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The results of a numerical calculation of a symmetric flow of supersonic 
gas with the Mach number M = 3 past the windward side of V-shaped wings with 

an opening angle y = 40 ~ and apex angles ~ = 30, 45, and 90 ~ are given. 

The possibility of the ascent of one or two Ferri points from the 

break point of the transverse contour of the wing is discovered and 

explained. It is shown that conical flow near wings of Zinite length 
need not exist in flow regimes corresponding to angles of attack e at 

which a Ferri point ascends, while at angles of attack smaller and larger 

than a certain interval , conical flow will exist. The investigation is 

conducted by means of a numerical method of stabilization with an 
artificial viscosity. The longitudinal coordinate, relative to which the 

steady system of equations is hyperbolic, played the part of the time 

variable, usual for methods of stabilization. The numerical method con- 

structed using the scheme of [i] is described in [2] and was successfully 
applied to the calculation of different regimes of supersonic flow past 

conical wings with supersonic leading edges [2-6]. In. the present in- 

vestigation the calculation algorithm of [2] is modified and makes it 
possible to realize motion with respect to the parameter a, this being 

particularly important for the stabilization of the solution in the 
calculation of flow regimes for which regions with a total velocity Nach 

number close to unity arise in the flow. 

Figure 1 gives the structures of the characteristic lines near V-shaped wings with 

the above parameters of the geometry for the number M = 3 in the plane normal to the 

break line of the wing for the angle of attack ~ + 0. The continuous lines are the 

wakes of the shock waves, and the broken lines, those of the Mach cones. As can be seen, 

the wings selected ensure a wide variety of flow regimes and wave configurations as the 

angle of attack is increased. 

We note that the V-shaped wings with the apex angles 8 = 45 and 90 ~ (Figs. Ib, ic) 
do not have standard flow regimes for M = 3 with the plane shock wave on the leading 

edges, whereas a standard flow regime occurs on the wing with the angle 8 = 30 ~ (Fig. 
la) for the angle of attack e = 33.8 ~ with a shock wave belonging to the strong family 

in the planes normal to the leading edges. 

Without dwelling on the description of the flow regimes of V-shaped wings as the 

angle of attack is increased, this being the topic of a special discussion with a gen- 
eral nature, we note only that near the wing with the angle 8 = 30 ~ for as little as 
a = 5 ~ a Mach interaction of the shock reflected from the point 1 (Fig. la) with the 

wall will be observed, while for a = 8.9 ~ it will belong to the strong family of the 
plane normal to the reflection line and impinge normally on the wall of the wing. Thus, 
for a = 8.9 ~ , we will speak of the standard flow regime of an inner V-shaped wing with 

a strong shock wave in the plane normal to the leading edge, for which the point 1 
(Fig. la) is the wake of the leading edge, while the wall of the initial wing is the 
plane of flow symmetry. The uniform flow behind the plane shock wave attached to the 
leading edge of the initial wing is the unperturbed flow for the inner wing. For a > 8.9 ~ 
a ~{ach configuration of the shock waves near the wing with the angle 8 = 30 ~ is observed. 

For the wing with the angle 8 = 45 ~ the standard flow regime near the inner wing 
with the leading edge (I) (Fig. ib) is realized for the angle of attack a = 24.8 ~ but 
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near the inner wing (I)(Fig. ic, 8 = 90 ~ it does not occur at all in the range of 

angles of attack preceding the angle of attack at which regions with a total velocity 

equal to the critical velocity appear in the perturbed flow. In view of the last fact, 

the numerical calculation of the flow past the V-shaped wing with the angle B = 90 ~ was 
carried out only for the inner wing with the leading edge (i) (Fig. ic) located in a 

uniform supersonic flow along the wall of the initial wing. 

The continuous curves in Figs. 2a and 2b give the distributions of the pressure 
coefficient C_ over the wall of the wing (the left curves I) and in the plane of flow 

symmetry (thePright curves i), obtained in the numerical calculation of the flow past 

the wing with the angle B = 30 o for the angles of attack e = 9 ~ (Fig. 2a) and ~ = 32 ~ 
(Fig. 2h) as a dependence of the coordinate q = tan ~, wh~re ~ is the angle measured 

from the edge of the wing along its wall or in the plane of flow symmetry. 

Since the shock fronts in the continuous calculation schemes are smeared, the exact 

position of the shock wave was determined using the position of the maximum pressure 

gradient and all the necessary parameters behind it were calculated. The pressure levels 

thus obtained are smoothly linked by the broken curves 2 with the basic pressure level 

obtained in the numerical calculation in the neighborhood of the shock waves. The 
point K (see the structure of the shock waves in the transverse plane near the wing, 

Figs. 2a and 2b) denotes the position of the leading edge of the wing and the pressure 
level behind the plane shock attached to it, while the points K 1 and K2, respectively, 
denote the locations of the internal shock Wave on the wall of the wing and the bridge- 
shaped shock of the Mach configuration of shock waves in the plane of flow symmetry, 

and also the calculated values of the pressure behind them. 

The fairly large pressure drops in the narrow zone behind the shock wave (Fig. 2a) 

are not worked through by the difference scheme because of the small number of grid 
points in the region indicated. In the same place, where the extent of these zones is 
greater (Fig. 2b), the corresponding pressure distribution is partially stabilized in 

the numerical solution. The chain lines 3 show the pressure levels on an equivalent 

wedge, either in a uniform flow along the wall of the wing, or in an unperturbed flow, 
and set angles of attack which the indicated flows make with the relative to them at the 
chord of the V-shaped wing. 

The examples shown in Fig. 2 of the calculation of the flow past the V-shaped 

wing with the apex angle 8 = 30 ~ correspond to the flow regimes when flow with a shock 
wave detached from the leading edges occurs near the inner win~ in the flow behind 
the plane shock wave attached to the leading edge [7] (~ > 8.9~, while, because of 

this, flow with a Mach configuration of the shock waves occurs near the main wing. 

An interesting result discovered in the calculations is the relative position of 

the inner and bridge-shaped shocks in the Mach interaction of the shock waves near the 
V-shaped wings relative to the shocks on the equivalent wedges. Figure 3 gives the 

corresponding dependences for the wing with the apex angle 8 = 30 ~ . Curve 1 is the 
position 8 of the internal shock wave on the wall of the wing, curve 2 is the position 
of the shock on the equivalent wedge relative to the direction of the uniform :flow 
behind the plane shock wave attached to the leading edge, and curves 3 and 4 are the 
positions of the closing shock wave and the shock on the equivalent wedge in the 
symmetry plane of the flow. Curves 1 and 3 are bounded on the right by the value of 
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a n d  6 d e n o t e  t h e  r e g i m e s  i n  w h i c h ,  r e s p e c t i v e l y ,  t h e  c r i t i c a l  v e l o c i t y  b e h i n d  t h e  s h o c k  
o n  t h e  e q u i v a l e n t  w e d g e  i s  r e a c h e d ,  a n d  t h e  s t a n d a r ~  f l o w  r e g i m e  i s  r e a l i z e d ,  t o w a r d  
w h i c h  t h e  p o s i t i o n  o f  t h e  b r i d g e - s h a p e d  s h o c k  t e n d s  o n  t h e  a x i s  o f  f l o w  s y m m e t r y  a s  ~ * 
3 3 . 8  ~ . T h e  i n t e r s e c t i o n  o f  t h e  c u r v e s  1 a n d  2 c o r r e s p o n d s  t o  t h e  s t a n d a r d  r e g i m e  o f  
f l o w  p a s t  t h e  i n n e r  w i n g  f o r  u = 8 . 9  ~ . T h e  j u m p  8 o n  c u r v e s  3 a n d  4 i s  a l s o  a s s o c i a t e d  
w i t h  i t ,  s i n c e  f o r  ~ = 8 . 9  ~ t h e r e  o c c u r s  a n  a b r u p t  t r a n s i t i o n  f r o m  t h e  c o n d i t i o n s  i n  t h e  

u n i f o r m  f l o w  b e h i n d  t h e  s h o c k  r e f l e c t e d  f r o m  t h e  p l a n e  o f  s y m m e t r y  t o  t h e  c o n d i t i o n s  
i n  t h e  u n p e r t u r b e d  f l o w  i n  t h e  c h a n g e o v e r  o f  t h e  s t r u c t u r e  o f  t h e  f l o w  p a s t  t h e  i n i t i a l  
w i n g  f r o m  n o r m a l  t o  M a c h  s h o c k  w a v e  i n t e r a c t i o n .  

T h e  i n t e r n a l  s h o c k  w a v e  i n  t h e  M a c h  c o n f i g u r a t i o n  o f  s h o c k  w a v e s  l a g s  b e h i n d  t h e  
s h o c k  w a v e  o n  t h e  e q u i v a l e n t  w e d g e  b o t h  n e a r  t h e  i n i t i a l  w i n g  ( F i g .  3 ,  c u r v e  1 ,  ~ > 8 . 9  ~ ) 
a n d  n e a r  t h e  i n n e r  V - s h a p e d  w i n g  ( c u r v e  3 ,  u < 8 . 9  ~ ) w h e r e a s  t h e  b r i d g e - s h a p e d  s h o c k  i n  
t h e  s y m m e t r y  p l a n e  o f  t h e  c o r r e s p o n d i n g  w i n g  ( c u r v e  1 ,  u < 8 . 9  ~ , c u r v e  3 ,  ~ > 8 . 9  ~ ) 
o u t s t r i p s  t h e  s h o c k  o n  t h e  e q u i v a l e n t  w e d g e .  H e n c e  i t  f o l l o w s  t h a t  i n  t h e  s y m m e t r y  
p l a n e  o f  t h e  f l o w  i n  t h e  p r e s e n c e  o f  a M a c h  c o n f i g u r a t i o n  o f  s h o c k  w a v e s  t h e  s t r e a m l i n e  b e -  
h i n d  t h e  b r i d g e - s h a p e d  s h o c k  w i l l  b e  d i r e c t e d  f r o m  t h e  e d g e  o f  t h e  w i n g ,  w h e r e a s  b e h i n d  
t h e  i n t e r n a l  s h o c k  o n  t h e  w a l l ,  i t  w i l l  b e  d i r e c t e d  t o w a r d  t h e  e d g e  o f  t h e  w i n g .  
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The rule discovered is reflected both in the pressure levels behind the inner and 
bridge-shaped shocks and behind the shock waves on the equivalent wedges (Figs. 2a, 2b). 

The analysis of the results of the calculation of the flow past the V-shaped wing 
with the apex angle ~ = 30 ~ for angles of attack a < 8.9 ~ , when a Mach configuration of 

shock waves is realized near the inner wing, showed that in the interior flow region 

a mean pressure level develops that is below the pressure level on the equivalent wedges. 

At the same time, the streamlines of three-dimensional flow running along the wall of the 
wing and passing the bridge-shaped shock near the inner wing are directed from the edge 

of the wing, whereas the streamlines in the neighborhood of the plane of symmetry, pass- 

ing the inner shock, are directed toward the edge of the wing. The former~ subjected 

to a negative pressure gradient, acquire a negative curvature and the latter, subjected 

to a positive pressure gradient, acquire a positive curvature, if the abscissa of the 

coordinate system in each of the planes is made to coincide with the edge of the wing, 

while the ordinates are directed to the side of the oncoming flow, and asymptotically 

downstream, they acquire the same direction as the direction of the edge of the V-shaped 

wing. Thus, for a < 8.9 ~ the streamlines of the conical flow on the sphere enter the 

Ferri point which is the same as the break point of the transverse contour of the wing. 

For the angles of attack 8.9 ~ < a ~ 14 ~ (Fig. 2a) the mean pressure level in the 

interior flow region is lower than both pressure levels behind the shock waves, but 

higher than the pressure on the equivalent wedge in the unperturbed flow. Behind the 
internal shock wave K 1 the streamlines running along the wall of the wing are directed 
toward the edge of the wing, while the streamlines in the neighborhood of the plane 

of symmetry K 2 are directed away from the edge. It would seem that the former must 

have a positive curvature and the pressure must increase from the point E 1 toward 

the edge of the wing. I~wever, the presence of a minimum in the pressure distribu-- 

tion (Fig. 2a)indicates that the streamlines in a certain neighborhood of the point 
K1, like the streamlines passing the shock K2, have a negative curvature, i.e., they 
increase the slope in the direction of the edge of the wing, but then, changing the 

direction of the convexity under the influence of the positive pressure gradient, 
asymptotically acquire the same direction as the edge of the wing. 

The pressure drops observed behind the jumps K 1 and K2, but not the equalization, 

are associated with the lower pressure in the interior flow region in the neigh- 

borhood of the triple point T (Fig. 2a) of the Mach shock wave interaction, 
whose parameters are determined by the point of intersection T of the shock polars 

given there; p is the pressure and ~ is the angle of deviation of the flow. There- 

fore, even for 8.9 U < ~ ~ 14 ~ the Ferri point is at the break point of the trm~sverse 

contour of the wing. This is also confirmed by the distributions of the entropy 
function s (not given). The entropy behind the wave K 1 along the wall of the wing 

is constant. It is also constant behindthe wave K 2 on the axis of flow symmetry, 

decreasing slightly in the small neighborhood of the edge of the wing to the entropy 

level on the wall of the wing, this being associated with the spreading of the Ferri 
singularity in the numerical solution. 

The nature of the flow in the perturbed region changes qualitatively for angles 
of attack ~ > 14 ~ (Fig. 2 b ) .  

A distinguishing feature of these flow regimes is the lower pressure level behind 
the bridge-shaped shock K 2 than the mean pressure level in the interior flow region, 

although its intensity exceeds the shock wave intensity on the equivalent wedge in 
the unperturbed flow. This indicates that the streamlines passing the shock K 2 and 
directed from the edge of the wing have a positive curvature and continue to deviate 

from the edge, while the ~erri point rises from the wing surface and is no longer 
at the break point of its cross section. 

This qualitatively new type of flow in the shock layer is traced well using the 
distribution of the entropy function s in the plane of flow symmetry (the right-hand 

curve 4 in Fig. 2b). Two regions with constant entropies are observed. One is in the 
neighborhood of the edge of the wing with the same entropy level as on the wall of 

the wing (the left-hand curve 4 in Fig. 2b) and the second is behind the shock wave 
K 2. The transition section between the two entropy levels indicated in the neighbor- 

hood of the center of the elliptical flow region corresponds to the spreadingof the 
Ferri singular point in the numerical solution. 
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On t h e  f l o w  scheme n e a r  t h e  w i n g  i n  t h e  t r a n s v e r s e  p l a n e  ( F i g .  2b)  t o  t h e  r i g h t  o f  
~ h e  l i n e  o f  s y m m e t r y ~  by means  o f  t h e  a n a l y s i s  o f  t h e  f t o w  f i e l d  p a r a m e t e r s  o b t a i n e d  i n  
t h e  n u m e r i c a l  c a l c u l a t i o n ,  we h a v e  p l o t t e d  i s e n t r o p e  s t r e a m l i n e s  f o r  w h i c h  t h e  v a l u e  
o f  t h e  e n t r o p y  f u n c t i o n  v a r i e s  f rom 0 . 0 9 1  n e a r  t h e  w a l l  t o  0 . 0 9 9  i n  t h e  n e i g h b o r h o o d  
o f  t h e  t r i p l e  p o i n t  T.  The i s e n t r o p e  p i c t u r e  c o n f i r m s  t h e  p r e s e n c e  o f  a s t r e a m l i n e  
s t r u c t u r e  i n  t h e  c o n i c a l  f l o w  w i t h  t h e  F e r r i  p o i n t  t h a t  ha s  a s c e n d e d .  

We n o t e  t h a t  t h e  i n t e r p r e t a t i o n  o f  t h e  r e s u l t s  o f  t h e  c a l c u l a t i o n  g i v e n  i n  [8] on 
t h e  b a s i s  o f  t h e  d i s t r i b u t i o n  o f  t h e  t o t a l  v e l o c i t y  c o m p o n e n t s  i n  t h e  p l a n e  n o r m a l  t o  
t h e  c h o r d  o f  t h e  V - s h a p e d  w i n g ,  and  t h e  s t r e a m l i n e  scheme g i v e n  i n  t h e  i n t e r i o r  f l o w  
r e g i o n  a r e  i n v a l i d .  

We t u r n  t o  t h e  q u e s t i o n  o f  t h e  r e a s o n s  l e a d i n g  t o  t h e  a s c e n d i n g  o f  t h e  F e r r i  
p o i n t .  

The i n t e r a c t i o n  o f  t h e  s h o c k  p o l a r s  i n  t h e  p l a n e s  n o r m a l  t o  t h e  c o n i c a l  r a y s  
p a s s i n g  t h r o u g h  t h e  t r i p l e  p o i n t s  T o f  t h e  Mach shoc k  wave c o n f i g u r a t i o n  o b t a i n e d  i n  
t h e  n u m e r i c a l  s o l u t i o n  i s  shown q u a l i t a t i v e l y  i n  F i g .  2b f o r  a > 14 v] A n a l y s i s  
showed t h a t  t h e  p r e s s u r e s  b e h i n d  t h e  i n t e r n a l  s h o c k  K 1 and  b e h i n d  t h e  bow s h o c k  K 2 
on  t h e  a x i s  o f  s y m m e t r y  a r e  p r a c t i c a l l y  t h e  same as  t h e  p r e s s u r e  maxima on t h e  i n -  
t e r n a l  and  m a i n  p o l a r s ,  r e s p e c t i v e l y .  T h i s  i s  a s s o c i a t e d  w i t h  t h e  s m a l l  v a r i a t i o n  o f  
t h e  Each  n u m b e r  o f  t h e  f l o w  n o r m a l  t o  b o t h  t h e  g e n e r a t o r s  o f  t h e  c o n i c a l  i n t e r n a l  
s h o c k  i n  t h e  r e g i o n  b e h i n d  t h e  s h o c k  wave a t t a c h e d  to  t h e  l e a d i n g  edge  and  t o  t h e  g e n -  
e r a t o r s  o f  t h e  b r i d g e - s h a p e d  s h o c k  i n  t h e  u n p e r t u r b e d  r e g i o n ,  t h i s  o c c u r r i n g  f o r  V- 
s h a p e d  w i n g s  w i t h  l a r g e  o p e n i n g  a n g l e s  f o r  l a r g e  a n g l e s  o f  a t t a c k .  T h e r e f o r e ,  i n  
s i m i l a r  c a s e s ,  we c a n  draw s u f f i c i e n t l y  a c c u r a t e  c o n c l u s i o n s  a b o u t  t h e  p r e s s u r e  d i s -  
t r i b u t i o n  b e h i n d  t h e  b r i d g e - s h a p e d  and  i n t e r n a l  s h o c k s  f rom t h e  c a l c u l a t i o n  o f  t h e  
s h o c k  p o l a r  i n t e r a c t i o n  a t  t h e  t r i p l e  p o i n t s  o f  t h e  Each  s h o c k  wave c o n f i g u r a t i o n  
( F i g .  2b,  s e g m e n t s  TK 2 and  TK 1 o f  t h e  s h o c k  p o l a r s ,  r e s p e c t i v e l y ) .  

The p r e s e n c e  o f  s u c h  r e g i m e s  o f  f l o w  p a s t  V - s h a p e d  w i n g s  i n d i c a t e s  t h a t  i n  t h e  
c o n i c a l  f l o w  on a s p h e r e  t h e r e  i s  an  a n a l o g y  w i t h  p l a n e  s u p e r s o n i c  ga s  f l o w s  [ 9 ] ,  i n  
w h i c h  t h e  t o t a l  p r e s s u r e  l o s s e s  i n  t h e  n o r m a l  s h o c k  e x c e e d  t h e  t o t a l  p r e s s u r e  l o s s e s  
i n  t h e  o b l i q u e - - n o r m a l  s h o c k  s y s t e m .  I n  t h e  c a l c u l a t i o n s ,  t h e  a s c e n t  o f  t h e  F e r r i  
p o i n t  i s  o b s e r v e d  when t h e  Each  n u m b e r s  o f  t h e  u n p e r t u r b e d  f l o w  n o r m a l  t o  t h e  c o n i c a l  
r a y  p a s s i n g  t h r o u g h  t h e  t r i p l e  p o i n t  T o f  t h e  Each  s h o c k  wave c o n f i g u r a t i o n  a r e  E n > 
1 . 5 .  F o r  p r e c i s e l y  s u c h  Each  n u m b e r s ,  i n  a c c o r d a n c e  w i t h  t h e  d a t a  o f  [ 9 ] ,  t h e  c o e f -  
f i c i e n t  o f  r e s t i t u t i o n  o f  t o t a l  p r e s s u r e  i n  t h e  o b l i q u e - - n o r m a l  s h o c k  s y s t e m  e x c e e d s  
t h e  c o e f f i c i e n t  o f  r e s t i t u t i o n  o f  t o t a l  p r e s s u r e  i n  t h e  n o r m a l  s h o c k .  I n  t h e  e x a m p l e s  

= 9 ~ = of  t h e  c a l c u l a t i o n  g i v e n ,  ~ 1 . 4 6  f o r  ~ = ( F i g .  2a )  and  M n 2 . 5  f o r  ~ = 32 ~ ( F i g .  

2 b ) .  

T h u s ,  i n  t h e  f l o w  on t h e  s p h e r e  i n  t h e  n e i g h b o r h o o d  o f  t h e  w a l l  o f  t h e  w i n g ,  gas  
p a r t i c l e s  w i t h  a h i g h e r  t o t a l  p r e s s u r e  t h a n  t h e  p a r t i c l e s  p a s s i n g  t h e  b r i d g e - s h a p e d  s h o c k  
a r e  p r e s e n t .  They a l s o  d e t e r m i n e  t h e  n a t u r e  o f  t h e  f l o w  i n  t h e  e l l i p t i c a l  p a r t  o f  t h e  
p e r t u r b e d  r e g i o n .  

We can  g i v e  t h e  f o l l o w i n g  q u a l i t a t i v e  d e s c r i p t i o n  o f  t h e  p h e n o m e n o n  d i s c o v e r e d .  
The s i g n i f i c a n t  p r e s s u r e  d r o p  b e t w e e n  t h e  p o i n t s  K 1 and  K 2 means  t h a t  i t s  e q u a l i z i n g  
d o w n s t r e a m  c a u s e s  a s h a r p  p r e s s u r e  d r o p  b e h i n d  t h e  i n t e r n a l  s h o c k  wave ( F i g .  2 b ) .  At 
t h e  same t i m e ,  t h e  w a l l  s t r e a m l i n e s  w h i c h  s l o p e  t o  t h e  s i d e  o f  t h e  edge  o f  t h e  w i n g  
b e c a u s e  t h e  p o i n t  K 1 l a g s  b e h i n d  t h e  p o s i t i o n  o f  t h e  p l a n e  s h o c k  on t h e  e q u i v a l e n t  
wedge a c q u i r e  a n e g a t i v e  c u r v a t u r e  and  i n c r e a s e  t h e  s l o p e  t o  t h e  s i d e  o f  t h e  e d g e .  
At  t h e  same t i m e ,  t h e  s t r e a m l i n e s  i n  t h e  c e n t r a l  p a r t  o f  t h e  f l o w  d e v i a t e  e v e n  more 
f rom t h e  c h o r d  o f  t h e  w i n g u n d e r  t h e  i n f l u e n c e  o f  t h e  p o s i t i v e  p r e s s u r e  g r a d i e n t .  
A f t e r  e q u a l i z i n g  t h e  p r e s s u r e  i n  t h e  i n t e r i o r  p a r t  o f  t h e  e l l i p t i c a l  f l o w  r e g i o n ,  t h e  
w a l l  s t r e a m l i n e s ,  w h i c h  h a v e  o b t a i n e d  a d d i t i o n a l  t r a n s v e r s e  v e l o c i t y  (on  t h e  s p h e r e )  t o  
t h e  s i d e  o f  t h e  e d g e  o f  t h e  w i n g ,  a r e  r e t a r d e d ,  a c q u i r i n g  a p o s i t i v e  c u r v a t u r e ,  and  
t h i s  l e a d s  t o  an  i n c r e a s e  i n  t h e  p r e s s u r e  a l o n g  t h e  w a l l  o f  t h e  w i n g  ( F i g .  2 b ) ,  w h i c h  
c a u s e s  a f u r t h e r  d e v i a t i o n  o f  t h e  s t r e a m l i n e s  i n  t h e  c e n t r a l  p a r t  o f  t h e  f l o w  f rom t h e  
edge  o f  t h e  w i n g  and  f o r c e s  b a c k  t h e  s t r e a m l i n e s  i n  t h e  n e i g h b o r h o o d  o f  t h e  c o n t a c t  
d i s c o n t i n u i t y  t o  t h e  s i d e  o f  t h e  p l a n e  o f  s y m m e t r y .  The a s c e n t  o f  t h e  F e r r i  p o i n t  
i s  a l s o  a c o n s e q u e n c e  o f  s u c h  a p r o c e s s .  However ,  t h e  s t r e a m l i n e s  r u n n i n g  a l o n g  t h e  
w a l l  o f  t h e  w i n g  r e a c h  t h e  e d g e  o f  t h e  w i n g  a n d ,  u n d e r  t h e  i n f l u e n c e  o f  t h e  n e g a t i v e  
p r e s s u r e  g r a d i e n t ,  d e p a r t  a s y m p t o t i c a l l y  i n  t h e  p l a n e  o f  symmet ry  t o w a r d  t o  t h e  s i n g u l a r  
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ray (the Ferri point). 

The flow scheme described will be realized for as small a deviation as required 

of the regime of flow past the wing from the standard regime (a ~ 33.~), when the 
position of the bridge-shaped shock tends to the position of the plane shock wave lying 

in the plane of the leading edges of the wing (Fig. 3, curve 3), since in the wall flow 
region high-pressure stream jets are now present, directed to the side of the edge of 

the wing. 

This step-by-step description of the process leading to the ascent of the Ferri 

point, based on the analysis of the boundary conditions for the system of shock waves 

bounding the elliptical flow region on the sphere, is qualitative. However, it can be 

confirmed that a necessary condition for the ascent of the Ferri point is the presence, 

in the wall flow region behind the internal shock of the ~lach shock wave configuration, 
of gas particles moving to the side of the edge of the wing, with a higher total pres- 

sure On the sphere than the gas particles passing the bridge-shaped shock in the 
neighborhood of the plane of flow symmetry. 

At the same time, as the pressure coefficient Cp behind the bridge-shaped shock 
K 2 (Figs. 2b, S, curve 7) tends to its value on the equivalent wedge in the standard 

flow regime as ~ § 33.8 ~ (Fig. 3, point 8), the maximumpressure coefficient in the 
perturbed region (Fig. S, curve 9) increases monotonically and significantly exceeds 

its value behind the bow shock wave, this being associated with the retardation of 
the high-pressure wall stream jets passing the oblique--normal shock system. 

The nature of the dependences of the position 0 of the shocks on the wall of the 
wing with the apex angle B = 45 ~ and in the plane of flow symmetry is the same as for 
the wing with the apex angle B = 30 ~ (Fig. 3). 

The intersection of curves 1 and 2 and the discontinuity in curves 3 and 4, cor- 
resPonding to the standard flow regime of the inner wing with the edge 1 (point l, 
Fig. Ib), occur for ~ = 24.8 v. 

The analysis of the results of the calculations showed that for ~ < 24.8 ~ the 
structure of the conical streamlines in the perturbed region does not differ from the 

standard when the Ferri singularity is at the break point of the transverse contour 
of the V-shaped wing. However, on the transition to the flow regimes with Mach in- 
teraction of the shock waves coming from the leading edges (a > 24.~), the flow 

1 0 9  



structure in the perturbed region is rearranged at once, in contrast to what occurred in 

the flow past the wing with the angle B = 30-. 

At the triple points of the ~ach configuration of shock waves for all angles of 
attack a > 24.8 ~ a shock polar interaction of the type shown inFig. 2b is realized. 

The Mach numbers of the unperturbed flow velocity normal to the conical rays going 

through the point T are Nn ~ 2.25. Thus, in these cases, particles with a total 

velocity direction toward the edge of the wing, and with a greater total pressure on 

the sphere than the particles passing the bridge-shaped shock in the neighborhoodof 

the plane of symmetry are present in the wall region behind the internal shock. There- 

fore, for a > 24.8 ~ , the Ferri point will ascend and be located inside the elliptical 

r e g i o n  o f  t h e  c o n i c a l  f l o w .  

Figure 4 gives the distributions of the parameters in the plane of flow symmetry 
near the wing with the angle B = 45 ~ for the angle of attack a = 32.5 ~ . A qualitative 

flow scheme in the perturbed region is shown in the same place (Fig. 4, the notation of 
the curves is the same as in Fig. 2). We note that for a = 32.5 ~ the attached shock 

on the equivalent wedge placed in the uniform flow behind the shock wave on the lead- 
ing edge no longer exists and, hence, it would be wrong to attempt to determine whether 

or not there exists near the wing a flow with a shock attached to the leading edges for 

the given angle of attack from the existence of a shock wave on the equivalent wedge. 

As has already been noted above, in the flow past the wing with the apex angle 
B = 90 ~ on the inner wing with the edge 1 (point 1, Fig. Ic) the standard flow regime 

is not realized, just as near the wing with B = 45 ~ �9 The standard regime exists only 

on the inner V-shaped wing with the leading edge 2 (point 2, Fig. !c) for the angle. 
of attack a = 20.5 ~ . For the angles of attack ~ > 20.5 ~ near the inner wing with the 

leading edge 1 a Mach configuration of the shock waves is realized with the same 
qualitative characteristics as for the wing with the angle B = 45 ~ for a > 24.8 ~ . How- 

ever, in this case, the wing wall is the Plane of flow symmetry for the inner wing 
and a flow scheme with two Ferri points on the walls of the initial wing is realized 
in the interior flow region for ~ > 20.5 ~ . Figure 5 gives the flow scheme for the angle 

of attack ~ = 27.5 ~ as an example. 

We turn to the question of the existence of conical flow near V-shaped wings of 

finite length. It is natural to assume that, when regions with total velocity less 

than the critical velocity arise in the perturbed flow, the perturbations leaving the 
the trailing edge of the wing will penetrate upward through the subsonic part of the 

flow and, therefore, conical flow near the wing will not be realized. 

For wings with apex angles B = 30 and 45 ~ , the critical velocity behind the shock 

on the equivalent wedge placed in a uniform flow near the wall of the wing is reached 
for lower angles of attack than those up to which the calculation was made. This was 

found possible because of the lag of the position of the internal shock behind the 

position of the shock wave on the equivalent wedge. Thus, for the wing with the angle 
6 = 45 ~ , i t  i s  p o s s i b l e  t o  make t h e  c a l c u l a t i o n  up t o  t h e  a n g l e  o f  a t t a c k  a = 3 2 . 5  ~ . 
The a t t e m p t  t o  o b t a i n  a s o l u t i o n  o f  t h e  p r o b l e m  f o r  t h e  a n g l e  o f  a t t a c k  s = 3 2 . 7 5  ~ 
d i d  n o t  g i v e  t h e  d e s i r e d  r e s u l t .  The s o l u t i o n  d i d  n o t  become  s t e a d y .  At t h e  same 
t i m e ,  n e i t h e r  t h e  e x t e r n a l  n o r  t h e  b r i d g e - s h a p e d  s h o c k  h a v e  y e t  r e a c h e d  t h e  p o s i t i o n s  
f o r  w h i c h  t h e  f l o w  b e h i n d t h e m  h a v e  t h e  v e l o c i t y  o f  s o u n d .  T h i s  i n d i c a t e s  t h a t  t h e  
c r i t i c a l  v e l o c i t y  i n  t h e  f l o w  a r i s e s  n o t  b e h i n d  t h e  s h o c k s ,  b u t  i n s i d e  t h e  e l l i p t i c a l  

r e g i o n  o f  t h e  c o n i c a l  f l o w .  

The number  M = 1 w i l l  f i r s t  be  r e a c h e d  on t h e  s t r e a m l i n e s  i n  t h e  p l a n e  o f  sym- 
m e t r y ,  s i n c e  t h e  b r i d g e - s h a p e d  s h o c k  h a s  i t s  maximum i n t e n s i t y  h e r e  and  t h e  p r e s s u r e  
b e h i n d  i t  i n c r e a s e s  t o w a r d  t h e  e d g e  o f  t h e  w i n g .  T h u s ,  t h e  q u a l i t a t i v e  r e a r r a n g e m e n t  
o f  t h e  f l o w  s t r u c t u r e ,  a s s o c i a t e d  w i t h  t h e  a s c e n t  o f  t h e  F e r r i  p o i n t ,  i s  t h e  r e a s o n  
why t h e  c r i t i c a l  v e l o c i t y  a r i s e s  e a r l i e r  i n  t h e  i n t e r i o r  f l o w  r e g i o n  t h a n  b e h i n d  t h e  

b r i d g e - s h a p e d  s h o c k .  

F i g u r e  4 g i v e s  t h e  c u r v e  5 o f  t h e  d i s t r i b u t i o n  o f  t h e  t o t a l  v e l o c i t y  Mach number  
i n  t h e  p l a n e  o f  f l o w  s y m m e t r y ,  c a l c u l a t e d  u s i n g  t h e  p a r a m e t e r  f i e l d  o b t a i n e d  i n  t h e  
n u m e r i c a l  s o l u t i o n .  The c u r v e  i n d i c a t e d  h a s  a minumum b e h i n d  t h e  s h o c k ,  d o w n s t r e a m .  
The minimum t o t a l  v e l o c i t y  Mach n u m b e r s  M a r e  shown i n  F i g .  6 as f u n c t i o n s  o f  t h e  
a n g l e  o f  a t t a c k  a ( c u r v e s  1, 2 ,  6 = 45 ,  9 0 ~  T h e i r  e x t r a p o l a t i o n  ( t h e  b r o k e n  c u r v e s )  
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to large angles of attack shows that the critical velocity in the numerical solution 
must be reached for the wing with the angle 8 = 45 ~ for the angle of attack ~ ~ 32.75 ~ 
and for the wing with the angle 8 = 90 ~ for ~ ~ 27.8 ~ , for which the calculation did not 

stabilize. 

It should be noted, however, that curve 5 in Fig. 4 describes the variation of 
the total velocity Mach number extremely approximately, since the Ferri singularity in 

the numerical solution is smeared and, hence, there is an inaccUrate representation 
of the components of the total velocity in its neighborhood. The distribution of 

the Hach number can be made more precise using its values behind the shock wave and 

in the neighborhood of the edge of the wing, and the pressure distribution as the most 

conservative parameter in the numerical calculations. Assuming that the position of 

the Ferri point is the same as the position of the maximum gradient of the entropy 
function (curves4 in Figs. 2b and 4), the increase and decrease of the Mach number 

for the streamlines running from the edge Qf the wing and from the shock toward the 

Ferri point can be calculated, respectively, in accordance with the isentropic flow 

equations. The results of such calculations are plotted by the broken curves 6 in 
Fig. 4. The Mach number on the axis of symmetry at the Ferri point undergoes a 

discontinuity, this being associated with the different boundary conditions for the 
streamlines entering into the Ferri point. 

The dependence of the minimum M numbers at the Ferri point, found in accordance 
with the isentropie equations, on the angle of attack a is shown in Fig. 6 by the 
curves 1 ~ and 2 ~ , respectively, for the wings with the angles 8 = 45 and 90 ~ Hence, 
it follows that the critical value of the total velocity will, in fact, be reached for 

= 45 and 90 ~ respectively, for e = 31 and 27~ and the conical flow near the V-shaped 

wings of finite length for the indicated values of the angle ~ for large angles of 
attack will not exist. 

The dependences of the minimum total velocity Mach numbers in the interior flow 
region near the wing with the apex angle ~ = 30 ~ obtained in the numerical solution 
and in accordance with the isentropic equations, are shown by curves 3 and 3 ~ in Fig. 

6. Consistent with the given calculations in accordance with the isentropic equations 

(curve 3~ the conical flow will not exist near the wing of finite length with the 
angle B = 30 ~ for angles of attack less than the calculated angle (a = 33.8~ 

Thus, the ascent of the Ferri point leads to the fact that the conical flow 
ceases to exist for angles of attack less than the calculated angle, but for ~ ~ 33.8 ~ , 

it again becomes conical, while for ~ > 33.8 ~ it is with the detached shock wave on the 
leading edges [7]. 
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SOUNDPROPAGATION IN A PLANE WAVE GUIDEWITHAN ELASTIC WALL SECTION 

V. M. Aleksandrov and S. I. Boer UDC 5 3 3 . 6 . 0 1 3 . 4 2  

Problems of acoustic wave propagation in a plane wave guide whose walls 
are assumed to be undeformed with the exception of a section of finite 
length whose bending is described by the thin plate theory equations in the 

framework of the Kirchhoff--Love hypotheses are considered. The sound- 
proofing characteristics of the wave guide described and the stability 
of the forced oscillations of the system considered are investigated. 

Formulations of the problem of active vibroacoustic protection and the 

problem for the peristaltic pump are given. Soundproofing in wave 
guides has been considered in a number of papers, a fairly complete 
review of which is given in [1]. 

i. We consider the problem of generating acoustic waves in a plane wave guide (Fig. 
1) by means of the time-periodic load q(x, t) = Qe -i(~x+~t) applied to the elastic section 
o f  t h e  w a l l .  The e q u a t i o n s  o f  t h e  K i r c h h o f f - - L o v e  t h i n  p l a t e  t h e o r y  a r e  u s e d  t o  d e s c r i b e  
t h e  d e f o r m a t i o n  o f  t h e  e l a s t i c  e l e m e n t  o f  t h e  wave  g u i d e  w a l l .  I t  i s  a s s u m e d  t h a t  t h e  
wave  g u i d e  i s  f i l l e d  b y  a p e r f e c t  c o m p r e s s i b l e  f l u i d ,  i n  w h i c h  t h e  wave  p r o c e s s e s  w i l l  
b e  d e s c r i b e d  b y  t h e  a c o u s t i c  a p p r o x i m a t i o n  e q u a t i o n s .  

E l i m i n a t i n g  t h e  t i m e  v a r i a b l e  and  a s s u m i n g  t h a t  t h e  t i m e  d e p e n d e n c e  o f  a l l  t h e  u n -  
known q u a n t i t i e s  i s  e x p r e s s e d  b y  t h e  f a c t o r  e - i ~ t  i n  t h e  c o o r d i n a t e  s y s t e m  shown i n  F i g .  
1, we o b t a i n  t h e  f o l l o w i n g  s e t  o f  e q u a t i o n s :  

~2 
A~§ xe( -~ ,+~) ,  y~(O,H) (1.1) 

c "  

oW -0,  Izl>a (1.2.) y=O: ~-y----O, x~(--c~,q-~), y=H: Oq)Oy 
Oep 
-- ~----iCOW, 
Oy 

DwXV-p(oZhw=ipo(o~--Qe -~'', [xl<a, w (:i::a) = w '  (:ha) = 0  (1.3) 

H e r e  ~ i s  t h e  a c o u s t i c  p o t e n t i a l ,  PO' c a r e ,  r e s p e c t i v e l y ,  t h e  d e n s i t y  o f  t h e  
f l u i d  a n d  t h e  v e l o c i t y  o f  s o u n d  i n  i t ,  w i s  t h e  v i b r a t i o n a l  mode o f  t h e  p l a t e ,  D, h 
a r e  t h e  c y l i n d r i c a l  r i g i d i t y  a n d  t h e  t h i c k n e s s  o f  t h e  p l a t e ,  p i s  t h e  m a t e r i a l  d e n s i t y  
o f  t h e  p l a t e ,  H i s  t h e  d i s t a n c e  b e t w e e n  t h e  r i g i d  w a l l s  o f  t h e  wave  g u i d e ,  a n d  a i s  t h e  
h a l f - l e n g t h  o f  t h e  e l a s t i c  i n s e r t i o n .  We n o t e  t h a t  E q s .  ( 1 . 3 )  d e s c r i b e  t h e  c o n d i t i o n s  

Moscow, R o s t o v - o n - D o n .  T r a n s l a t e d  f r o m  I z v e s t i y a  A k a d e m i i  Nauk SSSR, M e k h a n i k a  
Z h i d k o s t i  i G a z a ,  No. 1, p p .  1 3 2 - 1 3 9 ,  J a n u a r y - F e b r u a r y ,  1986 .  O r i g i n a l  a r t i c l e  s u b m i t t e d  
F e b r u a r y  8, 1985 .  
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