
RYO KASHIMA Cut-Free  Sequent Calculi  
for Some Tense Logics 

Abstract.  We introduce certain enhanced systems of sequent calculi for tense logics, 
and prove their completeness with respect to Kripke-type semantics. 

1. I n t r o d u c t i o n  

In this paper,  we consider propositional tense logics which have four modal  
(tense) connectives D P,  D F,  ~ P  and <>F representing "at all past t imes",  
"at all future  t imes",  "at some past times" and "at some future t imes",  
respectively. First we define some tense logics by considering conditions 
"transit ive",  "reflexive", "connected" and "total" on Kripke- type models. 
Then  we present extended Gentzen- type  sequent calculi for these logics. We 
prove the completeness theorem for our sequent c~dculi without cut, and as 
its corollary, we show the cut-elimination theorem for them. 

The novelty of our systems is tha t  the sequents we deal with are not  
the usual ones but  they  are "nested "1. So at first sight it may  look a little 
complicated, but  in this way we can get cut-free systems. (To the author 's  
knowledge, there has been no other cut-free sequent calculus for such tense 
logics.) 

In Section 2, we define our formulas, Kripke- type models, and eight 
tense logics. In Section 3, we present eight sequent calculi for the eight 
tense logics, and prove the soundness theorem for them. In Section 4, we 
in t roduce eight other  sequent calculi for the eight tense logics, and prove the 
completeness theorem for the cut-free parts  of them. Moreover we prove tha t  
those cMculi are equivalent to the sequent calculi in the previous section. The 
cut-el iminat ion theorem is shown as their corollary. The difference between 
the sequent calculi in the two sections is that  the inference rules in Section 3 
operate always on the root of a nested sequent, and inference rules in Section 
4 operate  on all the nodes in a nested sequent. Due to this difference, the 
former is suitable for proving the soundness theorem, and the la t ter  for 
the  completeness theorem. In Section 5, we give a remark on the relation 

1This is a refinement of the method invented by Sato [3] for modal logic $5. This 
technique is independently discovered by Bull [1] for dynamic logic. 
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between our systems and semantic tableaux, and also on the inference rule 
"contract ion".  

2.  T e n s e  l o g i c s  

Our language consists of the following symbols: 

• proposi t ional  variables: v0, Vl , . . . ;  

• logical connectives: A, V, -~; 

• moda l  connectives: rnP, DF, <~P ¢,F; 

• auxiliary symbols: ( , ) ,  P{, F{, }, comma.  

We define formulas of our systems as follows: 

1. If v is a proposit ional variable, then v and -~v are formulas;  

2. If A and B are formulas, then (A h B), (A V B), DPA, OFA, <>PA, 
and ~FA are formulas. 

Note tha t  negat ion symbol -~ is allowed only in front  of proposi t ionM vari- 
ables. We will use letters u, v , . . .  for proposit ional  variables and A, B , . . .  
for formulas.  

A model is a triple (T, R, V) such that :  

1. T is a n o n - e m p t y  set (of moment s  of t ime); 

2. R is a binary relation on T (the "earlier-later relation");  

3. V is a function assigning to each proposit ional  variable v a subset V(v) 
of T. 

For a formula  A, a model  A4 = (T, R, V) and a t ime t in T,  the relat ion "A 
is t rue at t in M",  denoted 

34 f=tA, 

is defined inductively as follows: 

• 34 l=~ v ¢ ,  t e v(v) ;  

• 34 1=~ ~ v  ¢*  t ¢ V(v); 

• .M ~ ( d  A B) ¢v 34 ]=t d and 34 [=-~ B; 

• 34 ~ t ( A V B )  ev 34 [=t A or 341=t B; 
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If  2,4 ]=t A holds for every t in T,  then we write A4 ]= A. 

We consider the  following four conditions Tr, Re, Co and To on a model  
(T ,R,V):  

Tr : ((sRt and tRu) ~ sRu) for all s , t ,u  in T. (Transitive) 

Re : (tRt) for all t in T. (Reflexive) 

Co : (sRt or tRs or s = t) for all s , t  in T. (Connected)  

To : (sRt or tRs) for all s, t  in T. (Total) 

Then  we define eight tense logics Kt, KtTr, KtRe, KtCo, KtTo, KtTrRe, 
KtTrCo, and KtTrTo, as the sets of formulas: 

I( t  = {A[A4 [= A for every model  A4); 

KtTr = {A].A4 ~ A for every model  .£4 which satisfies the condit ion Tr}; 

KtTrTo = {A]Jt4 ]= A for every model  M which satisfies the conditions 
Tr and To}. 

Note tha t  the  condit ion To is equivalent to (Re and Co). Hence, by 
those four conditions,  we can characterize only the eight logics above. (For 
example,  KffteCoTo = KtTo.) 

3. Sequent c a l c u l i  

Sequents are defined inductively as follows: 

1. A formula  is a sequent; 

2. If F is a sequent then  P{F) and F{F} are sequents; 

3. If n >/ 0 and each Fi (1 ~< i ~< n) is a sequent,  then the sequence 
F1, F 2 , . . . ,  I'~ is a sequent.  
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In the  following, we will use letters F, A , . . .  for sequents.  
For a sequent F, we define the "meaning formula" F* inductively as 

follows: 

1. I f F = A ,  t h e n F * = A ;  

2. (P{A})* = o P A  *, and (F{A})* = [~FA.; 

3. I f n  > 0, then ( F 1 , F 2 , . . . , F n ) *  = F ~ V F ~ V . . - V F * .  I f n  = 0, then  
()* = (vo ^  v0). 

Suppose tha t  there is exactly one occurrence of the proposi t ional  variable 
Vo in a sequent F, and v0 is not a subformula of any other  formulas.  Then  
by F[A], we will mean  the sequent obtained from F by replacing vo by the 
sequent A. Also, by F[A0; A1], we will mean the sequent obta ined f rom F by 
replacing vi by Ai (i = 0, 1) provided tha t  bo th  v0 and Vl satisfy the above 
condit ion s ta ted  for v0. 

To denote a sequence of formulas, for example, A1, A2, • • . ,  A~ (n />  0), we 
will write A; and then OPA will mean the sequence OPAl, OPA2, . . . ,  OPAn. 

Now we define sequent calculi for our tense logics. 

First  we define the basic system SKt. 

The  axioms in SKt: v, ~v 

The  inference rules in SKt: "exchange" - -  "cut" as follows: 

F, A, II, E exchange ~ weakening F, A, A 
F, II, A, E F , A  F , A  

- -  contract ion 

F, F{A} turn  
"{r},a 

F , A  P , B  
A r ,(AA B) 

r,  {Aio  
F, [::]P A 

1~, P{A, A} oF 
FP{A},OPA 

F,A 
F 

r,'{a} 
tu rn  

F(ri,a 
F,A ,B  

V 
F, (A V B) 

r, qA} j 
F, c3F A 

r ,  F{A,A} 

rF{A},OFA 

F, -~A 
cut 

O F 

where - A  is inductively defined as: -~-~v = v, -~(A A B) = ( - A  V -,B),  
-~(A V B) = ( -A  A-~B), -~[:]PA = oP-.A, -~[~FA = oF--~A, - ,~PA = GP--~A, 
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and ~OFA = OF-~A. 
Now we consider the fo~owing inference rules: 

r, e{~,OpA} p 
p p O T r  

F, {A},O A 
1 ~, F{A, OFA} ~FTr 
r, ~{~}, O~A 

r[A--],~ r[~],~ r~,YCo 
r[<>rB, OPD, F"], C, PA, <>FC,"E 

F[A, ~PA],-B, <>FB F[C, OFC],-D, OPD 
F[<~F B, OP D , ~-'~, "~P A, C'FC , E 

r[-E], Y TrCo 

r[A--],~ r[V],~ T o  
r[OFB, ©PD], OPA, <~FC 

F[A, OPA], -B, OFB F[C, OFC], -D, ~PD TrTo 
F[<>FB, <>PD], ~PA, ~FC 

Then sequent calculi SKtTr, SKtRe, SKtCo, SKtTo, SKtTrRe, 
SKtTrCo, and SKtTrTo are defined as the systems obtained from SKt 
by adding the inference rules according to Table 1. 

s ~  

SKtTr 

SKtRe 

SKtCo 

SKtTo 

SKtTrRe 

SKtTrCo 

SKtTrTo 

0 

0 

0 

0 

0 
0 

0 

Table 1 

0 

0 

0 
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For example, SKtTrCo = SKt + ~PTr + <>FTr + TrCo. 

EXAMPLE OF PROOF IN SKtTrCo: 

V~ "~V 

v, ~ ,  oP~v,  F{} ~" 

~{v,-.~, <>~}, ~{} w. 
p turn ~{ ~{v,-.v, ~ ~v}} 

V~ -~V 

~, ~v, <>F~V; FO w 
P{v,-~,oF-v} t~n 

V~ -3V 

V, "-~V, F ( )  W. 

P{V, "iV} tllrn 
. (v , - ,v} ,  . ( }  w. 

TrCo F{ P{v}}, <>P~v, OF~v, ~v 

turn P{OP~v, oF-,v, ~v}, e{v} E] P 
P{~t"~v, ~F-~v, ~v}, OPv 

~P-,v, OF-,v, ~v, F{[]Pv} DF 
~P'~v~ oF-Tv~ -~V~ [3F[3Pv 

~P~v V ~F-~v V -~v V DF[3Pv 

THEOREM 3.1. (SOUNDNESS THEOREM) Let £ be arbitrary one of the 
eight logics. If  F is provable in S£, then F* E £. 

PROOF. We prove the following: Let 7"t be an inference rule in S£ where 
II1, . . . , I I~ are its upper-sequents (n=l,2 or 3), E is its lower-sequent, and 
E* ~ £ holds. Then H* ~ £ holds for some i. 

We distinguish cases according to 7~, and show only the following cases. 

C a s e  1 7~ is 

F, F{A} turn 
"{r},a 

If (P{F}, A)* ¢ £, then there is a model M = (T, R, V} such that M ~=t 
QPF* V A* (i.e. ,44 ~ t  C3PF* and 34 ~t  A*) for some t C T. This leads 
A4 ~s  F* and M ~ ,  o F/x* for some s E T such that sRt. Therefore we 
have (Y, F{A}). ¢ £. 

Case  2 7~ is TrCo, and of the form 

• I ,A,B,~ 'FB ~22,A,D,C, PD ~3,A, FTrCo ' 
P{ F{OFB, ~PD, F, r}, A}, A, (>PA, ~Fc,  E 
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where: 
¢~1 = P{ F{A, (>PA, P)A}; 

• 2= ~{ ~{c, <>Fc, r}z~}; 
• 3 = P{ F { E , F ) A } -  

If E* ¢ £:, (N is this lower-sequent), then there is a model M = (T, R, V> 
such that 

(1) M satisfies the conditions Tr and Co; 

(2) M ~:t N* for some t E T. 

By (2), we have 

• M ~:=t FIP(rIF(~ FB V OPD V F V F*) V A*), fl~[ ~=t A*,./t4 ~t ~PA, 
M V::t ~Fc ,  M ~J:t E; 

• .It4 ~=t' n F ( O F B v O P D V F V F * ) , A 4  ~t' A*; 

• M ~:t,, © FB, M ~:t,, ~PD, M ~t,, F, M ~t,, F*; 

for some t ~, t" E T such that t~Rt and ttRt n. By the condition Co, one 
of (tRt"), (t"Rt) and (t = t") holds. If (tRt") holds, then we have ~4 ~:t 
oP(f3F(C V ~Fc V F*) V A*) V A* V D V ~PD, and hence II~ ¢ £. The 
condition Tr is used for showing ./t4 ~:t,, oFC and .A4 ~t OPD. 
Similarly we have II~ ¢ £ if t 'Rt  and II~ ¢ £ if t = t ' .  • 

4. C o m p l e t e n e s s  a n d  c u t - e l i m i n a t i o n  

To prove the completeness theorem for our systems, we introduce eight other 
sequent calculi S2Kt, S2KtTr, S2KtRe, S2KtCo, S2KtTo, S2KtTrRe, 
S2KtTrCo, and S2KtTrTo. 

First we define S2Kt. 
The axioms in S2Kt: 

r[v, -v] 

The inference rules in S2Kt: "exchange" - -  "cut" as follows: 

F[II, E] exchange F[A,A] contraction 
r[r . ,  II] F[A] 

r[A] r[B] A r [A 'B]v  
r[A A B] r[A v B] 
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riP{a}] op r[F{A}] o F 
r[oPA] r[orA] 

r[P{A'A}] O e ex i t  r[P{A'A}] 
F[ P{ A }, O PA] r[  F{ A }, O FA] 

F[F{A}'A] 0 P enter F[P{A}'A] 
F[ F{A, OPA}] F[ P{A, O FA}] 

r[a] r[~A] cut 
r[] 

Now we consider the following inference rules. 

F[P{A'OPA}] O p exit Tr  
riP{a}, OPAl 

O F exit 

O F en te r  

r[F{A, OFA}] oF r[ r{ z~}, <>FA] exit Tr 

F[F{A}, OPAl oe 
F[F{A, OpA} ] enter Tr 

F[ P{A}, O FA] OF 
r[e{.% OVA} ] enter Tr 

F[A] OpRe F[A] O rRe 
rio PAl F[O FA] 

r[~; B-] r[~; D---] r[~; Y] Co 
F[OFB, OP D,-fi; OP A, OF C , EE,] 

r[--A, OPA;-B, OFB] F[-C, OFC;-D, OPD] 
F[~FB, OPD,-F; <>PA, ~FC, 

r[r; F--] T~Co 

r[~;~ r[~;D--t 7o 
F[~FB, ~PD; OPA, OFC] 

F[A, ©PA; -B, OFB] F[C,-~FC;-D, ©PD] TrTo 
r[OrB, OPD; OPA, OFC] 

Then sequent cMculi S2KtTr, S2KtRe, S2KtCo, S2KtTo, S2KtTrRe, 
S2KtTrCo, and S2KtTrTo are defined as the systems obtained from S2Kt 
by adding the corresponding inference rules according to Table 1 where 
(OPTr, OFTr) corresponds to (O P exit Tr, O tz exit Tr, 0 P enter Tr, O F 
enter Tr). For example, S2KtTrCo = S2Kt + O p exit Tr + OFexit Tr + 
OPenter Tr + OFenter Tr + TrCo. 
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LEMMA 4.1.  Let £ be arbitrary one of the eight logics. F is provable in S£  
if it is provable in $2£.  F is cut-free provable in S£ if it is cut-free provable 
in $2£.  

PROOF. For any axioms and inference rules in (cut-free) $2£,  we show 
tha t  the  same derivations can be done in (cut-free) S£, as follows: 

C a s e  1 For an axiom 

~F{v,~v,r},A},n 
in S2f_., we have a proof  in S£: 

V, ~V 

v, ~vl r, ~(i weakening 
F{v, _~v: F} turn  

F{v,_ v; F},A: F{ } weakening 

-P~F{V, -~V;':F'}, A } turn  

weakening 
"{F{~,-v,r},ai,n 

C a s e  2 For an inference rule 

~{~'{r}, A, ai ,n O F enter  P{'{r, <>eA}, a}, H 
in $2£,  we have a proof  in S£: 

"{F{r},A, A},H 

i exchange, turn,  exchange 

F{r}'A'A' v{II} exchange 

i exchange, turn,  exchange 

r, P{A, F{II}, A} 

r, <>'A, "{~, ~H}} exchange 

tu rn  P{ F{r, +PAl, A},II 
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The other cases are similar. 

To show completeness theorem, we need some definitions. 

For a sequent F, we inductively define a tree t(F) whose nodes are labeled 
by finite sets of formulas, and whose edges are labeled by either "P" or "F", 
in the following way: If F is a sequence of Ax,...,Am, P{II1},. . . ,  P{IIn}, 
F{E1},. . . ,  F{Ek} in some order, then t(F) is the tree in Figure 1. 

{AI,...,A,~} 

t ( I I J  t(II~) t(z~) t(r~) 

Figure 1 

For example, 

t(A, P{CP{F}, f{}}, B, F{ P{G,H}}, F{D, E}) 

is the tree in Figure 2. 

{A,B} 

{v} { } {D,E} 

{F} { } {a,H} 

Figure 2 
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We will use letters a , / 3 , . . ,  for nodes (or the sets of formulas associated 
with them).  In a tree, if a node a is a child of a node fi and the edge be tween 
a and fl is labeled by  P, then we say a is a P-child of/3. An F-child is 
defined similarly. For example, {C} is a P-child and {D, E}  is an F-child of 
{A, B} in Figure 2. If t(P) is obtained from t (A)  by adding some formulas 
to the set of formulas at some nodes and/or  adding some subtrees to some 
nodes, then we say t(F) is an extension of t (A).  The depth of a node a in 
a tree t (F) ,  denoted by d(a), is defined as the length of the pa th  from the 
root  of t (F)  to  a .  

Two  binary relations < and << between two sets of formulas are defined 
as follows: 

a < /3 ~:~ ((©PA E /3 =~ A • a) and (©FA • a =~ A e /3)) for any 
formula A. 

a <</3 ¢¢, ( ( ~ P A  • /3  ~ (}PA, A E a) and (VFA • a ~ (}FA, d E/3)) 
for any formula A. 

Note  tha t  (< is transitive. 

We define conditions ~ P T r  °, ~ F T r  °, ~PRe  °, ~FRe°,  Co °, TrCo °, To °, 
and TrTo  °, on a tree t(r), as follows: 

<}PTr ° : (a is a P-child of/3 =~ a <</3) for any nodes a,/3 in t(F).  

~ F T r  ° : (a is an F-child of/3 ~ / 3  << a)  for any nodes a,/3 in t(F).  

(}PRe ° : (<~PA • a =~ A • a) for any nodes a in t(F) and for any 
formula A. 

~ F R e  ° : ( ~ F A  E a =~ A E a) for any nodes a in t(r) and for any 
formula A. 

Co°: (~ </3 or/3 < a or a = /3 t )  for any nodes a,/3 in t(F).  

T r C o ° :  <</3 or/3 << or = Zt)  for any nodes in t ( r ) .  

To ° : (a  < /3  or/3 < a for any nodes a,/3 in t(F).  

TrTo  ° : (a <</3 or/3 << a for any nodes a,/3 in t ( r ) .  

( t"a =/3" means "a  and fi are the same sets".) 

Let F and A be sequents and n be a naturM number.  We say that  A is 
an n-saturation of F on Kt if the following conditions are satisfied: 

1. t (A)  is an extension of t(r); 
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2. For any nodes a,  j3 in 

(a) A A B E a = ~  

(b) A V B E a = ~  

t (A),  and for any formulas A, B,  

A E a or B E a; 

A E a and B E a; 

(c) DPA E a and d(a) <~ n =~ for some P-chi ld  7 of a ,  A E 7; 

(d) o F A  E a and d(a) <<. n =~ for some F-chi ld 7 of a ,  A E 7; 

(e) a is a P-child of fl ~ a </3;  

(f) a is an F-child of/3 =>/3 < a; 

3. Each formula in A is a subformula of some formula in F. 

Also, we say that  A is an n-saturation of F on f~ (£. = K t T r ,  K tRe ,  K tCo ,  
K tTo ,  I ( t T r R e ,  t ( , T r C o ,  I ( tTrTo)  if 

1. A is an n-sa tura t ion  of F on Kt; 

2. t (A)  satisfies the corresponding conditions listed in Table 1: i.e., for 
example, t (A)  satisfies ~ P T r  °, ~ F T r °  and T r C o  ° when £ =- K,  T r C o .  

LEMMA 4.2. Let n be a natural number and L be arbitrary one of  the eight 
logics. I f  a sequent F is not cut-free provable in sPry, then there is a sequent 
A such that 

, A i s  a n  n-saturat ion of  F on £.; 

• A is not cut-free provable in S2f~. 

PROOF. We consider only the case of L: = t ( t T r C o .  The other  cases 
are similar. 

Suppose that  a sequent F is not cut-free provable in S 2 K t T r C o  and is 
not  an n-sa tura t ion  of F itself. This means that  some of the conditions 2a - 
2f in the definition of n-sa tura t ion  on t(~ fail for some nodes a , /3  in t (F)  and 
some formulas A, B, or some of the conditions ~ P T r  °, GFTr°  and T r C o  ° 
fail for t(F).  Then to get an n-sa tura t ion  of F on K t T r C o ,  we extend F 
several times in the following manner: 

• If 2a fails, then we consider two sequents I~1 and F2 as follows: 

- -  F1 is obtained from F by adding the formula A to the node a. 

- -  F~ is obtained from F by adding the formula B to the node a.  

Because of the inference rule "A", either F1 or F2 is not cut-free  prov- 
able. Then as the required extended sequent, we take one of F~ which 
is not cut-free provable. 



Cut-free sequent calculi... 131 

If 2b fa~ls, then we extend F by adding the formulas A and B to the 
node a. This extended sequent is not cut-free provable because of the 
inference rule "V'. 

If 2c fails, then we extend F by adding the new P-child {A} to the 
node a. This extended sequent is not cut-free provable because of the 
inference rule ,,riP,,. 

• If ©PTr ° fails, then we define two sets of formulas as: 

a F =  {OFAI~FA E a} U {AI~FA E a} 

fiR = {~PAI~PA E ~} U {AI~PA E 13} 

and we extend F by adding a F to the node fl and adding /3P to the 
node a. This extended sequent is not cut-free provable because of the 
inference rules "~P exit", "O g enter", "~P exit Tr" and ,,~F enter 
Tr" . 

• If TrCo ° fails, then we define four sets of formulas as: 

aP = {~PA[OPA E a} U {A[OPA E a} 

a F = {0  FA[~ FA E a} U {AI~ FA E a} 

/3P = {OPAI~PA E/3} U {AI~PA E/3} 

/3F =- {OFA[C~FA E /3} U {A[~FA E/3} 

And we consider three sequents F1, F2 and F 3 aS follows: 

- -  F1 is obtMned from F by adding /3P to the node a and adding 
a g to the node/3. 

- -  F2 is obtained from F by adding/3F to the node a and adding 
O~ P to the node/3. 

- -  F3 is obtained from F by adding ~ to the node a and adding 
to the node/3. 

Because of the inference rule "TrCo", at least one of Fi is not cut-free 
provable. Then as the required extended sequent~ we take one of Fi 

which is not cut-free provable. 

• The other cases are similar and omitted. 
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In this process, we add only the subformulas of F, and no new child is added 
to a node whose depth is greater than n. Hence, after finite i terations of this 
process, we can get an n-sa tura t ion  of F on KtTrCo which is not  cut-free 
provable in S2K~TrCo. • 

LEMMA 4.3. Let £ be arbitrary one of the eight logics. I f  a sequent F is not 
cut-free provable in $2£ ,  then there is a model A4 of £ such that A/[ ~: F*. 
(We say ~/[ is a model of £ if, for example, it satisfies the conditions Tr 
and Co when £ = K~TrCo.) 

PROOF. By Lemma 4.2, we have an infinite sequence 

Fo, F1, F2, • . .  

of sequents such that  

• F0 = F; 

• F~ is not cut-free provable in $ 2 £  and is an n - sa tu ra t ion  of Fn_x 
(n  = 1 , 2 , . . . ) .  

Let a be a set of formulas. We say a is maximal in the sequence F0, F1, • • • 
if the following conditions are satisfied: a is the set associated with a node 
in t(Fk) for some k, and the set associated with the corresponding node in 
t(rk, ) remains to be (~ for all k ' /> k. The sets associated with the nodes in 
t(F~) are subsets of the set of all subformulas in F, which is of course finite. 
Hence, they cannot be expanded forever. It means that  the set associated 
with a node should eventually be expanded to a maximal one. 

Now we define a model A4 = (T, R, V) as follows: 

• T = {cJ a is a maximal set in the sequence r0,rl, . . .} 

{ : < / 3  when £ = K~,K~Re, KtCo, K~To 
• ~Rfl  ¢¢ <</3 when £ = KtTr,  K~TrRe, KtTrCo,  K tTrTo  

• V(v)  = {al  v ¢ a}. 

Then it is easy to verify that  ~4 is a model of £.  

By  induction on the length of A, we can show that  

A E a =v M V=~ A 

holds for any formula A and any set a in T. This leads 2~4 ~ F*. • 



Cut-free sequent calculi... 133 

Now, we show the completeness and cut-elimination for our systems. 

THEOREM 4.4. (COMPLETENESS THEOREM) Let E~ be arbitrary one of the 
eight logics. I f  r* E L:, then r is cut-free provable in both Sf. and S2F~. 

PROOF. By Lemmas 4.1 and 4.3. • 

COROLLARY 4.5. (CuT-ELIMINATION THEOREM) Let f. be arbitrary one 
of the eight logics. In SZ and S2L, the inference rule "cut" is redundant. 

PROOF. By Theorem 3.1, Lemma 4.1 and Theorem 4.4. • 

5. R e m a r k s  

(1) 
It is known that  Gentzen's sequent calculus LK is a dual system of the 

semantic tableau for classical logic. Likewise, our S2Kt is a dual system of 
the tableau system for I(t by Rescher and Urquhart [2]. 

A tableau system for KtTrCo (the logic of "linear time") is also intro- 
duced in [2]. This tableau system and our S2K~TrCo differ in the ways of 
axiomatizing "linearity": the former has simpler rules which directly reflect 
"linearity", and the latter has two separate kinds of inference rules express- 
ing "transitivity" and "connectedness". This may be viewed as an advantage 
of our formulation, since one cannot express "transitivity" and "connected- 
ness" separately by Rescher and Urquhart 's  method. On the other hand, 
"backwards linearity" and "forwards linearity" cannot be separated by our 
way, whereas they can by Rescher and Urquhart 's  method. 

(2) 
It  is clear that  we can obtain a sequent calculus (modified LK) for propo- 

sitional classical logic as the subsystem of SKt such that:  

Axioms: the same as SKt. 

Inference rules: exchange, weakening, contraction, cut, A, V. 

It can be shown that  not only the rule "cut" but "contraction" is redun- 
dant  in this system. But "contraction" is necessary in our sequent cMculi 
for propositional tense logics. Indeed, the formula 

[:]POFv x/oPf']F-~v V <>P(<}Fv A <~F-~v) 
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is provable in S2Kt as follows: 

: p  P( F(v,~v)},¢ 

P( F(v},  OFV A oF-~v}, 

O F exit 

A 

oPOFv, QP[3F~v, ~P(OFv A OF~v), oP(OFv A ~F-~v) contraction 
F'IP[:]FV, [:]PF]F-~v, oP(oFv A OF-~v) 

F1POFv V oP[z]F-~V V oP(OFv A OF-~v) 

where  • = P{ F{-~v), OFv  A oF-~v}  

P is 

X, P{ F( -"v, v} } exchange 

O F exit x, P( F{_.,}, <>'v} 

P{ F{v)}, P( r(-v}}, v,-~ 
P{ F{V} }, v, P{ F{-~V} }, ~v exchange 

O F enter x, P{ ~{-~,}}, ~ 
O F enter 

X, P{ F{-~V), OF~v} 

A 

x ¢ 

and X = P( F{v}, O Fv) 

But this is not provable without "contraction". 
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