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DRAG OF POROUS CYLINDERS IN A VISCOUS FLUID AT
LOYW REYNOLDS NUMBERS

I. B. Stechkina UDC 532.516

The problem of flow past a permeable cylinder at low Reynolds numbers is
of interest for the solution of a number of problems in chemical technol-
ogy in, for example, the design of porous electrodes and porous catalysts
and in the calculation of nonstationary filtration of aerosols by fibrous
filters. In the present paper, we solve the problem of transverse flow
of a viscous fluid past a continuous cylinder in a porous shell and, in
particular, in the case of a porous cylinder under conditions of con-
strained flow (system of cylinders) and an isolated cylinder at arbitrary
permeability. The analogous problem of Stokes flow past permeable spheres
has been solved in a number of papers [1-3].

1. Formulation of the Problem

We consider stationary flow of a viscous incompressible fluid past a system of
cylinders with porous shells placed at right angles to the flow at small Reynolds numbers.
To describe such a system, we use the cell hydrodynamic model of [4]: we consider plane
motion of fluid past a cylinder only in a region bounded by a circle of radius p; = aa'l/z,
where a is the cylinder radius and o is the fraction of the volume (area) occupied by
the solid cylinders (Fig. 1). The cylinder is surrounded by a porous permeable cylindrical

shell of radius pt = apy- The asterisk denotes the dimensional quantities.

In the region outside the porous cylinder (region I), the motion of the fluid is
described by the equations of hydrodynamics in the Stokes approximation, and in the region
of the porous shell (region II) by the generalized Darcy equation [2, 5]:

gfad p1=AV1, div V1=O . (1 . 1)
grad po=Ava.—s*v,, div vo=0 (1.2)
vsp=0, v2e=0 for p=1 (1.3)

(1.4)

Vip=Vap, Vig=V20, Tpo=Tzps P1=P2 for p=pm

Here, V = v*/v. is the dimensionless flow velocity, Vo is the flow velocity at
infinity, p = p*a/uv_ is the dimensionless pressure, u is the dynamic viscosity, 6 and
= p* i T i 2_gt is th bility of th ro
p p*/a are dimensionless polar coordinates, s*=a?/x, ¥ is e permeability o e porous
shell, and T are the tangential components of the viscous stress temsor. The subscripts
1 and 2 are appended to the variables in regions I and II, respectively.

2. Solution in Region I

Outside the porous cylinder, where Egqs. (1.1) hold, the flow function W satisfies
the following equation and boundary cond1t1ons for p = o~
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As the conditions on the cell boundary, we have chosen Kuwabara’s conditions [6].
The general solution of Eq. (2.1) can be written, using the boundary conditions, in the
form

4
W, (p,6) = 01 (p)sin 0= {—‘ +Byp+Cipln p+Dypd }sin 8
P _

C1 Ci C,a 1 (2 .2)
Bi=1-dg+—ha+—, D=-——r, P1=~2C4 (ocp+—~— cos §
2 4 4 1}
3. Solution in Region II
In the region of the porous shell, the flow function Wz satisfies the equation
AAY ,—s?AY ;=0 3.%1)

Solving Eq. (3.1) by separating the variables (Wz(p, 8y = Qz(p)sin 9) and using the
boundary conditions (1.3), we obtain

Azl (sp) B,K, (sp) Cop Dy Ayly(s) Cas
0z (p)=- = Tt ——t—, By ——
& s 2 e Ka (S) Kg(s)
- (3.2)
4 K, (8) i Czp D,
=" 4 — - —— 2
oy LK) = K@) + G { o } , pr=—st { T } cos 8

Here, Io(s), Il(s), Ko(s), and Kl(s) are modified Bessel functions of imaginary
argument. The coefficients Ay, €y, A2' and C, can be found from the conditions (1.4) of
matching of the solutions on the boundary of regions I and II. The equations for de-
termining these coefficients are not given here because of their length, but their values
can be found for each particular value of the parameters s and o. The force acting on
unit length of the cylinder with the porous shell is determined by the value of the co-
efficient Clz

F=4np.voC, (3.3)

4. Porous Cylinder

We now consider the simpler case when the cylinders are completely porous (a = 0)
and have packing density B = p%/p%. As characteristic length, we now choose py, and
divide all iinear dimensions by this radius. The flow function in region II has the form

C Anl
¥o,0)= {20 - ding (4.1)

s
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The coefficients B, and D, are zero, since the function ¢_(p) must be bounded at the
origin. The functionvél(p) is determined, as before, by (2.2). From the conditions (1.4)
of matching of the solutions on the surface of the porous cylinder, all the unknown co-
efficients can be determined:

T 201-p) I -
m=——{bu£—~LjLI@)}a, 2=_EEJ2Q, Q=ﬁgﬂlq
2 §2 11(8) Ii(s) s?
o q 2 —p)2l, -1 (4.2)
o [ g B DO
2 4 4 sI,(s) s}

The parameter s is inversely proportional to the permeability of the porous cylinder,
and a model of the structure of the porous cylinder must be gpecified if it is to be
particularized. '

The force acting on unit length of the porous cylinder is

F 1 3 2 (1=p)?L 4yt
=4:r|:{ B U +—2-} (4.3)

-—hp—-—+p—-—+
Woo 2 P A P 4 sIy(s) s

r

In the limit s > oo, this goes over into Kuwabara’s formula for an impermeable
cylinder [6]. 1In Fig. 2, we have plotted F/uv, as a function of s for 8 = 0.05, 0.1, and

0
0.15 (curves 1, 2, and 3, respectively).

5. Isolated Cylinder

We can solve the problem for an isolated porous cylinder similarly. In this case,
in region I the flow function near the cylinder takes the form

¥, (p, 8)={—aspIn p+aip+a.p—*} sin 8 (5.1)

The velocity components far from the cylinder are

cos 0+ 4 Re 0 K Re 0+K Re
vp= ¢ - —exp { — p cos — + —
g {pBe p(!gf’_"l[“(“)m (4")]}

Re Re 2avo
v9={—1+cexp(——pc059) K, (_p sin@, Re=+———
4 4 v

(5.2)

Here, v is the kinematic viscosity.

From the conditions of matching of the flow fields near and far from the cylinder,
the expression (4.1) for the flow function in region II, and from the conditions (1.4),
we obtain

02 Ang_ (S)
c=ay, a;=1+ao+aoIn s 1+ao+apIn Fly=— p ———
~ YBRe Y Re 2 s2
AzIz(s) A2 S"‘Cz (5 .3)
G+ = —— | hay=— — (L, (s) + I;(s)}, 2ep=— ——
s 2 2
Here, y = 0.5772 is Euler’s constant.
Soiving this system for a;, we obtain the drag
F 1 8 L(s 4 3!
— =4l —+m b0 2 (5.4)
Koo 2 YRe  sli(s) 52

In the 1limit s > oo, this expression goes over into the well-known expression for
the resistance of a cylinder to a viscous flow [7]. Note that the result (5.4) differs
from the result of [2], in which the expression for F was obtained for a cylinder with
small permeability (s > 1), by numerical factors, which is due to errors in the formula-
tion of the boundary conditions in [2].
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PULSATING FLOW OF A NEWTONIAN FLUID THROUGH AN
AXISYMMETRIC TUBE WITH A LOCAL DILATATION

S. G. Mirolyubov UDC 832.516.5.013.3

INTRODUCTION

In recent years, numerical simulations of the flow of blood through large blood
vessels as a viscous Newtonian fluid have been made. Among the most frequent pathological
alterations of the vessels we can mention local constrictions and dilatations, which are
due primarily to atherosclerosic disease of the vessel wall. Such constrictions and
dilatations, which are called stenoses and aneurysms, respectively, can have a significant
influence on the flow of blood in their neighborhood, cause changes in the pressure gra-
dient, and also facilitate thrombosis.

In [1], the author made a numerical analysis of the pulsating flow of blood, regarded
as a Newtonian fluid, through an axisymmetric vessel with a stenosis. The paper [1] also
contains a brief bibliography of papers devoted to the solution of problems of the flow
of 'a viscous fluid in the region of a local constriction of the flow region. A calcula~
tion of the oscillating flow in a plane channel with a local dilatation was made in [2].
Experimental investigations into the flow of fluid through glass models of aneurysms are
reported in [3, 4].

In the present paper, we give the results of numerical solution to the problem of
the pulsating flow of blood, treated as a Newtonian fluid, through a rigid axisymmetric
dilatation of the vessel (aneurysm) with an arbitrary, continuously differentiable unique
dependence of the wall radius Rw on the longitudinal coordinate Z.

1. The motion of blood in large vessels can be well described by the Navier—Stokes
equations with the conditions of no penetration and no slip of the fluid on the wali. 1In
the case of an axisymmetric configuration of the vessel wall, and also axial symmetry of
the boundary conditions at the entrance and exit to the considered region, the problem
can be conveniently solved in cylindrical coordinates in the dimensionless variables of
the flow function § and vorticity function w.

As was shown in [1], it is expedient to solve the determining equations numerically
in a system of coordinates made dimensionless as follows:

n:r/rw (z), §=z, Z_;=9, =t , T=R/Ro, Z“—"Z/Ro, t=TU0/Rg, rw=Rw/Ro

x4

where Z and R are the dimensional axial and radial coordinates, T is the time, and RO and
UO are the characteristic yvalues of the length and the velocity.

This makes it possible to reduce a region with arbitrary curvilinear boundaries to
a rectangle, which is very advantageous if one is using algorithms for the solution based
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