @ is weakly com- 
mutative and weakly associative, because of the corresponding rules of our 
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calculus. The strong excluded middle axiom holds by definition of @ and in 
virtue of the following rules: excluded middle, unicity of negation, double 
negation. Fina~y, the weak consistency axiom holds by Duns Scoto (D1) 
and by definition of @. 

LEMMA OF Tt tE CANONICAL MODEL 

For any a, 1~: 

SKETCH OF THE PROOF. 
one has to prove: 

[~] E [~] ~ ~ F- ~. 

By definition of _ (in an unsharp orthoalgebra) 

~- fl < > .for a given 7 s.t. [hi _L [71: [a] ® [71 = [~]. 

This equivalence holds by Lemma 4.1 and by definition of @. 
Finally, let us check that v is a "good" interpretation function. In other 

words: 

1) v ( ~ ) =  v(~)' 

2) v(~ @ 7) = v(/3) ® v(7), if v(~) @ v(7) is defined. 

Proof of 1) By definition of v, we have to show that [--fl] is the unique 
[7] s.t. [fl] ® [7] = 1 := [T]. In other words, 

1.1) [W] E [Z] • bZ].  

1.2) [T] E [Z] e [v] ~ ~Z---7. 

This holds by the Lemma of the canonical model, by definition of • and by 
the following rules: double negation, excluded middle, unicity of negation. 
Proof of 2) Suppose V(fl) • v(7) is defined. Then ~ ~--~7. Hence, by 
definition of @ and of v: v(/~)® v (7 )=  [/~] ® [7] = [/~QT] = v(/3@7). 

As a consequence, we obtain: 

m 

The completeness argument can be easily transformed, mutatis mutandis 
for the case of weak and strong partiM quantum logic. 
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