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This paper considers Darlin-Erd6s theorems for sums of martingale differences. 
Our main theorem provides an optimal result for the case of bounded mar- 
tingale difference sequences. A number of other results are presented, which deal 
with the unbounded case and which specialize to the case of independent sum- 
mands. Previous related work on this problem has been based on deep strong 
approximation theorems. One of the novel features of our approach is that our 
methods rely on the more easily accessible Skorokhod-type embeddings. 

KEY WORDS: Martingale difference sequences; Darling-Erd6s theorems; law 
of the iterated logarithm. 

1. I N T R O D U C T I O N  

Let {Xn, ~ ,  n >/0} be a martingale difference sequence with finite second 
moments  where Xo = 0 and ~o = { C5, ~2 } is the trivial o-field such that 

n" 

s~ :=  ~ E ( X f l ~ _ l ) - - > o e  as n ~ o o  a.s. (1.1) 
j = l  

Set Sn = X1 + ..- + Xn for n ~> 1 and So : 0. Define the partial sum process 
on [-0, oe) based on these random variables to be 

S ( t ) = S  n where s]<~t<s~+l ,  n>~O (1.2) 

where s 2 := 0. We introduce the notation for T~> 0, 

L T =  l o g ( r  v e), a(T) = (2LLT) 1/2 
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and 

b( T) = 2LLT + 2 - ILLLT- -  2 -1L(47r) 

Darling and Erd6s (2) proved that if X1, X2 ..... are independent random 
variables with mean zero, common finite positive variance, and uniformly 
bounded finite absolute third moments, then 

and 

a(T) up S(t)  , E as T ~  ~ (1.3) 
is <T # t - b ( T )  

IS(t)l 
a( T) sup - - -  b( T) ~ E v E' 

l<~t<~T ~ as T ~  ~ (1.4) 

where E and E '  are independent random variables with common extreme 
value distribution function e x p [ - e x p ( - t ) ] ,  - ~  < t < co. 

Oodaira (9) and Shorack (12) noticed that since (1.3) and (1.4) hold 
when S is replaced by a standard Wiener process W on [0, ~ ) ,  one can 
obtain the same results for any right continuous process S defined on 
[0, oe) for which a suitable probability space can be constructed on which 
one has for some 0 < ,~ < 1/2 

IS( t ) -  W(t)l/~/t = O(t -~) as t ~ ~ (1.5) 

A slight refinement of their methods shows that to obtain the Darl ing-  
Erd6s theorem, that is (1.3) and (1.4), from the corresponding theorem for 
W one only needs that on a suitable probability space 

I S ( t ) -  W(t)l/,,/~ = o((LLt)-l/2) as t--* oe (1.6) 

This approach, however, does not always lead to optimal results. 
Einmahl (3) has established that when S is the partial sum process formed 
from a sequence of i.i.d, random variables, one has (1.6) if and only if 
E(X~LL IX1[)< oe. On the other hand, Einmahl (4) has proved by means of 
a truncation technique of Feller (5) that (1.3) and (1.4) hold in the i.i.d, case 
if and only if 

LLtE{X~I(IXIf>~t)}~O as t ~  

The main purpose of the present paper is to derive an ~ optimal condi- 
tion under which the Dar l ing-Erdfs  theorem holds when X1, X2 ..... form a 
bounded martingale difference sequence. Philipp and Stout (1~ have 
obtained (1.6) for martingale difference sequence satisfying 

IXnl < e,sn/(LLsn) 5/2 a.s. (1.7) 
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where G is a sequence of positive constants with G ~ 0. Moreover, under 
the more restrictive assumption that X~, X2,..., are independent random 
variables, it follows from a strong approximation result announced by 
Sakhanenko (H) that (1.6) is true when in (1.7) one replaces 5/2 by 3/2. 
His proof is based on a refinement of the delicate approximation method 
of Koml6s, Major, and Tusnfidy. (s~ Thus we see by the above remarks that 
the Darling-Erd6s theorem is true for martingale difference sequences 
satisfying (1.7) and for independent sequences of random variables under 
Sakhanenko's weaker bounding condition. We will show more generally 
that the Darling-Erd6s theorem holds for martingale difference sequences 
when 

[X~I ~< e , s J (LLs , )  3/2 a.s. (1.8) 

where G e ~ -  1 and G ~ 0 a.s. To obtain our result we shall use a method 
of proof that avoids the need of a direct approximation of type (1.6) for the 
process S. Furthermore, we shall demonstrate by example that our condi- 
tion is close to being optimal in the sense that if the exponent 3/2 in (1.8) 
is replaced by any 1 ~< p < 3/2 then the Darling-Erd6s theorem can fail. By 
Kolmogorov's law of the iterated logarithm or by the Stou(~4) extension of 
it to martingale difference sequences this says that even in the bounded 
situation there are cases when the law of the iterated logarithm holds but 
not the Darling-Erd6s theorem. 

Our main theorem for bounded martingale difference sequence is 
proved in Section 2. Our example is detailed in Section 3. In Section 4 we 
provide some sufficient conditions for the Darling-Erd6s theorem to be 
valid in the unbounded case. An appendix contains the proof of a technical 
result required in Section 2. 

2. THE MAIN RESULT 

T h e o r e m  1. Whenever 

sZ--+oe a.s. as n ~ o e  (2.1) 

and there exists a positive sequence G ~ ~ - 1  with en ~ 0 a.s. such that 

IXnl He,sn/(LLsn) 3/2 a.s. (2.2) 

then as T ~ ~z 

a(T) sup S( t ) / t l / 2 -b (T )  ~--~ E (2.3) 

and 

a(T) sup ]S(t)l/t 1/2 b(T) ~ E' - , E  v (2 .4 )  
l <~t<~ T 
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Proof  As in Philipp and Stout, (m) we can assume without loss of 
generality that there exists a standard Wiener process W and a sequence of 
nonnegative random variables zn E ~ ,  n ~> 1, such that 

& =  W(T.), n >  1 (2.5) 

where T , = ~ + - . - + % , n > / 1 ,  and To=0 ,  

E(v. l a~_ ~) = E(X~21 ~ _  i), n > l  

and moreover for all Tn ~< t < Tn + t, n/> 0, 

r>~2, 

I r v ( t ) -  W(To)I <~ ~,,+ ~s.+ ,/(LLs.~)3/~ 

(2.6) 

n/> 1 (2.7) 

(2.8) 

For (2.5), (2.6), and (2.7) see Hall and Heyde (6) page 269 and for (2.8) refer 
to Skorokhod (13) page 163, noticing that the proof given there is also valid 
for martingale differences. 

By a refinement of the proof of Lemma 2.3 of Philipp and Stout, (1~ see 
Lemma a of the Appendix, under (2.1) and (2.2) one has 

T . -  s] = o(s~/LLso) a.s. 

Observe that by (2.2) we also have 

Set 

sn+,2 _sn2 _- o(s] + j L L s n  + ,) a.s. 

S(t) = S,  whenever T, ~< t < Tn + 1, n >/0 

L e m m a  1. As  t --+ oo we have 

S(t)  = W(t)  + o(t l /2/(LLt)  '/2) a.s. 

Proo f  First note that by (2.9) and (2.10) we have 

T.+~- T.=o(s2.+l/LLs.+~) a.s. 

(2.9) 

(2,10) 

(2.11) 

(2.t2) 

and 

T,/s  ] -~ 1 a.s. as n --+ ov (2.13) 
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Now for Tn<<.t< Tn+l, we have by (2.5) and (2.8) 

I S ( t ) -  W(t)l <~ G+ls.+~(LLsn+~) 3/2 (2.14) 

The 1emma is now an easy consequence of (2.12), (2.13), and (2.14). [] 

Lemma 2. 

lim sup IS(t)[/(2tLLt)~/2= 1 a.s. (2.15) 
l ~ O O  

and 

lira sup IS(t)l/(2tLLt)l/2= 1 a.s. (2.16) 

Proof Assertion (2.15) is immediate from (2.11). From (2.15) it is 
straightforward to show that 

lim sup IS.I/(2T.LLT.) 1/2 = 1 a.s. 

This combined with (2.13) yields 

lim sup ISnl/(2sZnLLs,)I/2= 1 a.s. 
n ~ c ~  

from which (2.16) easily follows. 

Let 

[] 

U(s)=e-sW(eZS), s>~O (2.17) 

be the Ornstein-Uhlenbeck process. It is known, cf. Darling and Erd6s (2) 
and Shorack (12) that 

a(T) sup U(s)-b(T) ~,  E (2.18) 
0 ~ < s ~ < 2  -1  log T 

L e m m a 3 .  For a l l 0 < a < b < v o  and T>~l/a 

w(t) 
sup - sup U(s) (2.19) 

aT<.t<~bT NIl7  O<s~2-tlog(b/a) 

and as T ~  oe 

sup , sup U(s) (2.20) 
aT<~t<~bT N ~  O < s ~ < 2  -1 log(b/a) 
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Proof 
stationarity of U and from (2.11) we get (2.20). 

For any T~> 1 let 

h( T) = exp[(log T) ~/2 ] 

also for any T~> 1 and 2 ~> 1 define the random sets of indices 

A~(T) = {k: 2-~h(T)<~ rk <.2T } 

Einmahl and Mason 

Assertion (2.19) follows from the transformation (2.17) and 
[] 

and 

and 

B~(T) = {k: 2 -lh(T) ~ s 2 ~ )oT} 

Lemma4.  For a l l 2 > 0 ,  as T ~  

at ) sup @ max (2.21) 

a( T) sup S( t ) S~ k max = Op(1 ) (2.22) 
2- h(T)<~t<~2T ~ k~Bi~(T) 

a(T) sup - - - -  b(T) , E (2.24) 
). lh(T)<~t<.~T 

C;.(T) = A;.(T) c~ BI(T ) 

For any 2 >  1 set 

and 

a(T) sup W(t) b(T ) 9 E (2.23) 
A-lh( T) ~ t <~ )~T 

Proof First consider (2.21). Notice that the left side of (2.21) is less 
than or equal to 

a(T) max I S ~ [ { ~ + k + l - ~ f ~ k } + a ( T ) m a x  ISkl{,,f-~k-- T,f~_~} 

Assertion (2.21) now follows easily from (2.12), (2.13), and (2.15). The 
second part of the lemma is proved in the same way. [] 

A simple argument based on (2.18) and (2.11) combined with the 
convergence of types theorem shows that for all 2 > 1, as T--+ 
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Lemma 5. For all 2 > 1, 

P(Ca(T) = BI(T)) ~ 1 as T--* oo 

Proof The proof follows from (2.13). 

Lemma6.  For a l l 2 > l  

sk 
a(T) max max = op(1) 

k~C;,(T) ~ k k  k~C2(T) 

Proof The left side of (2.26) is less than or equal to 

a(r) max ISd [x/-T~k_Sk I 
k ~ C~(T) N ~  k Sk 

which is equal t o  Op(t) by (2.15), (2.13), and (2.9). 

and 

Lemma7.  For a l l 2 > l ,  as T ~  

S k  p 
a ( T )  m a x  ~ - b ( T )  , - oo  

k ~ At.(T) -- C;,.(T) N / ~ k  

Proof Set for T>~I a n d 2 > l  

D;.(T) = {k: 2- ih(T) ~ Tk ~< 2h(T) } 

E~(T) = {k: 2-1T<. Tx <.2T } 

Notice that by (2.13) 

P(Aa(T) -- CA(T) c D;.(T) w Ex(T)) -~ 1 

Also for large T 

and 

a s  

Sk S(t) 
a( T) max - - -  b( T) <~ a( T) sup 

k ~ D~( T) N~kk  1 <~ t <~ 2h( T) N ~  

a(T) max Sk~k__- b( T) <~ a( T) sup S(t) 

T ~ o ~  

- - - b ( T )  

- - -  b ( T )  

(2.25) 

[] 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

(2.30) 
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Now from (2.15) it is easy to argue that the right side of expression (2.29) 
converges in probability to - o e  as T--, oe and from (2.20) that the same 
is true for the right side of expression (2.30). Therefore from (2.28) we have 
(2.27). [] 

We are now prepared to finish the proof of (2.3). From (2.22) we 
conclude 

a(T) sup max =Op(1) (2.31) 

and for any 2 >  1 we obtain from (2.21) and (2.24) that 

Sk 
a(T) max - - - b ( T )  , E (2.32) 

k~A~.(T) ~ k  

which when combined with (2.25) and (2.27) yields 

Sk 
a(T) max - - - b ( T )  ~-, E (2.33) 

k ~ BI( T) %~kk 

Hence from (2.31), (2.26), and (2.25) in combination with (2.33) we get 

S(t) 
a(T) sup - - - b ( T )  , E (2.34) 

h(T)<~ t<~ T N ~  

From (2.16) one easily obtains as T ~  oe 

S(t) 
a(T) sup - - - b ( T )  , - o c  (2.35) 

l <~t<~h(T) 

Assertion (2.3) is now an obvious consequence of (2.34) and (2.35). 
The proof of assertion (2.4) is essentially the same, so the details are 

omitted. This completes the proof of Theorem 1. [] 

Remark 1. Theorem 1 remains true if one were to replace the 
assumption that e, ~ 0 a.s. by en---' 0 a.s. This, however, makes the proof 
much more technical, thus obscuring the main ideas. For  the proof of this 
refinement, Lemma a is required with arbitrary 0 < e < 1 combined with a 
truncation argument. 

3. E X A M P L E  

Here we construct the example mentioned in the Introduction, which 
shows that our Theorem 1 provides a sharp result. 
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Proposition. For  each 1 ~< p < 3/2 there exists a sequence X1, X 2,..., of 
independent mean zero random variables such that 

i EX2i ~~  as n -~ov  (3.1) 2 S n = 
i=1  

LXnl <~ s~/(LLsn) p, n ~> 1, a.s. (3.2) 

and at the same time the Darling-Erd6s theorem does not hold. 

Proof We require the following exponential inequality. 

Lemma 8. Let X1, X2 ..... be a sequence of independent mean zero 
random variables satisfying (3.1) and (3.2). Then we have for all 0 ~<x ~< 
3(LLs,) 1/2, n >t 1, 

t X2 X3 I P(S,>~ xs,)<~A exp - -~+-~s3 ~ EX 3 (3.3/ 
i=1  

where A is a universal constant. 

Proof For  any t >/0, we have 

where 

P(Sn>~ xsn) <<. exp [ ~ L~(t)- txsn] 
i=1  

(3.4) 

Li(t)=logRi(t) and Ri(t)=Eexp(tXi), l<<.i<~n 

A Taylor expansion yields 

t2 n t3 n t4 

Zi(t)=-2iE1Zl2)(O)-~-6i~ltl3)(O)3ff ~ i t 1 4 1 ( t )  ( 3 . 5 )  
i=1  = i=1  

where 0 < {< t. Notice that for each 1 ~< i~< n, Li(0) = L ~ ( 0 )  = 0. Further- 
more, it is easily checked that 

LI2)(0) = EX~ and L~3)(0) = EX 3, 1 <~ i <~ n 

After some calculation and then applying H/51der's inequality, it is not 
difficult to see that 

[Ll4)(t-)] <~AE{X 4 exp(t IXi[)}, 1 <~i<<.n (3.6) 

where .d is a universal constant. 
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Now let O<~x<~3(LLs,) m be fixed and set tx=x/s,. Then it is 
immediate from (3.2) that 

E{X 4 exp(tx IX/I)} ~ e3(EX~)sZ/(LLs,) 2, 1 ~ i<~ n (3.7) 

Using (3.6) and (3.7) we get for an appropriate universal constant 

:~t~--~xai~l= fLlal({x) j <~ ~ (3.8) 

Assertion (3.3) now follows from (3.4), (3.5), and (3.8) with t =  tx. [] 

To construct our example let Y be a random variable such that 

IY[ ~<2 a.s. 

and 
E Y = 0 ,  EY2= 1, and EY 3 = - a < 0  

(3.9) 

(3.10) 

Let Y1, Y2 ..... be independent copies of Y. Choose 1 ~< p < 3/2 and set 

bj= exp[2j/(Lj)2p]/(Lj) p, j>~ 1 

with )~ > 0 to be determined later. Define 

Xj=bjYj, j>~l (3.11) 

Then we have 

z_ ~ bj = ~ exp[2)j/(Lj)2P]/(Lj) 2, S n  - 2 

j = l  j = l  

From an integral approximation of this sum we obtain 

s~ ~ (22) -1 exp[22n/(Ln) 2p] as n ~ oo (3.12) 

from which we get 

LLs~Ln as n ~ o o  (3.13) 

By choosing 2 > 0 small enough we have immediately 

IJ(,I <~2bn<~sn/(LLs~)P a.s. (3.14) 

Moreover, it follows from the definition of the sequence X[, X2,..., that 

- -~  EX3:a ~ b3>~a(Ln) -p ~ expt32j/(Lj)2"]/(Lj) 2p 
j = l  j =1  j = l  

a(Ln)-P(32 )-1 exp[32./(Ln)2p] 



Darling-Erd6s Theorems 447 

which for some positive constant cl is 

~cls3J(LLsn) p as n ~  (3.15) 

We will now show that 

P(S.  >~ (2s2 LLs.)  ~/2, i.o.) = 0 (3.16) 

Notice that (3.16) implies that for the partial sum process formed by 

J(1, X2 ..... 

a(r)  sup S ( t ) / x f t - b ( T ) - ~ - o o  a.s. 
l<~t<~T 

from which it is obvious that the Darling-Erd6s theorem does not hold for 
this process. 

We shall now establish (3.16). Let n k be a subsequence of N such that 
for large enough k 

exp(k/Lk) <~ s]k <~ exp[(k  + 1)/Lk] (3.17) 

The existence of such a subsequence can be inferred from (3.1) and (3.2). 
To prove (3.16) it suffices to show that 

~ P (  max S. >/(2s]kLLs~k) 1/2) < 
k : = l  nk'<n<~nk+l 

(3.18) 

Using the following L6vy type inequality for 1 ~< m ~< n and x t> 0 

p ( m a x  Sj>>.x)<~2P S.>~X-- 
m<.j<~n 

and the definition of the subsequence nk we get for all large k 

P( max S.>>. (2s]~LLs.k) 1/2) 
?tk<n~nk+! 

~< 2P(gnk+l >~ (2s2.kLLs.k) '/2 - [2(sZk+~ __ Snk)]2 1/2) 

<~ 2P(S.k. , >~ .4#2s.~+, [ (LLs.~) m - c2(LLsnk)-,/2]) 

where c2> 0 is a constant [use (3.17)]. ~Taking into account (3.13) and 
(3.15) we infer from Lemma 8 that for all large enough k, this last expres- 
sion is 

~< c3 exp [ - LLsnk - c4(LLs~y/2 --P] 
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where c3, c4 > 0 are constants. By our construction of the sequence n~ 
we see immediately that (3.18) holds. This completes the proof of the 
proposition. [] 

4. RESULTS FOR U N B O U N D E D  S E Q U E N C E S  

In this section we present some sufficient conditions for the Darling- 
Erdfs  theorem to hold for unbounded martingale difference sequence. Our 
first theorem considers independent sequences. 

Theorem 2. Let X1, Xz,..., be a sequence of independent mean zero 
2 = EX~ and 2 n 0.2 random variables with finite variances. Set 0.n Sn=~i=~ 

n t> 1. Assume that 

s ] ~  as n ~  (4.1) 

Suppose further that for some c5 > 0 and all e > 0 

Z P(IXn] > c~s,(LLs~) 1/2) < ~ (4.2) 
n = l  

S n 2 ( L L S n ) - l E ( X 2 1 [ ~ S n / ( L L s n ) 3 / 2 <  [Xnl ~ . ~ S n ( L L S n ) I / 2 ] }  < GO (4 .3)  
n = l  

and as n ~ 

LLs, E{ X~ 1 [IX~J > es]( LLs~) 3/2 ] } -~ 0 (4.4) 2 
Sn i= 1 

Then the conclusions (2.3) and (2.4) of Theorem 1 hold. 

Proof We first note that by Theorem 3, page 345 of Chow and 
Teicher, ~) any sequence X~, X2,..., as above satisfies the law of the iterated 
logarithm. Thus, by arguing as in the proof of Theorem 1, it suffices to 
show that as T ~  

a(T) max Sk/sk-b(T) ~, E (4,5) 
kE BI(T) 

and 

a(T) max ISkl/sk--b(T) ~ E E' , v mm,_.v, 
k~BI(T) 

We will only show (4.5); the proof of (4.6) is similar. It is clear that (4.5) 
would follow if we were to establish 

a(s~) max Sk/sk-b(s~) ~, E as n--* ~ (4.7) 
k~ Kn 
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where K~ = B~(s2~)= {k: s~ >>. h(s]), 1 <~ k <. n} with h defined as in the p roof  
of Theo rem 1. 

F r o m  the above assumpt ions  it is easily seen that  one can find two 
sequences of real numbers  c5 n T oo and e~ 1" 0 such that  (4.3) and (4.4) remain 
valid when fi and e are replaced by fin and s,,, respectively, so that  

i s]2(LLs.) 1E{ X21 [8nSn/(LLSn) 3/2 < IX~l ~ ~sn(LLs~) ~/2] } < oo 
n--1 

and as n ~ 

rLs.2 ~ E{x~ 1 [Ix,I > e,s~/(LLs3 ~/~] } --, 0 
Sn i = 1  

We set for n ~> 1, 

X,~ = X,, 1 [IX.I  ~< s.s./(LLs.)3/2], 

x,;" = x .  1 [[Xnl > fi.s.(LLs.)~/2], 

~; = X" - EX" 

~;"= X;"-  EX" 

x; '= x n -  x 2 -  x" ,  $;'= J(2-  EX;' 

(4.8) 

(4.9) 

P( { Ig,i'l > sn/LLsn} ~ {IS~I > s~(LLsn)I/2}, i.o.) = 0 

Proof The p roof  is very similar to that  of L e m m a  1 of Einmahl,  ~4) so 
it will be enough to only indicate the main  arguments .  

First note that  (4.8) and Kronecker ' s  l emma  immediate ly  imply that  

S" = o(s,(LLsn) 1/2) a.s. (4.10) 

Next,  wi thout  loss of  generali ty we may  assume that  the sequence E, N 0 
has been chosen so that  e,  ~> (LLs,) 1/2, which in combina t ion  with (4.8) 
gives 

EIX;'l _< ~, E ( x ; ' )  2 
n= 1 s . ( L L s # )  3 '~ n ~ l  s 2 . L L s .  < oo 

(4.11) 

L e m m a  9. Under  the above assumpt ions  we have 

- -  ! - -  t i t  t t  Denote  the corresponding sums by S,~ Sn, Sn ,  , "' Sn ,  S,,, and S,.-" 
We now apply a t runcat ion a rgument  of  Feller (s~ in a similar way as 

was done by Einmahl.  (4) 
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This when combined with Kronecker 's lemma yields 

E S "  = o(s , (LLs , )  3) as n ~ 

Einmahl and Mason 

(4.12) 

Furthermore, using the same argument as in Lemma 3 of Einmahl, (4) one 
gets from (4.11 ) 

2 
V OZnfln 

~ ,  s3.(LLs~) 3 < 

where 

/~.= ~ EIXfl, 
j = l  

n~>l 

Define two subsequence m~ and n k of ~ as follows: 

mk = min{n: s 2 >1 2k-  Z/(Lk) 8 } 

2~>2k}, k~>l n~ = min{n: sn 

Note that because of (4.1) both subsequences are well defined. We define 
the sets 

nk 1 

F~= U (IS"I >sn/LLsn) ~ (IS'l >s,,(LLs~) 1/2} 
n ~ n k  1 

nk I 

at= U 
n = m  k 

nk-- 1 

H k =  U { Ignl  > S n ( Z Z S n ) l / 2 }  

I'l~ nk_ 1 

for k/> ko, where ko is a positive integer such that nk > nk_ 1 for all k/> ko. 
Such a ko exists since by (4.4) 2 2 S n + 1/Sn ~ 1 as n --* ~ .  

Notice that for co ~ Gk 

rr CO IS~'(co)l=[Smk( )1, nk l < n < n ~  (4.13) 

which by (4.10), (4.12), and the definition of rn k implies that for any 
co r G~ w N, where N is a null set, with k ~> kl(co ) one has 

IS,~'(CO)[ < �89 nk_a <.n <nk (4.14) 
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Using (4.14) it is easy to see that to complete the proof of Lemma 8 it is 
sufficient to show 

71 := ~', P(GkmHk) <~176 (4.15) 
k ~ N l  

and 

72 := ~ P(Hk) < oo (4.16) 
k c N 2  

where N1 := {k: IES2'I ~ 1 ..~ 5s . /LLs .  for all nk_l ~< n < nk} and N2 = N -  N1, 
since 

• P(Fk)~<?I+?2  
k = l  

This can be accomplished by a straightforward modification of the proof of 
the corresponding relations (15) and (16) of Einmahl. (4) [] 

Lemma 10. Under the above assumptions, we have 

P( {I S/,'l > s . / L L s .  } ~ { I& 1 > �88 s.  (LLs.)1/2 }, i.o.) = 0 

that 
Proof  On account of Lemma 9 and (4.10), we only have to show 

S "  = o(s , / (LLs,) ' /2)  a.s. (4,17) 

First, by (4.2) and the Borel-Cantelli lemma we have 

S " =  O(1) a.s. 

Next 

IES~"[ ~ k E{IXjl II-IXjl >3jsj (LLsj) l /2]}  
j ~ l  

~ (~;Io'2/Esj(LLsj)I/2] 
j = l  

= o(s , / (LLs , )  1/2) as n ~ 

This finishes the proof of Lemma 10. �89 

860/2/4-4 
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We are now prepared to complete the proof of Theorem 2. Observing 
that (4.17) implies 

- - t  IS.-s~l  
lim sup 0 a.s. 
n ~ ( . )  s~/(LLsn) 1/2- 

where N/(.) is the random set of indices 

/~(.) = {n~ N: IS~'I ~sn/LLsn} 

we obtain from Lemmas 9 and 10 exactly as in the proof  of Theorem 1 of 
Einmahl (4) [from (31) to (35)] that (4.7) is equivalent to 

- '  - , E  as  n ~ o e  ( 4 . 1 8 )  a(s]) max Sk/s~ b(s 2) 
k E K n  

Set 

- 2  ~, E()7i,)2, n/> 1 S n - -  

i = 1  

Noticing that Kolmogorov 's  law of the iterated logarithm applies to the 
sequence X~, X~ ..... and using (4.4) we get 

a( s~) [max - '  Sk/sk] = O p(1) Sk/sk -- max - '  - 
k E K n  k E K n  

(4.19) 

This last statement combined with the convergence of types theorem shows 
that (4.18) is equivalent to 

- 2  - -  t - max Sk/sk -- b(2~) ~ a(sn) , E as n --~ oe (4.20) 
k ~ K n  

which in turn follows from Theorem 1 and its proof. Therefore we have 
established (4.7). [] 

C o r o l l a r y  1. Let X1, X2,..., be an i.i.d, sequence of mean zero random 
variables with variance one. Suppose that 

ZLtg{J (~ l ( [Jg l l>~ t ) }~O as t --. oe 

Then we have as n ~ oe 

a(n) m a x  Sk/~f~-b(n) 9 E 
l<~k<~n 
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and 

a(n) max  ISkl/x/k-b(n) ~,  E v E' 
l < ~ k ~ n  

Proof We apply Theorem 2. Conditions (4.1) and (4.2) are trivial to 
verify in this case. For the proof  of (4.3) see Lemma 4 of Feller. (5) Finally 
(4.4) is an easy consequence of the above assumption. [] 

Corollary 2. Let X1,X2 ..... be independent mean zero random 
2 variables with finite variances. Suppose that s,  --* Go and for some q > 0 

lira sup E{X2L IX~I (LLL IX~l )1 +~ }/EX~ < 00 
n ~ o ~  

Then the conclusions of Theorem 1 hold. 

Proof From Markov's  inequality we obtain 

P(IXnl > 6s,,(LLs,,) 1/2) sZ LLsnLs-'-~LLs,,)I +, < 00 
n =  1 = 

Hence (4.2) holds. Similarly, one can verify (4.3) and (4.4). Thus the asser- 
tion is implied by Theorem 2. [] 

We now return to the martingale case. Since the Feller truncation 
method has not yet been extended to the martingale situation, we must 
apply somewhat different methods to obtain good results in this general 
setting. 

Theorem 3. Whenever 

2 s n ~ 0 0  as n ~ w  a.s. (4.21) 

and there exists a sequence e~ E ~ _  1 with e, -~ 0 a.s. such that 

~P([XnI>e,s,/(LLsn)I/21~ 1)<oo a.s. (4.22) 
n = l  

L (LLs"12E(X•IEIX,[4 ~ens,/(LLsn)l/2]l~ 1)< 00 a.s. (4.23) 
n =  1 S n  

and 

LLs, n 
E(X~ 1EIX, I > eisi/(LLs,)X/2]lo.~_ 1) ~ 0 a.s. 2 

S n  i = 1  

then the conclusions of Theorem 1 hold. 

(4.24) 
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Proof Since the arguments are very similar to those employed in 
Theorems 1 and 2, we shall only give a brief sketch of the proof. 

Wer first note that the proof can be reduced to a problem for bounded 
martingale difference sequences. Set for n >/! 

Jr, = X, 1 [ IXnl ~< e,,s,,/(LLs,,) m ] 

2.=L-E(LI~_I) 

Then using (4.22) and (4.24) it follows by standard arguments that 

~, 2 i -- ~ Xi'~-O(Sn/(LLSn) 1/2) a . s .  a s  n----~ oo 

i = 1  i = 1  

Thus, it is enough to show that the Darling-Erd6s theorem holds for the 
process Sl(t), t~>0, defined to be 

k 

L(t)= E 2. 4~t<~+1, k~>o 
i = 1  

Setting 

k 

e~= Y. E(2}IN_~), k>~l, ~o~=0 
i = 1  

it is straightforward to deduce from condition (4.24) that 

~Sl(t)-S(t)=o((t/LLt) 1/2) a.s. as t ~  o9 (4.25) 

where S(t), t ~> 0 is the "natural" partial sum process defined by 

k 

g(t)= E L, xi<<.t<s~+,, 
i = I  

k~>O 

On account of (4.25) to complete the proof, we need only establish the 
Darling-Erd6s theorem for the process S(t), t ~> 0. As in Section 2, let % be 
stopping times such that for an appropriate Wiener process W 

Xe= W(Tn), n~>l 
i = 1  

where 

Z.= ~ zi, n~ l 
i=1 
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Combining (2.7) with (4.23) yields 

~ (LLsi) 2 
i : 1  S'--~i E([ 'c i-E( 'c i]~i-1)]2[~i  t ) < ~  a . s .  

which by Theorem 3.3.9, page 156 of Stout (~5) gives 

T, - s,--2 _ o(sZ/LLs~) = o(gZ/LLg,) a.s. (4.26) 

The bounds on the martingale difference sequence X1, ~'2,..., combined 
with (4.26) now allows us to repeat the proof of Theorem 1, nearly 
verbatim, thus establishing the Darling-Erd6s theorem for the process S(t), 
t~>0. 

Remark 2. Specializing to the case when X1, X2,..., are i..i.d, mean 
zero random variables with variance one, it can be readily verified that the 
conditions of Theorem 3 hold if and only if E(X~LL IX~l)< ~ .  So in this 
situation Theorem 3 is not as sharp as Theorem 2; however, it still gives the 
best result that can be obtained by the direct strong approximation 
approach described in the Introduction. 

Remark 3. Theorem 3 should be compared with Theorem 3.1 of Jain 
et al. ~7~ When 1 < ~ < 2 in their theorem the conditions there imply (4.22), 
(4.23), and (4.24). In this case they obtain the rate of approximation 

I S ( t ) -  W(t) l /x/7 = o ( ( t t t )  ~-=)/2) as t ~ 

Therefore it is not possible to infer our Theorem 3 from their result. 
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A P P E N D I X  

Lemma a. Let { X n , ~ , n ~ > 0 }  with X o = 0  and ~ o = { ~ , f 2 )  be a 
martingale difference sequence with finite second moments. Assume that for 
some 0~<e< 1 there exist sequences e n ~ _ l  with en ~ e a.s. and 

2 w i t h  V 2 V n ~ n - 1  n z ~ a.s. such tha t  for n~>l 

2 2 2 2 S, , --S~_I<~Vn--Vn_I a.s. (5.1) 
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where V~ = s~ = 0, and for some p ~> 1/2 

IX, I ~ s~ V~/(LLV.)  p a.s. (5,2) 

Then for any sequence of nonnegative random variables r ,  s o~ satisfying 
for n~>l 

E ( % ] ~ _ a ) =  E(X~]o~_~)  (5.3) 

and for r/> 2 

we have 

r ~-~ I 2r  ~ "  E ( z , [ ~ , _  ~) ~< 2 \~2 ]  r . E ( X ,  [ ~',_ x) (5.4) 

Also for k >/1 set 

J 

12 
i = 1  

and 

y!k).l = z!k)g -- ZJk-)l' 

Obviously we have for k >/1 

= O, 

~ k ) = ( t k + j ) A  tk+l, j~>0 

j>~l 

j~>l  

Irn-s. l 
limn~sup V2/(LLVn)p _ 1/2 <<- 32e a.s. (5.5) 

where Tn = ~2~= ~ zj, n >/1, and To = 0. 

Proof. Define the stopping times tk, k ~> 1, by the following recursion: 

t, = m a x { m : s  m>~ 1) v max{m: Vm 2 ~< 1} 

where max ~ = 0, and 

t k + l = m a x { m  : Vm<~2 2V~+I}, k~>l 

Further, for each fixed integer k >/1 construct the sequence of stopping 
times 



Darling-Erd6s Theorems 457 

Notice that since y~k) = 0 when ~s~(k) = @k_~l, we have for all r >~ 2, k/> 1, and 
j~>l  

tk+l l 
E(IY~)I~I~~}~2~)=- ~ l (~}~) ,=i)E(Iz ,+~-E(z,+xl~)lr l~)  (5.6) 

i = 0  

It easily follows from (5.2) and the definition of the stopping time t k 
that 

where 

IX.I ~<ck for tk<n<<.tk+l (5.7) 

Ck = 21/28tk + 1 Vtk + J(LL V,k + 1) p ~ O~okl 

For any k i> 1 and 0 E Y=~> set M~o k~ = 1 and for j >/1, let 

{ 128822 2 V=cok) ) 2  l(~tSk)l tk+l)} M~k)(8)=exp(SZ~k))exp ~z2 ck(V~5~'- < 

From now on for notational convenience we shall suppress the superscript (k ). 

Lemma b. For any k ~> 1 and 0 e ~'~0 such that 

16c2181 1 
~ ~< 5 a.s. 

{Ms(8), ~~, j>~ 0} is a nonnegative supermartingale. 

Proof Notice that for r>~2, k>~l, and j~>l,  by (5.6), 
Cr-inequality, and (5.3) we have 

t k + l - - 1  

E(18Y:I"I~_,)<~I821 ~ ~ l (~j -~=i)E(zT+, l~)  
i = 0  

(8"] r-I 
<~1821~\rc=] 2r!E(X~'jI~ ~ ,) l ( ~ j _ l < t k + , )  a.s. 

(5.8) 

the 

which by application of (5.1) and (5.7) is a.s. 

rt2 { 16c2"~r 
~<7~_2 1 8 1 - -  r!E(X~s[Y~_l) l(o~ j l < t k +  ) 

4 e  k 7~2 j 1 

Hence by (5.4) and 1 + x ~< e x, - oe < x < m, 

7z 2 ~ II8[16c2~" 
E(exp(8Yj)[g~j ~)~<l+~C~r=2[  <2-" ~2 J E(X~Io~_~)I(c~ i - l < t k + I )  



458 E inmahl  and Mason 

Using this last inequality it is now easily checked that 

E(Mj(O)I,~._O<~Mj_I(O ), j>~ 1 [~ 

For later use we record that under the assumptions of Lemma e for all 
2 > 0  

P(sup Mj(O) > 2) < 2 -1 (5.9) 
j~>0 

cf. Corollary 5.4.1, page 299 of Stout. (15) 
Set for k >/1 

Ok = 1r2( L L  Vtk + 1 ) 1/2 + p 

64 V2+ 1 ~tk + 1 

and 

V 2 1/(LL V,e + 1)P- 1/2 ak = ~3tk + l tk + 

Since en ~< 1 for n ~> tl, we have 

160kc~ 1 
rc 2 <~ 2 

We also have 

~2 
Okak = -~ LLV,k + 1 

and by the construction of the stopping times 

7-C 2 
128 2 2V; ~< LLVtk+ ~z ~ Okck ,~+1 ~ 1 

L e m m a  c. 

P( max I T n - s , - 2  (T ,k_s~) l>16ak ,  i.o.)=O 
l k~2n~lk+l  

Proof Now fo rk~> l  

P(sup exp( _ okzj)  >~ exp(160kak)) 
j~>0 

~ P ( s u p M j ( + _ O k ) > ~ e x p ( 1  i 2 8  2 2 2 \ ' , j > ~ O  6 0 k O k - - ~ O k C k V t k + l ) )  

(5.1o) 
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which by the above calculations and Vt~+l>~ 2 (k 1)/2 is 

<.G P ( sup Mj( + O k ) >~ exp { ~-~8 [ LL2 (k -1)/2 ] } ) 
\ j ~ O  

Inequality (5.9) combined with the Borel-Cantelli lemma lemma shows 
that the probability in (5.10) is equal to zero. [] 

Recalling the definition of the stopping times tk, we easily obtain from 
Lemma c that for all 6 > 0 and almost every ~o ~ s 

ITj(co)-s2(~o)l ~<c(co, 6)+ ~ 16(e+6) V 2 ,k(o~)+l(C~176 p 1/: 
k = l  

V,,~(~o)+ l((O)/[LLVtm(o~)+ l((~o)]p 1/2 

~< c(co, 6) + 32(e + c5) vz(oo)/[LLVj(o9)]" -1/2 

for tm(CO)<j<.tm+l(O9 ). Thus, we have shown that for all f i>0  

limn~sup V2/(LLVn),_ 1/2 ~< 32(s + fi) a.s. 

which obviously implies (5.5). [] 
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