Ryo KASHIMA Cut—Free Sequent Calculi
for Some Tense Logics

Abstract. We introduce certain enhanced systems of sequent calculi for tense logics,
and prove their completeness with respect to Kripke-type semantics.

1. Introduction

In this paper, we consider propositional tense logics which have four modal
(tense) connectives OF  OF  OF and OF representing “at all past times”,
“at all future times”, “at some past times” and “at some future times”,
respectively. First we define some tense logics by considering conditions
“transitive”, “reflexive”, “connected” and “total” on Kripke-type models.
Then we present extended Gentzen—type sequent calculi for these logics. We
prove the completeness theorem for our sequent calculi without cut, and as
its corollary, we show the cut—elimination theorem for them.

The novelty of our systems is that the sequents we deal with are not
the usual ones but they are “nested”!. So at first sight it may look a little
complicated, but in this way we can get cut—free systems. (To the author’s
knowledge, there has been no other cut-free sequent calculus for such tense
logics.)

In Section 2, we define our formulas, Kripke-type models, and eight
tense logics. In Section 3, we present eight sequent calculi for the eight
tense logics, and prove the soundness theorem for them. In Section 4, we
introduce eight other sequent calculi for the eight tense logics, and prove the
completeness theorem for the cut—free parts of them. Moreover we prove that
those calculi are equivalent to the sequent calculi in the previous section. The
cut—elimination theorem is shown as their corollary. The difference between
the sequent calculi in the two sections is that the inference rules in Section 3
operate always on the root of a nested sequent, and inference rules in Section
4 operate on all the nodes in a nested sequent. Due to this difference, the
former is suitable for proving the soundness theorem, and the latter for
the completeness theorem. In Section 5, we give a remark on the relation

1This is a refinement of the method invented by Sato [3] for modal logic S5. This
technique is independently discovered by Bull [1] for dynamic logic.
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between our systems and semantic tableaux, and also on the inference rule
“contraction”.

2. Tense logics

Our language consists of the following symbols:
¢ propositional variables: vg, v1,..
e logical connectives: A,V,-;
¢ modal connectives: OF , OF  OF OF,
e auxiliary symbols: (,), F{, F{, }, comma.
We define formulas of our systems as follows:
1. If v is a propositional variable, then v and -v are formulas;

2. If A and B are formulas, then (A A B), (Av B), 0F A, OF A, OGP A,
and OF A are formulas.

Note that negation symbol — is allowed only in front of propositional vari-
ables. We will use letters w,»,... for propositional variables and A, B,...
for formulas.

A model is a triple (T, R, V) such that:
1. T is a non—empty set (of moments of time);
2. R is a binary relation on T (the “earlier-later relation”);

3. V is a function assigning to each propositional variable v a subset V' (v)
of T.

For a formula A, a model M = (T, R,V) and a time ¢ in T, the relation “4
is true at ¢ in M”, denoted

M Izt Aa

is defined inductively as follows:

M v te V(o)
Mz &t € V(o)
M (AAB) & M= A and M |, B;
Mz (AVB) & Mz Aot M|z, B;
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e M= 0PAS (sRt = M|=; A) for all s € T;
e M 0OFA & (tRs = M= A) for all s € T;
e M5, OPA & (sRt and M |=; A) for some s € T}
e M, OFA & (tRs and M |=; A) for some s € T.

If M |=; A holds for every ¢ in T, then we write M = A.

We consider the following four conditions T'r, Re,Co and To on a model
(T,R,V):

Tr : ((sRt and tRu) = sRu) for all s,t,u in 7. (Transitive)
Re : (tRt) for all t in T'. (Reflexive)

Co : (sRtortRsors=t)forall s,¢tin 7. (Connected)

To : (sRtor tRs) for all s,tin T. (Total)

Then we define eight tense logics K;, KI'r, K;Re, K;Co, K;To, KT'rRe,
K TrCo, and K, TrTo, as the sets of formulas:

K; = {A|M |= A for every model M};
K:Tr = {AIM |= A for every model M which satisfies the condition 7'r};

K,TrTo = {AJM |= A for every model M which satisfies the conditions
Tr and To}.

Note that the condition To is equivalent to (Re and Co). Hence, by

those four conditions, we can characterize only the eight logics above. (For
example, K;ReCoTo = K.To.)

3. Sequent calculi
Sequents are defined inductively as follows:
1. A formula is a sequent;
2. If T is a sequent then P{T'} and F{T'} are sequents;

3.If n > 0 and each I'; (1 < ¢ < n) is a sequent, then the sequence
I'y,Ts,..., T, is a sequent.
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In the following, we will use letters I', A, ... for sequents.
For a sequent I', we define the “meaning formula” I'* inductively as
follows:

1. fI' = A, then I'* = A4;
2. (P{A})* = 0P A% and (F{A})* = OF A%

3. If n > 0, then (T',T,...,Tp)* =T3vIsV..-vI%. If n = 0, then
() = (wo A —wo).

Suppose that there is exactly one occurrence of the propositional variable
vg in a sequent I, and vp is not a subformula of any other formulas. Then
by T'[A], we will mean the sequent obtained from T by replacing vy by the
sequent A. Also, by T[Ag; Ay}, we will mean the sequent obtained from T’ by
replacing v; by A; (i = 0,1) provided that both vp and v satisfy the above
condition stated for vyg.

To denote a sequence of formulas, for example, A;, As, ..., A, (n > 0), we
will write 4; and then OP A will mean the sequence OGP Ay, OF A,, ..., OFA,,.

Now we define sequent calculi for our tense logics.

First we define the basic system S K.

The axioms in S K;: v, 0
The inference rules in SK;: “exchange” — “cut” as follows:
w xchange weakeni Ay contracti
T LAY e g T A eakening v ntraction
F P
I};’ {A} turn 1;’ {A} turn
{r}.A {r}, A
A I',B I'A, B
T',(AA B) I',(Av B)
F, P{A} P F’ F{A} F
r,ofA r,ofa
P) P{A’A} P F’ F{AvA} F
P P < F F %
I'{A}, 074 I “{A},0"A
T,A Ir,-A
————I-;——— cut

where —A is inductively defined as: --v = v, =-(AA B) = (-AV —B),
~(AVB) = (wAA-B), ~OF A = OP-A, -OF A = OF A, -OF A = OF - 4,
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and -OF A = aF -4,
Now we consider the following inference rules:

T, P{A, o 4} T, F{a,0F 4}

I Gl oF T
T, P{AL, o4 T, Hanofa

r,A
r,of4 r,ofF4

I{4l,B TI[C|,D I‘[E],Fﬂo
[[OFB,OPD,F|,OFP A, OFC,E

OF Re

I{4,0FA],B,OFB  TI[C,oFC),D,oFD T[E),F

S — 3. — TrCo
T[OFB,OPD,F|,OF A, OFCE

I[A],B  T[C],D
T[CFB,OPD], OP A, OFC

I'[A,OFA], B,OFB I[C,<FC), D,OFD
T[OFB, OF D], OFP A, OFC
Then sequent calculi SK;Tr, SK;Re, SK:Co, SK;To, SKTrRe,

SKTrCo, and SK;TrTo are defined as the systems obtained from SK;
by adding the inference rules according to Table 1.

TrTo

OPTr | OFRe
OFTr | OFRe | Co |TrCo|{To |TrTo
SK;
SK,Tr O
SK:Re O
SKCo O
SKTo O
SK;TrRe| (O O
SKTrCo| (O O
SKTrTo| QO O

Table 1
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For example, SK;TrCo = SK; + OFTr + OFTr 4+ TrCo.

EXAMPLE OF PROOF IN SKITr(o:

v, v, - v,
w. w.
v, W, <>P—:@), F{} v, ", OF"!’(), F{} v, oY, {} v

turn

turn

Plo, ~w,0F -} . Plv, v, OF v} . Pl ooy
P{‘E), -, QP—!’U}, P{} P{’U, -y, OF-\’U}a P{} z {’1), I {}W

—w},
F{ P{’t}, -0, <>P—:?)}}mm F{ P{v, -, <>F-m}} turn Tmtum
F{ P{’I)}}, QP“*?}, OF—VU, -

<>Pﬁ?), <>F—r?), -v, F{ P{v}}
P{OP-wv, OF p, -w}, P{v}
PLOP—p, OF -, w},0Fp

TrCo

turn

af

OFP -, OF -, -, F{Upv} oF
OF p, OF —p, -, 0F Oy

SFPapv OF apv —o v OFOFy

THEOREM 3.1. (SoUNDNESS THEOREM) Let £ be arbitrary one of the
eight logics. If T' is provable in SL, then T* € L.

ProoF. We prove the following: Let R be an inference rule in SC where
I4,...,IL, are its upper-sequents (n=1,2 or 3), T is its lower-sequent, and
X* ¢ L holds. Then II: ¢ L holds for some 1.

We distinguish cases according to R, and show only the following cases.
Casel Ris

If (F{T},A)* ¢ L, then there is a model M = (T, R,V) such that M |,
OFfT* v A* (i.e. M £ OFT* and M |£; A*) for some t € T. This leads
M £, T* and M £, OF A* for some s € T such that sRt. Therefore we
have (T, F{A})* ¢ L.

Case 2 R is TrCo, and of the form

®,A,B,OFB  ®,,A,D,0FD  ®3,AF

TrC
PF(GFB OFD, F,T}, AL A, OF A, OF C. E
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where:
= P{ F{Aa <>PA$ F}A};
¢, = F{H{C,oFC,T1AY;
@3 = F{F{E,I'}A}.
If ©* ¢ £, (¥ is this lower—sequent), then there is a model M = (T, R, V)
such that
(1) M satisfies the conditions T'r and Coj;
(2) M |y X* for some t € T
By (2), we have

o M £, OP(OF(OFBVOPDV FVT*)V A*), M [ A*, M £ OF A,
M £ OFC M A E;

L] M I#t/ DF(OFB \ <>PD VFvV F*),M [,‘[:tl A*,
e M I?é:t” QFB,M I]-ét“ OPD,M bét” F,M l#t” F*,

for some t',¢" € T such that Rt and ¢'Rt". By the condition Co, one
of (tRt"), (t"Rt) and (t = t") holds. If (¢tRt") holds, then we have M [£,
aP(aF(C v OFC VI*) vV A*)V A*V DV OFD, and hence 11§ ¢ £. The
condition Tr is used for showing M [y OFC and M £, OFD.

Similarly we have IIf ¢ £ if "Rt and II§ ¢ L if t = t". ]

4. Completeness and cut—elimination

To prove the completeness theorem for our systems, we introduce eight other
sequent calculi S2K;, S2K:Tr, S2K:Re, S2K;Co, S2K;To, S2K:TrRe,
S2KTrCo, and S2K;TrTo.

First we define S2K;.
The axioms in §2K;:

I'[v, ]
The inference rules in §2 K;: “exchange” — “cut” as follows:
%I% exchange PE{?A?] contraction

418 | T[A, B]

T[A A B] TAVE] *
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I[*{A}]

P F
T[O” 4] N r[af A] .

I["{a, 4}] . A AY  or
anera ¢ % Ty era O
I{"{A}, Al P I[HAYL Al oF

m O enter F{P{A, OFA}] & nter
ORI
Now we consider the following inference rules.
A, oFay p I, O7AY p
m O exat T'r F[F{A},QFA] O exit T'r
I["{A},0"A] p T[P{A}, O Al p o
m &7 enter Tr F[P{A,OFA}] O enter T'r
UA] Py, I4]  .r
tofa ~ Re pora O R
I[A;B] T[C;D] T[E;F]

T[OFB,OFD, F; OP A, OFC, E)

I[4,OPA;B,OFB] I[C,OFC;D,oPD)
[[OFB,OPD,F; OFP A, OFC, E)

T[—E; _F] TrCo

I[4;B] T[C; D]

T[OFB, 0P D; OF A, OF(C]
I'[4,0FPA; B, OF B] I[C,0FC; D, 0P D]

T[OFB,OFP D, OF A, OF ()

Then sequent calculi S2K,Tr, S2K;Re, S2KCo, S2K;To, S2K,TrRe,

S2KTrCo, and S2K,TrTo are defined as the systems obtained from §2K;

by adding the corresponding inference rules according to Table 1 where

(OFTr, OFTr) corresponds to (OF exit Tr, OF exit Tr, OF enter Tr, OF

enter Tr). For example, S2KTrCo = S2K; + OF exit Tr + OFexit Tr +

OPenter Tr + OFenter Tr + TrCo.

TrTo
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LEMMA 4.1. Let L be arbitrary one of the eight logics. T is provable in 5L
if it is provable in S2L. T is cut—free provable in SL if it is cut~free provable
mn S2L.

Proor. For any axioms and inference rules in (cut—free) §2L, we show
that the same derivations can be done in (cut—free) SL, as follows:
Case 1 For an axiom
P{ F{”? v, r}’ A}7 I
in S2L, we have a proof in SL:

v, =
e W@ keI,
v, v, F7 P{} ; &

urn
F{vv CH F}

weakening

F{v7 U, T}, Aa F{}
P{ F{’I),-!’U,F},A} .
P{ F{'Ua -, T}a A}a il Weakenlng

turn

Case 2 For an inference rule
PHr}), A, AT
PIHT, oF A}, AT
in §2L, we have a proof in 5L:
AT} A AT

OF enter

: exchange, turn, exchange

FiT}, A, A, F{IT)
Hry, A, Fay, A

exchange

: exchange, turn, exchange

I, "{A, {1}, A}
TN R
T oPA PIA, F{II}} exchange
T, OF Ay, A, gy
POFT, 0P A}, Ay
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The other cases are similar. u

To show completeness theorem, we need some definitions.

For a sequent T', we inductively define a tree #(I") whose nodes are labeled
by finite sets of formulas, and whose edges are labeled by either “P” or “F”,
in the following way: If T is a sequence of Ay,..., Am, P{I1},..., {1},
{54}, ..., ¥{Z} in some order, then #(T) is the tree in Figure 1.

HIL) () HE) (D)

Figure 1

For example,
t(A, {CH{F}, (3}, B, "{{G, H}}, *{D, E})

is the tree in Figure 2.

{C} {} {D, E}
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We will use letters a, 3, ... for nodes (or the sets of formulas associated
with them). In a tree, if a node a is a child of a node 8 and the edge between
a and § is labeled by P, then we say « is a P-child of 8. An F-child is
defined similarly. For example, {C} is a P—child and {D, F} is an F-child of
{A, B} in Figure 2. If ¢(T') is obtained from t(A) by adding some formulas
to the set of formulas at some nodes and/or adding some subtrees to some
nodes, then we say #(I') is an eztension of t(A). The depth of a node a in
a tree t(I'), denoted by d(a), is defined as the length of the path from the
root of ¢{(I') to a.

Two binary relations < and < between two sets of formulas are defined
as follows:

a<fBe (OfAe B => Aca)and (OFA € a= A€ f)) for any
formula A.

aLpfe((OfAepf=OPA Aca)and (OFAca= OFA,AcpB))
for any formula A.

Note that < is transitive.
We define conditions OFTro, OFTro, OFRe?, OF Re®, Co°, TrCo°, To®,
and TrT0°, on a tree t(T'), as follows:

OPTre : (ais a P—child of 8 = o < ) for any nodes «, 8 in #(T).
OFPre : (o is an F-child of 8 = 8 < ) for any nodes «, 3 in ¢(T).

OFRe® : (OFA € a = A € a) for any nodes « in t(T) and for any
formula A.

OFRe° : (OFA € o = A € a) for any nodes a in #T') and for any
formula A.

Co®:(a < forf<aora=ff)for any nodes o, 3 in #(T').
TrCo®: (e« f or f € aor a = 1) for any nodes o, 3 in #(T').
To° :(a < B or B < afor any nodes «, § in ¢(T').

TrTo° : (e € B or f < « for any nodes a, 3 in #(T).

(t“a = f” means “a and J are the same sets”.)

Let ' and A be sequents and n be a natural number. We say that A is
an n-saturation of I' on K, if the following conditions are satisfied:

1. t(A) is an extension of ¢(T');
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2. For any nodes a, 8 in ¢{(A), and for any formulas A, B,
() ANBc€a=AcaorBEc€a;
(b)) AvVBea=Acaoand Be o
(c) 0P A € @ and d(a) < n = for some P-child y of a, A € ;
(d) OF A € @ and d(a) < n => for some F~child v of @, A € v;
(e) ais a P—child of 8 = a < G
(f) ¢ is an F-child of 8 = 8 < oy

3. Fach formula in A is a subformula of some formula in T'.

Also, we say that A is an n-saturation of I on L (L = KT'r, K:Re, K:Co,
K.To, KiTrRe, K,TrCo, K;TrTo) if

1. A is an n—saturation of I on Ky

2. t(A) satisfies the corresponding conditions listed in Table 1: i.e., for
example, t(A) satisfies OPTr°, OGFTr® and TrCo° when £ = K, I'rCo.

LEMMA 4.2. Let n be a natural number and L be arbitrary one of the eight
logics. If a sequentT' is not cut—free provable in S2L, then there is a sequent
A such that

o A is an n-saturation of I on L;
o A is not cut-free provable in S2L.

Proor. We consider only the case of £ = K;TrCo. The other cases
are similar.

Suppose that a sequent T is not cut—free provable in S2K;TrCo and is
not an n-saturation of I itself. This means that some of the conditions 2a —
2f in the definition of n—saturation on K fail for some nodes a, § in ¢(I') and
some formulas A, B, or some of the conditions OFTr, OFTr® and TrCo°
fail for ¢(I'). Then to get an n—saturation of I' on K;TrCo, we extend T
several times in the following manner:

o If 2a fails, then we consider two sequents I'y and I'y as follows:
— T'; is obtained from I' by adding the formula A to the node a.
— I'y is obtained from I' by adding the formula B to the node a.
Because of the inference rule “A”, either I'y or I'; is not cut—free prov-

able. Then as the required extended sequent, we take one of T'; which
is not cut—free provable.
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o If 2b fails, then we extend I' by adding the formulas A and B to the
node a. This extended sequent is not cut—free provable because of the
inference rule “v”.

o If 2c fails, then we extend I' by adding the new P-child {A} to the
node «. This extended sequent is not cut—free provable because of the
inference rule “0”,

o If OPTr° fails, then we define two sets of formulas as:
of = {OFA|OFA € a} U {A|OFA € a}

BY = {OPA|OFA e BYu{A|OP A € 6}

and we extend I' by adding o to the node 8 and adding 5% to the
node «. This extended sequent is not cut—free provable because of the
inference rules “OF exit”, “OF enter”, “OF exit Tr” and “OF enter
Tr”.

o If TrCo® fails, then we define four sets of formulas as:
of = {OFPA|OFPA c a} U{A|OFA € a}

of = {OFAIOFA € a} U {4]0F A € o}
BF = {OFA|CPA e pyu{A|oFA e B)
BF = {OFAIOF A e pyu{a|oFA e b}

And we consider three sequents I';, I's and I's as follows:

— T, is obtained from I' by adding 8% to the node o and adding
of to the node .

— T, is obtained from T' by adding 8% to the node « and adding
af to the node 3.

— I's is obtained from I' by adding § to the node & and adding o
to the node f.

Because of the inference rule “T'rCo”, at least one of I'; is not cut—free
provable. Then as the required extended sequent, we take one of T;
which is not cut—free provable.

o The other cases are similar and omitted.
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In this process, we add only the subformulas of I', and no new child is added
to a node whose depth is greater than n. Hence, after finite iterations of this
process, we can get an n—saturation of T on K;TrCo which is not cut—free
provable in S2K,TrCo. |

LEMMA 4.3. Let L be arbitrary one of the eight logics. If a sequent T is not
cut—free provable in S2L, then there is a model M of L such that M [£ T*.
(We say M is a model of L if, for example, it satisfies the conditions Tr
and Co when £ = K;TrCo.)

ProoF. By Lemma 4.2, we have an infinite sequence
To,Ty,T,...
of sequents such that
e I's=T;

¢ T',, is not cut—free provable in §52£ and is an n—saturation of ',
(n=1,2,...).

Let a be a set of formulas. We say « is mazimal in the sequence I'g, Ty, ...
if the following conditions are satisfied: « is the set associated with a node
in ¢(I'y) for some k, and the set associated with the corresponding node in
t(T'ys) remains to be a for all ¥’ > k. The sets associated with the nodes in
t(T,,) are subsets of the set of all subformulas in T', which is of course finite.
Hence, they cannot be expanded forever. It means that the set associated
with a node should eventually be expanded to a maximal one.

Now we define a model M = (T, R, V) as follows:
o T = {a|a is a maximal set in the sequence I'g,T'y,...}

. QR,B & {a < /6 When C = I(t7KﬁRethCO,K£T0
a L B when £ = K{Tr,KTrRe, K{TrCo, K{I'rTo

e V(v)={a|v¥a}.
Then it is easy to verify that M is a model of L.
By induction on the length of A, we can show that

Aca=s> MEA

holds for any formula A and any set o in 7. This leads M [& I'*. u
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Now, we show the completeness and cut—elimination for our systems.

THEOREM 4.4. (CoMPLETENESS THEOREM) Let L be arbitrary one of the
etght logics. If T* € L, then T is cut—free provable in both SL and S2L.

Proor. By Lemmas 4.1 and 4.3. |

CoROLLARY 4.5. (CuT-ELIMINATION THEOREM) Let L be arbitrary one
of the eight logics. In SL and S2L, the inference rule “cut” is redundant.

Proor. By Theorem 3.1, Lemma 4.1 and Theorem 4.4. n

5. Remarks

(1)

It is known that Gentzen’s sequent calculus LK is a dual system of the
semantic tableau for classical logic. Likewise, our S2K; is a dual system of
the tableau system for K; by Rescher and Urquhart [2].

A tableau system for K;TrCo (the logic of “linear time”) is also intro-
duced in [2]. This tableau system and our S2K;TrCo differ in the ways of
axiomatizing “linearity”: the former has simpler rules which directly reflect
“linearity”, and the latter has two separate kinds of inference rules express-
ing “transitivity” and “connectedness”. This may be viewed as an advantage
of our formulation, since one cannot express “transitivity” and “connected-
ness” separately by Rescher and Urquhart’s method. On the other hand,
“backwards linearity” and “forwards linearity” cannot be separated by our
way, whereas they can by Rescher and Urquhart’s method.

(2)
It is clear that we can obtain a sequent calculus (modified LK) for propo-
sitional classical logic as the subsystem of S K, such that:

Axioms: the same as SK;.
Inference rules: exchange, weakening, contraction, cut, A, V.

It can be shown that not only the rule “cut” but “contraction” is redun-
dant in this system. But “contraction” is necessary in our sequent calculi
for propositional tense logics. Indeed, the formula

ofofy v ofalf - v OF(OFy A OF-w)



134 R. Kashima

is provable in S2K; as follows:

: P P{ F{v,—m}}’q) F
P{F{p},0Fv},@  P{F[y} OFw),®
PUFGY, OF o A OF -0}, @

exit

A

ofafy, afof -, OF(OF v A OF ), OF (OF v A OF -w)

contraction
ofofv, ofaf -w, OF (OFv A OF-w)

ofofyv ofof - v OF (OFv A OF-w)

where ® = P{F{-v}, OFp A OF -}

Pis
PN e
X, F{ v, }) o PIFLYY, v, F{ {0}, o :XC ange
m g " P{ F{ﬁ_lv}}’_lv O enter

F

OF exit enter

% T}, SFo) P o], o3 ¢

P(F(v}, 0F v}, P{F{-0}, OF v A OF =)

X ®
and x = P{H{v},0Fv}

But this is not provable without “contraction”.
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