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The aerodynamics of conical bodies with a star-shaped cross section have been experimentally investigated over a broad range 
of variation of the parameters determining their geometry at a free-stream Mach number M=6. The position of the center of 
pressure of star-shaped bodies with an optimum trailing edge shape is investigated in relation to similariw parameters previously 
obtained theoretically. A correspondence is established between the derivatives of the normal force with respect to the angle of 
attack for pyramidal star-shaped bodies and bodies with the optimum trailing edge. 

1. A E R O D Y N A M I C  C H A R A C T E R I S T I C S  O F  P Y R A M I D A L  B O D I E S  A T  M = 6  

Theoretical and experimental research on supersonic and hypersonic flow past conical bodies with a star-shaped cross 
section and their elements (for a bibliography see [1, 2]) has yielded extensive material on the structure of  the flow around such 

bodies and on their aerodynamics. Much of this work has been devoted to the study of the aerodynamic drag of star-shaped 
bodies at low and intermediate supersonic speeds and an angle of  attack equal to zero, which has been determined by the search 

for the principal parameter giving a reduction in the drag as compared with a circular cone of equivalent lenph L and maximum 

cross-sectional area S M. This parameter [3] was found to be the ratio of the minimum radius of the transverse contour of the 

star-shaped body to the radius of the cross section of the equivalent cone measured at the base: r ' = r / R  o (Fig. 1, where the 
continuous lines represent one of  the cycles of the star-shaped body and the broken lines the equivalent cone). "fhe number of 

cycles n of  the star-shaped body is not of  fundamental importance for the minimization of the aerodynamic drag: if r '  is given 
(in what follows the prime has been omitted). 

At the same time, data on the aerodynamic characteristics of  star-shaped bodies as a function of the angles of  attack and 
roll are available only for M _< 3 [3] on a limited interval of variation of the aspect ratio of the equivalent cone X =L/(2Ro) and 
are lacking for high supersonic speeds. 

The aerodynamic drag force Fr, the normal force F n and the moment were investigated experimentally for a class of  models 

of star-shaped bodies with plane faces having the same maximum cross-sectional area S M. For the purpose of comparison with 

the aerodynamic characteristics of equivalent bodies of  revolution we also tested the equivalent circular cones with a base section 

diameter of  30 mm and lengths L=39 ,  60, and 75 mm, which correspond to aspect ratios X= 1.3, 2, and 2.5. The star-shaped 

bodies of  each aspect ratio consisted of  three series differing with respect to the value of the parameter r=0.4 ,  0.5, and 0.6. 
In each series we varied the number of  cycles of the star-shaped body: n=3 ,  4, and 6. 

The longitudinal force Fz, the normal force F n and the transverse moment acting on the model were measured at M = 6  

and a unit Reynolds number Re=10  g m -1 using a strain-gauge balance mounted in a special automated apparatus which 
controlled various sequences of  flow regimes on the range of angles of attack c~E ( - 1 0  ~ + 10 ~ with a given interval. 

During the experiments information was recorded from the following measuring channels: strain balance components, angle 
of attack of the model, pressure in the settling chamber and static pressure in the flow, stagnation temperature of the flow and 

the strain balance. A measuring and computing system based on a AT-286 PC and KAMAK equipment was used to calibrate 

the measuring channels, control the position of the model in the flow, and record and process the information. Tile system was 
programmed in a MS DOS operating environment using a specialized library for controlling the KAMAK equipment. 

In order to obtain reliable values of  the load components acting on the model we made multiple measurements and specified 

the necessary number of  interrogations of  the measuring channels for each position of the model in the flow. The information 
was recorded serially, a single interrogation cycle taking - 10 msec. The strain balance calibration interval was chosen and the 
amplifying equipment adjusted with reference to the maximum possible loads on each model. This made it possible to ensure 
that the accuracy of the results obtained was < 2  without allowance for possible technological errors in co:nstructing the 
experimental models. As a test we compared the experimental and theoretical [4] values of the position of the center of  pressure 
for circular cones. 
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The results of  the balance experiments on models of star-shaped bodies and the equivalent cones can be represented by 

the coefficients of  the longitudinal force and the force normal to the body axis cr=Fr/(qSM) and cn=Fn/(qSM) and by the 
derivative of the latter with respect to the angle of attack c~ (q is the dynamic head). The quantity cn ~ was taken equal to the 

coefficient in the least-squares linear approximation of the experimental values cn(a) over the entire interval of  variation of the 

angle of attack for the axisymmetric models (n=4,  6) and on subintervals for the nonaxisymmetric models (n=3). 
One important question is the effect of  the angle of roll on the normal force acting on an axisymmetric body with a star- 

shaped cross section. We carried out experiments in which the angle of attack was varied in the plane of symmetry of the cycle 
(Fig. 1) and in the plane of symmetry of a lobe of the star-shaped body. As an example, in Fig. 1 (relation 1) we have plotted 
the data on on(or) for a star-shaped model with the parameters ),=2.5, r=0.4,  and n =4. The different points represent the values 
of c n corresponding to the planes of variation of the angle of attack indicated above. Clearly, the data for the normal force 
coefficient coincide in these model flow regimes, which differ from the gas dynamics standpoint, and can be approximated by 
a single linear dependence over a fairly wide interval of variation of the angle of attack. 

This important qualitative result can be explained fairly simply using the principle of superposition of  solutions of linear 
problems, if we make the reasonable assumption that friction does not affect the magnitude and direction of  the normal force 

at small angles of  attack. As an illustration, in Fig. 1 we have shown the flow diagram for a star-shaped body with n=4  cycles 

in the transverse plane. 
Let a transverse velocity perturbation equal to us, where u is the modulus of  the free-stream velocity, form angles T1 and 

3'2 with the planes of symmetry of the lobes of the star-shaped body in the corresponding cycle ('Y1 +'~2=2a'/n) �9 Having 
decomposed the velocity perturbation, in accordance with the superposition principle, into two components parallel to the above- 
mentioned planes of  symmetry: uc~ sin 3"2/sin(2~r/n) and uc~ sin q/1/sin(27r/n), we find that they cause perturbations of the normal 
force F 1 =Aa sin "Y2/sin(27r/n) and F2=Aot sin "Y1/sin(2r/n), respectively, where.A is a coefficient determined as a result of 
solving the linear problem of flow at a small angle of attack past a star-shaped body whose plane of variation coincides with 
the plane of symmetry of  the lobe, when the basic undisturbed solution (or =0) is known. In accordance with the parallelogram 

rule, the resultant F 3 of the forces F 1 and F 2 will have the same direction as the transverse velocity perturbation uot (Fig. 1) 

and will be equal to Aa. 
Thus, if the region of applicability of the linear theory is broad enough, the normal force will lie in the plane of the angle 

of attack and will have equal values not only for equal values of the angle of attack as it varies in the different planes of 
symmetry of the star-shaped body, as observed in the experiments on axisymmetric bodies (n=4, 6), but also for an arbitrary 
position of the plane of variation of the angle of  attack. In the region of validity of  the linear theory the derivative of the normal 
force with respect to the angle of attack c~ does not depend on the angle of roll of the star-shaped body. 

It is easy to establish that this reasoning will hold for any cyclically symmetric body (n>_3), i.e., for nonaxisymmetric 
star-shaped bodies also. This result was first obtained in [5] within the framework of the linearized local-interaction model. 
However, as our experimental investigation of  nonaxisymmetric star-shaped bodies (n = 3) showed, the interval of variation of 

the angle of attack containing the point ~ =0,  on which Cn(OO can be approximated by a linear function, is much smaller than 
for axisymmetric bodies. Therefore, if the aerodynamic characteristics are measured using a fairly large step with respect to 
the angle of attack [3] the fairly small neighborhood of the point c~ =0 in which the function Cn(OZ) is described by the linear 

theory may remain unnoticed. 
In Fig. 1 the points 1 and 2 represent the experimental values of cn(o~ ) for two models of star-shaped bodies with n = 3 
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cycles and r=0 .4 .  The points 1 and 2 correspond to positions of the star-shaped body in the flow such that its cycle, shown in 
Fig. 1, is on the leeward and windward sides, respectively. The relations 2 and 3 correspond to the values )~=2.5 and 1.3. In 
both cases the experimental points 1 and 2 can be approximated by a single straight line only when ~ <2 - -2 .5  ~ . Over the entire 
range of angles of  attack investigated the points 1 can be very accurately approximated by a linear relation (continuous straight 
lines 2 and 3), whereas points 2 can be so approximated only for or>_.3 ~ (broken straight lines 2 and 3). In what follows the 
slopes of these continuous and broken straight lines will be taken as the derivative of the normal force for nonaxisymmetric star- 
shaped'bodies when two essentially different flow regimes are realized, taking into account the smallness of the "transition 

interval" in the neighborhood of c~ =0.  
The experimental data on the longitudional force coefficient c r indicate that, as distinct from the above-mentioned effect 

on cn(ot), the asymmetry of  the star-shaped bodies (n = 3) has almost no effect on the range of angles of attack investigated. 

In Fig. 2 for )~E [1.3; 2.5] we have reproduced the results for the derivative of the normal force with respect to the angle 

of  attack cn a for star-shaped bodies (relations 2--4 correspond to n=3,  4, and 6 cycles) with parameters r=0.4,. 0.5, and 0~ 
(a, b, and c, respectively) and the equivalent circular cones (relation 1, Fig. 2c). 

The value of cn ~ for star-shaped bodies considerably exceeds that for the equivalent cones, which testifies to the excellent 
lift properties of  the three-dimensional configurations in question. The increase in the derivative of the normal force, observed 
as the aspect ratio X increases and the parameter r decreases, is due to the corresponding increase in the plan area of the star- 
shaped body Sp ~ 2XSM/(rn sin(qr/n)). The increase in c~ with increase in the number of cycles of  the star-shaped body is 
attributable to the significant rise in pressure in the cycle on the windward side and the very weak dependence of  the plan area 
Sp on n, which, the other parameters being equal, varies only by 15% on transition from n=3 to n = 6  (see, for example, [2, 
6]). These properties of the flow are especially clearly expressed for models of star-shaped bodies with an odd number of cycles 

(n=3, relations 2 in Fig. 2), when the orientation of the cycle with respect to the free stream is varied (the continuous curves 

represent the cycle on the leeward side, the broken curves the cycle on the windward side) for a constant plan area. 

In Fig. 3 we present the experimental data for the drag coefficient c r of star-shaped bodies at an angle of attack et =0 for 
n=3,  4, and 6 cycles (a, b, and c, respectively) and r=0 .6 ,  0.5, and 0.4 (continuous curves 1, 2, and 3) and those for the 
equivalent cones (chain curve in Fig. 3c) as a function of the aspect ratio )~. 

When M = 6  all the star-shaped bodies on the range of  variation of the design parameters X, r, and n considered have a 
lower aerodynamic drag than the equivalent cone. Whereas for star-shaped bodies with n=3 and 4 cycles (Fig. 3, a, b) the 
minimum values of  c r are not reached over almost the entire interval of aspect ratios )t as r varies from O. 6 to 0.4 (an exception 
is the interval of  variation of k in the neighborhood of 2.5 when n=3),  for n=6  (Fig. 3c) the minimum value of the 
aerodynamic drag is reached when r ~ 0 . 5 .  

The results of the balance experiments on star-shaped bodies for M = 6  and a =0 also show that in order to minimize the 

aerodynamic drag for fixed parameters X and r it is no longer possible to designate with certainty the necessary number of cycles 
of the star-shaped body, as was the case for smaller Mach numbers, when it is was sufficient to take n=3 or 4 [1, 3]. Thus,  

when r=0 .6  and 0.4 bodies with n=3  and 4 cycles, respectively, have the minimum drag, but when r = 0 . 5  the min imum drag 
corresponds to bodies with n=6  cycles. This indeterminacy was noted in [7] at hypersonic flow velocities. 

When r E  [0.4; 0.6] and 3,= 1.3 the aerodynamic drag of the optimum star-shaped body is approximately half the drag of 
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the equivalent cone and when ) ,=2 it is less than the drag of the equivalent cone by a factor of  1.3. These data, together with 

the results of  other studies (see the bibliography in [1]), show that the minimum value of the ratio of  the aerodynamic drag of 
star-shaped bodies to the c z of  the equivalent cone is reached at Mach numbers M > 6. 

2. AERODYNAMIC CHARACTERISTICS OF STAR-SHAPED 
BODIES WITH OPTIMUM TRAILING EDGE SHAPE 

One of the important problems in developing promising three-dimensional shapes for aircraft traveling at high supersonic 

velocities and possessing optimum or near-optimum aerodynamic characteristics is the problem of stabilizing them in flight. In 

[8] in the class of conicat star-shaped bodies with plane faces the possibility of ensuring the maximum reserve of static stability 

by optimizing the shape of the trailing edge was studied under various isoperimetric conditions: either the area of the maximum 
cross section or the volume of the body was given. The diagram in Fig. 4 shows the projection of a lobe of the star-shaped body 

with optimum trailing edge shape on the plane of symmetry. At distances l I and 12 from the nose there are plane base surfaces 
normal to the axis o f  the star-shaped body. 

In [8] a variational problem for slender bodies was formulated and solved on the assumption that the pressure varies only 
weakly over the span of  each of  the panels of the three-dimensional body and that the "stabilizers" are not affected by the part 

of the trailing edge lying closer to the nose (Fig. 4). A similarity rule establishing the universality of the trailing edge shape 

and the value of the static stability reserve for constant values of the parameters k = 1 2 / l  1 (relative length of "stabilizers") and 
m was discovered. Here 

( r / R )  cos (st~n) t a (n/2.:r)  sin (2at~n)  
m = 1 - ( r / R )  cos (a t /n )  -- 1 - t a (n /2s r )  sin ( 2 : r / n )  

and r and R are the minimum and maximum radii of  the transverse contour of the star-shaped body in some cross section. 

In order to test the results of  the theory [8] it is sufficient to measure the position of the center of  pressure lg of star-shaped 
bodies with the optimum trailing edge shape, determined, for example, for the case of  a given maximum cross-sectional area, 
for various sets of  governing parameters and to compare it with the theoretical values determined from the expression 

c z = ~ = 1 - 1/sz a + 1/2 (k  -- 1) (1 - za),  z '  = [1 + 4/3 (1 + m )  (k - 1) 1-' 

In accordance with the above, we designed and built experimental models of star-shaped bodies with the optimum trailing 

edge shape, the geometry of each of  which was determined by the values of the dimensionless parameters in the rows of Table 
1 and by the value of the parameter k = l . l l ,  1.25, and 1.43. 

It is easy to see that the models were so designed that it was possible to establish, on the one hand, the validity of the 
similarity rule (models with n = 3 and 4 transverse cycles, constant m and the same X) and, on the other hand, the validity of 
the theory for different values of  the relative thickness of the body X-  I. 

The experimental investigation of the aerodynamics of the models described above and the processing of the results were 
carried out in accordance with the methods discussed in Sec. 1. 

The dependence of  the aerodynamic characteristics of  models of  star-shaped bodies with the optimum trailing edge on the 

870 



TABLE 1 

m n r' X Point 

0,165 

0,21 

0,33 

0,47 
0,47 
0,58 
0,58 

0,53 
0,65 
0,65 

0,62 
0,62 
0,78 
0,78 

2,83 
3,53 
2,83 
3,53 

2,75 
2,75 
3,7 

2,5 
3,1 
2,5 
3,1 

1 
2 
3 
4 

5 
6 
7 

8 
9 
10 
11 

angle of attack is qualitatively the same as for pyramidal star-shaped bodies. In particular, over the entire range of angles of 
attack investigated ( - 10 ~ _< c~ _ 10~ on which the requirement with respect to the accuracy of the measurements of the quantities 
generating the characteristic in question (normal force, transverse moment) is satisfied, the experimental values of the position 
of the center of pressure Ig fit into a strip around a certain straight l ine/g=const with a half-width that does n~ot exceed the 
measuring error given in Sec. 1. This indicates that on the range of angles of attack investigated tg(c~) is either a constant or 
a very weakly varying function. Therefore, as lg we took the mean of  the values of Ig(c~) obtained in the experiments. 

This method of determining the position of  the center of pressure lg is reasonable in the case of axisymmetric star-shaped 

bodies (n=4 and 6). Considering the substantial difference in the values of cn(a ) for nonaxisymmetric bodies (n=3,  relations 
2 and 3 in Fig. 1) at angles of  attack of different sign, when the plane of variation of a coincides with any of file planes of 

symmetry of the star-shaped body, the procedure for determining the position of the center of pressure requires special study. 
An investigation of  the value of lg for different models with n=3 cycles at varying angles of attack in planes coinciding with 

the planes of symmetry of the bodies and perpendicular to the latter showed that, within the limits of experimental error, lg does 
not depend on the roll angle of the model. 

In Figs. 4a, 4b, and d.c for m=0.165, 0.21, and 0.33, respectively, we have plotted the theoretical (continuous curves) 
and experimental values of the relative position of the center of pressure of star-shaped bodies with the optimum trailing edge 
against the aspect ratio of the "stabilizers" k (the experimental points are displaced relative to the corresponding coordinate lines 
k=const). The correspondence between the experimental points and the models is established in the right-hand column of Table 

I. The difference between the experimental values o f  cg and the theoretical curves is no greater than the error of the 
measurements. 

Thus, the experimental investigation not only confirms the validity of the similarity rule established in [8] but also indicates 
that the theoretical relation can be used to determine the position of the center of pressure with a high degree of  accuracy. 

Apart from the position of  the center of pressure, for star-shaped bodies with the optimum trailing edge an important 
characteristic for calculating the dynamic properties of these bodies in flight is the derivative of the normal force with respect 

In Figs. 5a, 5b, and 5c for m=0.165, 0.21, and 0.33, respectively, using the same notation as in Fig. to the angle of attack c n . 
4, we have plotted the experimental data for c~ as a function of the parameter k. 

The bulk of  the experimental data for models with an odd number of cycles (n=3,  points 3, 4, 6, 7, 10, and 11) relate 
to flow regimes in which the plane of variation of  the angle of attack is perpendicular to any of the planes of symmetry of the 
star-shaped body, i.e., cn(a) is an odd function of  the angle of attack. Points 1 in Fig. 5 (corresponding to points 4 and 7) for 

k= 1.43 and points 2 (corresponding to points 10) for k= 1.25 correspond to the flow regimes in which the plane of variation 
of the angle of attack coincides with one of  the planes of symmetry of  the body, while the cycle lies either on the leeward side 

(lower points of each pair in Figs. 5a, 5b, and 5c) or on the windward side (upper points). The mean value of  Cn ~ for these 
characteristic flow regimes coincides with the Cn ~ for an odd function cn(o 0 (points 4 and 7, k= 1.43, and point t0, k= 1.25). 

An important experimentally determined fact (Fig. 5) is the virtual constancy of  the derivative of the normal force in each 
series of models with the same values of the parameters m, r, and X, but different k. Considering the substantial redistribution 
of the lifting surface on the optimum bodies in the neighborhood of the base from the inner ribs to the leading edges [8], this 
observation points, firstly, to a very small pressure variation in the transverse direction on each face of the star-shaped body 
and, secondly, to the weak (or nonexistent) effect of the part of the base section located closer to the nose of the body (see Fig. 
4) on the flow over the "stabilizers." 

The calculations showed that when M = 6 every kind of flow regime may be realized around the experimental models: with 
the shock wave detached from the leading edges ( n = 3 - m = 0 . 2 1 , ) , = 3 . 7 ;  m=0.33; n = 4 - r n = 0 . 3 3 ;  ),=3~i), with a smooth 
bow shock attached to the leading edges (n=3-m=O.165 ,  m=0.21; X=2.75; n = 4 - m = 0 . 3 3 ,  X=2.5), and with a Mach shock 
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wave configuration in the cycles (n = 4 - m = 0 . 2 1 ;  m=0.165). For large aspect ratios of  the star-shaped body and a small number 

of cycles (n = 3, 4) the inner shocks in the Mach configuration are weak, and in the case of  the flow regime with a single smooth 
shock wave in the cycle the pressure within the Mach cone differs little from the pressure behind the plane shock attached to 
the leading edge. These data confirm the validity of  the simplifications made in [8] in formulating the variational problem. 

The fact that the derivative of  the normal force coefficient does not depend on the parameter k makes it possible to 

conclude that the value of cn ~ for star-shaped bodies optimal with respect to the static stability reserve coincides with that for 

star-shaped bodies with a plane base section (pyramidal bodies, k =  1) having the same values of  the design parameters X, r, and 

n. In this connection it is of  interest to compare the mean values of  cn ~ with respect to k for star-shaped bodies with the optimum 

trailing edge shape with the cn ~ for star-shaped bodies with a plane base section (Sec. 1). 

In Sec. 1 we investigated the dependence of cn ~ on the aspect ratio X (X_<2.5) for pyramidal star-shaped bodies when 

r E  [0.4; 0.6]. Among the models of  star-shaped bodies with an optimum trailing edge (Table 1) the series 9 and I 1 have a value 

of the parameter r lying on or close to the interval (0.4; 0.6) and an aspect ratio X_>2.5. Therefore the experimental data on 

the values of  c~ for pyramidal star-shaped bodies (Sec. 1) could be linearly extrapolated to X> 2.5. 

In Fig. 2 the broken straight lines (X> 2.5) represent the extrapolated cn ~ relations for pyramidal bodies with the parameters 
r=0 .5  (b), n = 4  and r = 0 . 6  (c), n=4 ,  respectively, while the chain straight line in Fig. 2c represents the extrapolation of the 
mean values of  the derivative of  the normal force coefficient for models of  star-shaped bodies with three cycles (relations 2). 
The deviation of the experimental points from the reference straight lines corresponds qualitatively to our notion of the variation 

of cn ~ as a function of the parameter r. For constant k a decrease (increase) in the parameter r corresponds to an increase 

(decrease) in c~, which is associated with the increase (decrease) in the lifting surface of  the star-shaped body. The results are 

also in good quantitative agreement (the interpolation straight lines corresponding to models with an optimum trailing edge for 

r E  (0,4; 0.6) are not shown). 

Our experimental investigation of the aerodynamics of star-shaped bodies with an optimum trailing edge shape enables us 
to conclude that the recommendations of  the theory [8] can be used at least for aspect ratios X>_2.5. 
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