
numerical calculations and the asymptotic structure of the natural oscillations is 
observed in the other regimes considered in Sec. i. 

We note that the asymptotic analysis gives a graphic description of the properties 
of the natural oscillations in the shock layer. The dispersion relations obtained can 
be used as the initial approximation for numerically calculating the stability char- 
acteristics of the various modes with allowance for viscosity. 
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MOTION OF A DUSTY GAS AT THE ENTRANCE TO A FLAT 

CHANNEL AND A CIRCULAR PIPE 

A. N. Osiptsov UDC 532.529 

It is shown that at large Reynolds numbers, calculated from the entrance 
velocity and the half-width of the channel, four characteristic flow re- 
gions are formed in the entrance section. The equations describing the 
motion of the mixture in each of these regions are constructed by the 
method of matched expansions. An expression relating the particle 
concentration distribution at points remote from the entrance section 
to the particle concentration distribution in the boundary layer on 
a flat plate at points remote from the beginning of the plate is 
obtained. The dependence of the dispersed-phase concentration profile 
formed on the governing parameters is studied on the basis of a nu- 
merical solution. It is shown that as the contribution of the Saffman 
force to the interphase momentum transfer increases, the rise in particle 
concentration in the direction of the wall is replaced by a fall. A 
qualitative correspondence between the calculated particle concentration 
profiles and certain known experimental data is noted. 

It is proposed to investigate the transition from a uniform to a nonuniform inertial 
particle distribution over the cross section for the motion of a gas suspension along 
the entrance length of a channel (pipe) using a two-continuum model of a dusty gas [i]. 
The Saffman force [2], which causes the transverse migration of the particles, is taken 
into account in the expression for the interphase momentum transfer. 
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An extensive literature (see, in particular, [3--5]) has been devoted to the investiga- 
tion of the general laws of channel motion of gases transporting liquid and solid particles. 
Although in most cases of practical importance the motion is turbulent, here we will 
consider laminar flow. This makes itpossible to obtain an asymptotic solution for 
the particle concentration profile at points remote from the channel entrance without 
introducing the empirical hypotheses necessary for describing turbulent particle trans- 
port. For sufficiently large particles that do not participate in the fluctuating 
motion the qualitative conclusions remain valid for turbulent motion of the gas also. 

I. Formulation of the Problem and Asymptotic Solution 

Near the Channel Entrance Section 

Our object is to clarify the general laws of transition from a uniform to a nonuni- 
form particle distribution over the cross section of a channel (pipe) as a result of 
the inertial lag of the particles relative to the carrier phase and the two-dimension- 
ality of the flow on the entrance length. As usual [i], it is assumed that the particles 
are spheres with the same radius o and mass m. The volume particle concentration is 
negligibly small, Brownian motion is unimportant, and the carrier phase is incompressible. 
The transverse migration of particles due to the local shear character of the flow over 
the trial particle is taken into account. Saffman's equation [2] is used for calculat- 
ing the lift, and the expression for the particle drag is taken in the Klyachko form 
[6]. 

The Cartesian coordinate system x, y moves with the entrance section of the chan- 
nel, the x axis being directed along the lower wall. Then the force exerted by the 
carrier phase on unit mass of the trial particle takes the form: 

6.46~Ypp 1/ 2alv-v.lp 
= ( v -v . )D  + (u--u.) j .  D = I +  1---Re,~, Re, F 

m m 

H e r e .  U and p a r e  t h e  v i s c o s i t y  and d e n s i t y  o f  t h e  c a r r i e r  p h a s e ,  j i s  t h e  u n i t  
v e c t o r  a l o n g  t h e  o r d i n a t e  a x i s ,  and t h e  s u b s c r i p t  s r e l a t e s  t o  t h e  p a r a m e t e r s  o f  t h e  
particle medium. 

At the channel entrance the flow of the gas suspension is homogeneous. The di- 
mensional parameters at the entrance are denoted by the subscript =. We assume that 
the Reynolds number, calculated from the entrance velocity and the half-width of the 
channel a. is large, i.e., ~/U~ap = ~ ~ i. We will construct the asymptotic solution 
of the problem of the flow of the gas suspension on the entrance length of the channel 
as E ~ 0, using the procedure of the method of matched expansions [7]. In what fol- 
lows we will employ two substantially different length scales: s = mU~/6~op and L = 
(i + ~=a2U=p/u, where s is the characteristic phase velocity relaxation length, L is 
the characteristic closing length of the boundary layers building up on the channel 
walls, and ~ = Ps=/P is the mass particle concentration. The most important case is 
that corresponding to ~ ~ 0(i), X = a/s ~ O(I). 

We will write out the system of equations of a dusty gas for the length scale s 
in dimensionless form, using the following scales for making the parameters dimension- 
less: for the pressure pU~, for the density of the particle medium Ps=, for the phase 
velocity components U~, and for the coordinates s Then the system of equations of 
motion of the dusty gas [i] takes the form: 

divv=O, divpsv~=O, (vV)v+Vp+ap,[(v--v,)D+• 
(v.V) v .=  (v -v . )  D+• (u -u . )  ] 

(1.z) 
2opU| 6A6o 

D = t  +l--Re.0~lv-v~l:~.  Re.0= 
6 p 6 ~ l ~  

x=0:  u = u . = p ~ = l ;  y=0.2~.: u=v=O 

The c o n s t r u c t i o n  of  t h e  a s y m p t o t i c  s o l u t i o n  o f  p rob lem ( 1 . 1 )  as  E ~ 0 i s  a n a l o g o u s  
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to the solution of the problem of a two-phase boundary layer on a flat plate [8]. The 
exterior solution (~ ~ 0; x, y fixed) is obvious: u = u s = Ps = I, v = v s = 0, p = const. 
In order to construct the boundary layer equations we introducethe stretched coordinate 

= y/~a-~. Because of the symmetry we will consider only the boundary layer on the 
lower wall of the channel. We seek the interior solution in the form: 

u~(x, ~)+ . . . .  u~o(x, q ) +  . . . .  po(x, ~)+  . . . .  p~0(x, q ) +  . . . .  ~ekvo(x, ~])+ . . . .  )'~kv,0(x, q ) +  . , .  

From ( 1 . 1 )  we o b t a i n  t h e  boundary  l a y e r  e q u a t i o n s  and ma tch ing  c o n d i t i o n s  

au--i + Ov----t = 0 ,  0p,0u,0 + 0p,0v,____ A = 0, OP5 = O, aUo Oao 
~x ~ ax ~ O~ uo ~----~-+ Vo--~+ ap,o(uo--a,o)Do= -Ozu-----i~ 

Oa,o Oa,o aV, o Ov,o 3/Oao 
~'~ + " ~  = ( " ~ 1 7 6 1 7 6  u'~ 0--7 + ' ' ~ 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6  n '/ 

( t . 2 )  

Do= t + T R e . o  (uo-=.~ , • 

~1~0: Uo=Vo=O; ~ - ~ :  u0-~t, x=0:  u,o=p,o=t,  v,o=O 

We will consider certain characteristic values of the dimensionless parameters for real 
particle sizes, particle material, flow velocities, etc. Let the half-width of the 
channel be 1 cm, v = 0.15 cm2/sec, U~ = I0 3 cm/sec, and p$/p = i0 4 (here, p~ is the 
density of the particle material); in this case ~ = 1.5"10 -4, and the other dimension- 
less parameters for three particle sizes are given below: 

o, cm t0 -4 t0 -z t0 -2 
l, cm 1.48.t0 -I t4,8 1.48.t0 s 
Re,o 1,33 t3,3 133 
• t,28 40,47 t280 

As t h e  p a r t i c l e  s i z e  i n c r e a s e s ,  t h e  c o n t r i b u t i o n  o f  t h e  Saffman f o r c e  ( t h e  q u a n t i t y  
u0) t o  t h e  i n t e r p h a s e  momentum exchange  in  t h e  b o u n d a ry  l a y e r  r a p i d l y  i n c r e a s e s .  

2. Asymptotic Solution for the Boundary Layer Closing Scale 

We introduce the following new scales: for the longitudinal coordinate L = (i + 
~)a2U~/v, for the transverse coordinate a, for the longitudinal velocity components 
U~, for the transverse velocity components aU=/L, for the pressure p(l + ~)U~, and for 
the density of the particle medium Psi" In this domain the dimensionless coordinates 
are denoted by X, Y; the unknown dimensionless functions are denoted by the subscript i. 
The system of equations of motion takes the form: 

Oui Ou~ Op,ia,i Op~lv,~ = 0 
 X+Tff =~ a--Y - +  aY 

vi - -~  + r 
ax V"  T K  +v,i"~7-! OX = t+a ax ~ 8Y "---V 

Or, av~ (a av,~ or , , \  ( t + a )  ~ Op, e~ ~ ~-(t+a) 02v' 
ar 

Ou,, , au , ,  ~,(t+a) (u,-~.,) a-7- = - - V - -  
(2.1)  

Ust - - ~  -7" #-)at 

Y=O,2: u ,=v,=O; X=O: p , ,=u ,~=u ,= t  

As e + 0 from (2.1) we obtain the equations for the leading terms of the expansion 

(for simplicity we have not introduced new notation) 
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OX OY = O, u~ --~OP*~ + v: Op~toy = O, oyOp~ = O. 

0~,+ 0~, / 0. ,+ 0~ iX~ @'=(1+~) ~ 
' ax " ' 7 ~ + " P " ~ ' 0 x  < 7 - f ]  (t+~)-~ a r  ~ 

The boundary  c o n d i t i o n s  a t  t h e  c h a n n e l  e n t r a n c e  a r e  o b t a i n e d  from t h e  c o n d i t i o n  
o f  ma tch ing  w i t h  t h e  u n i f o r m  homogeneous f low f o r  X + 0 and f i x e d  Y. Then from the  
c o n t i n u i t y  e q u a t i o n  f o r  t h e  p a r t i c l e  medium we o b t a i n  Psz = 1 and s y s t e m  ( 2 . 2 )  can be 
c o n s i d e r a b l y  s i m p l i f i e d :  

OUl OUt OUi OUi dp, OaUi 
0 X + - ~ = 0 ,  u ~ - + v , - ~ +  dX Oy = , u,~=a,, v,~=v, 

( 2 . 2 )  

(2.3) 

(2.4) 

X=0:  u~=t; Y = 0 . 2 : u , = v ~ = 0  

System ( 2 . 3 )  c o m p l e t e l y  c o i n c i d e s  w i t h  t h e  f o r m u l a t i o n  of  t h e  p rob lem of  t h e  mot ion  
of  a homogeneous v i s c o u s  f l u i d  on t h e  e n t r a n c e  l e n g t h  o f  a c h a n n e l ,  f o r  which an approx-  
imate  s o l u t i o n  was c o n s t r u c t e d  by S c h l i c h t i n g  [ 9 ] .  Th i s  s o l u t i o n  has  t h e  form ( f o r  
d e t a i l s  see  [ 9 ] ) :  

u,(X, Y)=/o'+YX],' (X<X0),  u,(X, Y)=t.5(2Y--Y~)-O.3485go" exp(-18.75X) (X>Xo) 

Here ,  ~ = Y / / ~ ,  and t h e  f u n c t i o n s  f 0 ( ~ ) ,  f l ( ~ ) ,  and g0(Y) s a t i s f y  t h e  f o l l o w i n g  
boundary-value problems: 

g / 0 " + 2 ~ ' " = 0 ;  ~=0: 10=]0'=0; ] 0 ' ( ~ ) = l  

2]/"+1d/'--]o'],'+2~"]~ = -  1.72; ~ =0:  ], = ] , '  = 0 ; / / ( ~ )  = 1.72 

go'~+3k[ (Y-0.5Y2)g0"+g,]  =0;  Y=0:  g0=g0'=0; Y = i :  go=g0"=0 

The e i g e n v a l u e  k = 18 .75 ,  and t h e  c o o r d i n a t e  X 0 = 0 .16  [ 9 ] .  

The s o l u t i o n  ( 2 . 4 )  and Psi  = 1 a r e  n o t  a u n i f o r m l y  a p p l i c a b l e  a s y m p t o t i c  s o l u t i o n  
o f  t h e  sys t em ( 2 . 1 ) ,  s i n c e  t h i n  zones  in  which t h e  p a r t i c l e  c o n c e n t r a t i o n  d i f f e r s  from 
u n i t y  o c c u r  n e a r  t h e  channe l  w a l l s .  Th i s  f o l l o w s  from t h e  s o l u t i o n  o f  Eqs.  ( 1 . 2 )  
d e s c r i b e d  in  Sec .  3, from which  i t  i s  c l e a r  t h a t  as  t h e  r e l a x a t i o n  o f  t h e  phase  ve -  
l o c i t i e s  i s  comple t ed  a l a y e r  o f  inhomogeneous  p a r t i c l e  c o n c e n t r a t i o n  i s  formed in  t h e  
boundary  l a y e r  n e a r  t h e  w a l l .  A s y m p t o t i c a l l y ,  t h i s  l a y e r  i s  t h i n n e r  t h a n  t h e  h a l f -  
w i d t h  o f  t h e  c h a n n e l .  

We will construct the equations describing the motion of the mixture in this 
layer, which we shall call the lower sublayer. We introduce the new stretched variables 
(scales selected from the conditions of matching with the solution in the other regions) 

u,=~,%~(X, z)+ . . . .  u,,=~,%,~(X, z)+ . . . ,  vi=~,'~v~(X, z)+ . . . .  v,,=s~'~vs~(X, z )+  . . .  
(2.5) 

e Y 
P,,=p,2 (X, z) + . . . .  e, = z = - -  

( t + = ) ~  ' e~ ~ 

Here and in what follows the subscript 2 denotes the flow parameters in the lower 
sublayer. Substituting expansions (2.5) in (2.1) and retaining the leading terms, we 
obtain the equations describing the flow in the lower sublayer 

(2.6) 
Oe2 + Ov= O~u2 
OX Oz = 0 '  u= 0 p , 2 +  , 0 p , 2 _  O X w" -&-z - -  O' O z 2 0~ H.s2 ~ U 2  ~ Us2~U2 

The solution of (2.6) has the form u: = G(X)z, v 2 = --G'z2/2. The function G(X) 
is found from the condition of matching u 2 with u I in the region of linear growth of ul: 

~ I 
The density value Ps2 in the lower sublayer is transferred along the carrier phase 

streamline m = z G(~ = const. The form of the function ps2(m) must be found from the 
condition of matching with the solution for the density of the particle medium obtained 
from (1.2) as x + ~. From the choice of scales for the nondimensionalization of the 
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coordinates it follows that 

z 
= 8  (2.7) 

z '~' X ~ ( t+a)  '~ 

Here ,  O i s  t h e  n o t a t i o n  f o r  t h e  c o o r d i n a t e  c o m b i n a t i o n  i n  q u e s t i o n .  From ( 2 . 7 )  
i t  f o l l o w s  t h a t  t h e  s o l u t i o n s  f o r  t h e  p a r t i c l e  d e n s i t y  o b t a i n e d  f rom ( 1 . 2 )  and ( 2 . 6 )  
can c o n v e n i e n t l y  be matched in  t h e  v a r i a b l e s  x,  9 and X, O f o r  f i x e d  O and x ~ ~ and 
X ~ 0, respectively. In this case X plays the part of exterior, and x that of interior 
coordinate, since x = gX/[I(I + a)]. From (2.4) it follows that for small X we have 
G(X) ~ f~(0)/~X, where f~(0) = 0.33206 [9]. Consequently, for small X the relation 

= const can be written in the form (z40.33206)X -114 = const. Hence the particle den- 
sity matching condition can be represented in the form: 

, ~ ~m,_, ~=OYO,33206(t+a) ( 2 . 8 )  P~ =p~0 tO), 

Here ,  p ~ m  i s  t h e  l i m i t  o f  t h e  d e n s i t y  o f  t h e  p a r t i c l e  medium as  x ~ ~, which  must 
be found f rom t h e  s o l u t i o n  o f  Eqs.  ( 1 . 2 )  in t h e  v a r i a b l e s  x,  8. 

For  l a r g e  v a l u e s  o f  X, f rom ( 2 . 4 )  we have  G(X) ~ 3, and t h e  r e l a t i o n  ~ = c o n s t  
t a k e s  t h e  form z4~ = c o n s t .  The c o n d i t i o n  o f  c o n s e r v a t i o n  o f  Ps2 in  t h e  lower  sub-  
l a y e r  f o r  f i x e d  m e n a b l e s  u s ,  knowing p ~ m ( 0 )  f rom t h e  s o l u t i o n  o f  ( 1 . 2 ) ,  t o  f i n d  t h e  
density distribution psa(Y) at large values of X corresponding to a Poiseuille velocity 
profile. Using the relation between z and Y (2.5), from (2,8) for large X we have 

r 1+ l ' ~ 0 . 3 3 2 0 6  
p,~L*)=p,o (0), L 

Thus, the problem of determining the particle concentration profile ps3(Y) in the 
region of flow independent of the longitudinal coordinate has been reduced to finding 

lim 8 the limit Ps0 ( ) for large x from the solution of the two-phase boundary layer equations 
(1.2)o 

3. Determination of theDensity of the Particle Medium 

in the Boundary Laye~ 

In [8] Eqs. (1.2) were solved for Stokes flow over the particles (Res0 = 0) and 
without allowance for the Saffman force (• Moreover, it was shown that, qualitatively, 
the form of the particle concentration profile at points remote from the entrance does 
not depend on the mass particle concentration a. Therefore we will set a = 0, which 
considerably simplifies the problem (1.2), and investigate the effect of the finiteness 
of z0 and Res0 on the dispersed-phase concentration distribution. When the particles 
do not affect the motion of the carrier phase (a = 0), the carrier-phase velocity field 
in the boundary layer is determined from the solution of the Blasius problem and takes 
the form [9]: 

, , t / ~ '  ) 

Here ,  t h e  f u n c t i o n  ~(~/~x)  s a t i s f i e s  t h e  b o u n d a r y - v a l u e  p rob lem 

2 ~ ' " + ~ " = 0 ,  ~(O)=C(O)=O. ~ ' ( ~ ) = t  

The equations of motion and continuity of the particle medium, considered on a 
fixed particle trajectory, can be reduced to a system of ordinary differential equa- 
tions. For this purpose, as the independent variables we introduce the dimension- 
less time of particle motion along the trajectory t and the Lagrangian coordinate n0, 
the ordinate of the origin of the particle trajectory at x = 0. For fixed ~0 the equa- 
tions of motion of the particle medium and the boundary conditions take the form: 

dx d~ du,0 = (u0-a,0)D0 
d-7= v.0, d--F 

11 auo 
du'---! = (vo-v.o)Do+no (uo-u,o) V " ~  ' 
dt 

t=0: x=0, ~=~0, us0=i, v,o=O 

(3 .1 )  
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In the Lagrangian coordinates selected the continuity equation has the form: 

ax (~0, t) an (n0, t) 
t u~og(~lo, t)--v,oe(no, t), e g=,  ( 3 . 2 )  

P,o 01o, t) ano ano 

In order to find Ps0 from (3.2) along the particle trajectory it is necessary to know 
e and g. In order to determine these quantities we differentiate (3. i) with respect 
to B0 and obtain the equations and boundary conditions 

d~ 
,dr : ] '  -~t : A [ '  +-~s dt d_.gg ----h 

[ 
9 (u0_a,0),j, F• A +  4 " 

OUo aUo  =e-0z +e I, 

I a2ao a2Uo \ aao aV,oOlo, t) 

B=e aVo aVo Oa,0(~0, t) 
Ox - h '  ] =  

, t=0:  e=0, /=0 ,  g = l ,  h =0  

In preparation for the numerical calculations we introduced the new independent 
variable x; the system of equations obtained was integrated numerically by the Kutta- 
Merson method. For calculating the velocity components of the carrier phase and their 
derivatives with respect to the coordinates we used cubic interpolation of the tabulated 
values of the function q from [9]. 

We investigated the dependence of the particle concentration profile formed at 
points remote from the entrance on the parameters Res0 and • From the results of the 
numerical calculations it follows that as x increases the particle concentration becomes 
a function of the single variable 8, which confirms the asymptotic flow structure de- 
scribed above. The distance from the leading edge at which a self-similar concentration 
profile is formed depends to a considerable extent on • thus when x0=0 x ~ 20, and 
when • .300 x>200. 

In  F i g .  1 we have p l o t t e d  1/P lims0 ( l i m i t i n g  d i s t r i b u t i o n  f o r  l a r g e  x) as  a f u n c t i o n  
o f  0 w i t h o u t  a l l o w a n c e  f o r  t h e  Saf fman f o r c e  (x0=0);  t h e  numbers  1--3 d e n o t e  t h e  c u r v e s  
c o r r e s p o n d i n g  t o  Res0 = 0, 100, and 1000, r e s p e c t i v e l y .  Q u a l i t a t i v e l y ,  i t  i s  c l e a r  
t h a t  in  t h e  s t a b i l i z e d  f low zone t h e  p a r t i c l e  c o n c e n t r a t i o n  d i s t r i b u t i o n  depends  o n l y  
weak ly  on t h e  maximum Reynolds  number.  The d ep en d en ce  o f  t h e  l i m i t i n g  p a r t i c l e  

(3.3) 
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concentration profile on the contribution of the Saffman force is demonstrated in Figs. 
2 and 3. It was assumed that Res0 = 0. The broken curve in Fig. 2 corresponds to the 
case n0=O. the continuous curve to the case • In Fig. 3 curves 1 and 2 correspond 
to the cases ~0=50 and 300. Clearly, with increase in the contribution of the Saffman 
force to the interphase momentum exchange the particle concentration profile undergoes 
a qualitative restructuring; the region of high particle concentration near the wall 
disappears. 

It should be kept in mind that in the mathematical model employed particles re- 
flected from the wall are not taken into account. Thus, it was assumed that the par- 
ticles carried to the wall by the Saffman force remained within a thin layer of insig- 
nificant thickness. 

Moreover, in the case of small particles (• in the solution obtained when 
x = 1 the particle concentration at the wall increases without bound, and, as shown 
in [i0], the resulting concentration singularity is not integrable. This means that, 
in fact, near x = 1 the small particles become concentrated and a particle "hillock," 
in which the particle content approaches close packing, develops. Behind the "hillock" 
a particle-free zone should form. Consequently, in the real small-particle concentra- 
tion distribution on the stabilized flow interval instead of an unbounded increase in 
concentration (Fig. i) near the wall there should be a narrow zone in which the particle 
concentration falls sharply to zero, i.e., the concentration maximum is reached at a 
finite distance from the wall. 

By simple conversion of the argument, using (2.9) we can find the particle con- 
centration distribution over the channel cross section from the calculated relations 
~m(e) (Figs. 1--3). 

The monograph [5] gives five typical particle concentration distributions obtained 
in various experiments on vertical pipes and channels, in particular in [ii]. Quali- 
tatively, these distributions fall into two types: a) the particle concentration max- 
imum lies close to the walls; b) concentration maximum on the channel axis. The solu- 
tion described above explains the formation of these profiles and the transition from 
a) to b) with increase in the contribution of the Saffman force to the interphase 
momentum exchange. 

4. Flow on th e Entrance Length of a Circular Pipe 

The asymptotic structure of the two-phase flow described above is preserved in 
the case of a circular pipe. In fact, on the length scale a the equations of the bound- 
ary layer on the walls coincide with the equations of the boundary layer on a plate. 
Likewise, the curvature of the walls does not affect the equations describing the flow 
in the region of the lower sublayer (because it is thin as compared with a). Only the 
asymptotic equations describing the equilibrium flow of the mixture on the longitudinal 
L and transverse a scales change. However, for determining the particle concentration 
distribution it is necessary to know only the function G(X), and for finding the par- 
ticle concentration distribution in the stabilized flow zone only the asymptotic form 
of G(X) as X + ~ is required. We will find this expression: at large X the velocity 
profile tends to the Poiseuille profile [9] (r is the dimensional distance from the 
pipe axis) 

u =2 1 - ~  , l i m G ( X ) = 4  

We can write the relation between ~limr~ and the distribution ps3(Y) in the 
~S0 \ J 

stabilized flow zone (by analogy with (2.9)) 

s - 4 

In conclusion, we note that the Saffman expression for the lift force is applicable 
only at small Reynolds numbers and low shear flow velocities [2]. On the entrance length 
of the channel or pipe there are zones in which these conditions may not be satisfied; 
accordingly, it is only possible to draw a qualitative comparison between the particle 
concentration distributions obtained above and the experimental data. 
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KINEMATICS OF FRAGMENTS FROM DISINTEGRATING PRESSURE VESSELS 

A. M. Bartenev, B. E. Gel'fend, S. P. Medvedev, 
A. N. Polenov, and S. M. Frolov 

UDC 532.529 

The disintegration of an elastoplastic vessel filled with high-pressure 
gas is experimentally investigated and a model of the process is 
proposed. 

The most important characteristics of the fragments generated by the accidental 
explosion of industrial plant are their maximum velocity, shape and ejection angle. 
These are the input parameters for external ballistic calculations, the main purpose 
of which is to determine the range of the fragments and their momentum along the tra- 
jectory. The behavior of the fragments from a pressure vessel made of elastoplastic 
material is a problem of practical importance. Usually, as a result of the disintegra- 
tion of such vessels only a small number of fragments is formed. Existing models [1--3] 
make it possible to estimate the fragment velocity, but exclude from consideration the 
separation characteristics of the fragment and its rotation about the center of mass, 
although they may have an important influence on the trajectory and penetrating power. 
These characteristics can be taken into account if the acceleration of the fragment 
is considered in relation to its separation dynamics. 

i. Experimental Apparatus and Results of Measurements 

The experimental apparatus is shown schematically in Fig. i. A diaphragm assembly 
i, similar to those used in shock tubes, is mounted in a stand 2 and used to clamp the 
edges of a flat disk-shaped diaphragm 108 mm in diameter made of annealed copper foil 
or some other elastopiastic material 0.05--0.5 mm thick. Under the pressure exerted 
by gas entering the diaphragm assembly from the mains 3, the diaphragm is deformed into 
a segmental shape 4 and at the moment of disintegration is almost hemispherical (non- 
sphericality coefficient 0.7). Thus, the device described makes it possible to model 
the disintegration of a pressure vessel with an elastoplastic shell using a minimum of 
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