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Abstract. Many of the formalisms used in Attribute Value grammar are notational variants 
of languages of propositional modal logic, and testing whether two Attribute Value Structures 
unify amounts to testing for modal satisfiability. In this paper we put this observation to work. 
We study the complexity of the satisfiability problem for nine modal languages which mirror 
different aspects of AVS description formalisms, including the ability to express re-entrancy, 
the ability to express generalisations, and the ability to express recursive constraints. Two 
main techniques are used: either Kripke models with desirable properties are constructed, or 
modalities are used to simulate fragments of Propositional Dynamic Logic. Further possibilities 
for the application of modal logic in computational linguistics are noted. 
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1. INTRODUCTION 

Attribute Value Structures (AVSs) are probably the most widely used means of 
representing linguistic structure in current computational linguistics, and the 
process of unifying descriptions of AVSs lies at the heart of many parsers. As 
a number of people have recently observed (see for example Kracht (1989), 
Blackburn (1991), Moss (1991), Reape (1991) and Schild (1990)) the most 
common formalisms for describing AVSs are notational variants of proposi- 
tional modal languages, AVSs themselves are Kripke models, and unification 
amounts to looking for a satisfying model for q~ A ~b given two (modal) wffs ~b 
and ~b. The purpose of this paper is to make use of this connection with modal 
logic to investigate the complexity of various unification tasks of interest in 
computational linguistics. 

The paper is structured as follows. The second section begins with an 
introduction to such topics as 'attributes', 'values', and 'unification' and why 
they are of interest in computational linguistics. It then goes on to explain the 
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link with modal logic, and gives the syntax and semantics of three modal lan- 
guages - -  L, L N and L KR - -  which correspond to three common unification 
formalisms. In the third section we examine the satisfiability problems for 
these languages and show, using a very simple 'small model' argument, that 
all three are NP complete. In the fourth section we introduce three stronger 
languages, L r~, L ND and L KnD. These are L, L N and L KR respectively 
augmented by the universal modality rq. Adding this modality allows general 
constraints on linguistic structure to be expressed. As we will show, however, 
there is a price to pay: the satisfiability problem for L KRD is II ~ complete. 
We then go on to show that dropping the ability to enforce generalisations 
involving re-entrancy results in decidable systems. In fact we show that the 
satisfiability problems for both L D and L Nt~ are EXPTIME complete. In the 
fifth section we examine modal languages in which recursive constraints on 
linguistic structure can be expressed, namely systems built using the master 
modality [.] of Gazdar et al. (1988) and Kracht (1989). We augment our 
base languages L, L N and L ~R with [,], forming L[*], L N[*] and L Kn[*] 
respectively, and investigate the complexity of their satisfiability problems. 
We show that many of the proof methods and results from our discussion 
of the the universal modality transfer to the new setting, though in the case 
of most interest the satisfiability problem for L Kn[*] turns out to be highly 
undecidable, in fact, E~ complete. We conclude the paper with a table sum- 
marising our results and a discussion of more general issues arising from this 
work. 

The paper is relatively self contained; in particular, all the necessary con- 
cepts from unification based grammar and modal logic are presented. Howev- 
er we do assume that the reader understands what is meant by such complexity 
classes as NP, EXPTIME and so on; such definitions may be found in Bal- 
c(rzar et al. (1988), for example. Further, later in the paper some ideas from 
Propositional Dynamic Logic (PDL) are used. While these are explained, 
some readers may find the additional background provided by Harel (1984) 
helpful. For further information on modal logic the reader is referred to 
Hughes and Cresswell (1984); and for more on unification based grammar, 
Shieber (1986) and Carpenter (1992) are useful. Finally, it's worth remarking 
that there is a hidden agenda: although we emphasize the use of modal logic 
as tool for grammar specification, it is our belief that modal techniques have 
a wider role to play in computational linguistics and some possibilities are 
noted in the course of the paper. 
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2. ATTRIBUTE VALUE LOGIC 

Even the most cursory examination of recent proceedings of computational 
linguistics conferences reveals that there is a substantial level of interest in 
such topics as 'attributes', 'values', and 'unification'. This section presents 
a brief introduction to these topics, and explains what they have to do with 
modal logic. The basic point it makes is that the most common machinery 
underlying Attribute Value grammar formalisms is simply that of proposi- 
tional modal logic, and that testing whether unification is possible amounts 
to testing for modal satisfiability. This correspondence provides the raison 
d'Otre of the paper: by examining the complexity of the satisfiability problem 
for the modal languages involved, we learn - -  often very straightforwardly-- 
about the complexity of various tasks of interest to computational linguistics. 

Perhaps the best way of approaching these topics is via Attribute Value 
Matrices (AVMs), or Feature Value Matrices as they are sometimes called. A 
(rather simple) AVM might look something like this: 

AGREEMENT [PERSON 1St] 

Such an AVM is taken to be a partial description of some piece of linguistic 
structure. In this case we are describing a piece of linguistic structure that 
has two attributes, namely CASE and AGREEMENT. The CASE attribute takes 
as value the atomic value nominative, while the AGREEMENT attribute takes 
as value the complex entity [PERSON lst]. This complex entity consists of 
an attribute PERSON that takes as value the atomic value 1st. The particular 
atomic values (or constants) and attributes (or features) that may occur in 
AVMs varies widely from theory to theory, but typical choices of atomic 
entities a syntactician might make are singular, plural, 3rd, 2nd, 1st, genitive 
and accusative; and when it comes to a choice of attributes the selection might 
include TENSE, NUMBER, PERSON, AGREEMENT, and CASE. But although the 
different theories differ on the particular choices made, and indeed in the uses 
they put this machinery to, they are united in agreeing that at least a part of 
our descriptions of linguistic structure should embody the idea of attributes 
taking (possibly complex) values. 

The information expressed by AVMs can be considerably more complex 
than in the above example. The above AVM is purely conjunctive, but many 
linguists feel it is necessary to be able to express both disjunctive and negative 
information in their Attribute Value grammars. To give two well known 
examples due to Karttunen (1984), one might write 

NUMBER plural ] 
CASE {nominative, genitive, accusative} ] 
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an AVM which states that the attribute CASE takes one of the values nomina- 
tive, genitive, or accusative, but doesn't say which; or one might write 

NUMBER plural ] 
CASE [--1 dative] j 

an AVM which specifies that CASE doesn't take the value dative. 
It's worth making a short historical remark here. We'll shortly be introduc- 

ing Attribute Value Structures (AVSs) and treating them as semantic structures 
for AVMs. That is, we're going to be adopting the now standard distinction 
between description languages (for example AVMs) and linguistic structure 
(the AVSs). Historically, the impetus for making this distinction was moti- 
vated by the difficulties involved in giving a precise account of AVMs that 
employed disjunction or negation. The distinction was introduced in Pereira 
and Shieber (1984), and it underpins the influential work of Kasper and 
Rounds (1986) and Rounds and Kasper (1986). Thus the move towards full 
Boolean expressivity marked an important turning point in the development 
of Attribute Value formalisms. 

What do computational linguists do with AVMs? The answer is, they try to 
unify them. Intuitively, unifying two AVMs means forming another AVM that 
combines all the information about Attribute Value dependencies contained 
in the two constituent AVMs. For example, writing U to indicate unification, 
we have: 

 A R,P Rls   [AOR     urall] 
CASE nominative U [AGR [NUM plural]] = PER Ist  ] 

CASE nominative 

There is a clear sense in which the AVM on the right hand side embodies all 
the information in the two constituent structures; it is the result of unifying 
these structures. 

But this is rather vague. Precisely when is unification possible? Answering 
this question will lead us first to AVSs, the semantics of AVMs, and then, 
quite naturally, to the link with modal languages. 

AVSs are certain kinds of decorated labeled graphs. Such graphs play the 
central role in unification based linguistics: they are the mathematical model 
of linguistic structure underlying these frameworks. A number of definitions 
of AVSs exist in the literature. We shall work with a particularly simple one: 

DEFINITION 2.1 (Attribute Value Structures). Let s and A be non-empty 
finite or denumerably infinite sets, the set of labels and the set of atomic infor- 
mation respectively. An Attribute Value Structure (A VS) of signature (/2, A) 
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is a triple (W, {Rt}t~c, {Q~}c~.4), where W is a non-empty set, the set of 
nodes; for  all I E s Rl is a binary relation on W that is a partial function; 
and for all c~ E ~4, Q~ is unary relation on W. [] 

The most important thing to note about this definition is the requirement that 
all the binary relations be partial functions. As we shall see, this demand plays 
a crucial role in establishing some of our complexity results. 

The definition covers all the well known definitions of Attribute Value 
Structures, and in particular those of Gazdar et al. (1988) and Kasper and 
Rounds (1986). Moreover it's not too loose: there are only two reasonably 
common further restrictions on the binary relations that it doesn't insist on. 
The first is that AVSs must be point generated. In point generated AVSs there 
is always a starting node w0 E W such that all other nodes w E W are 
reachable via transition sequences from w0. The second is that AVSs must be 
acyclic, which means that it is never possible to return to a node w by following 
some sequence of Rt transitions from w. As neither of these restrictions plays 
a prominent role in the linguistics literature anymore, we ignore them here. 
This definition also ignores three constraints computational linguists used to 
routinely place on node decoration. The constraints in question are these. 
First, for all w E W and all ~,/3 E .A, if w E Q~ and ce 7~/3 then w ~ Q~. 
That is, the constraint forbids what linguists call 'constant-constant clashes'. 
Second, for all w E W, w is in Q~ for some c~ E r iff w is a terminal 
node. This constraint rules out 'constant-compound clashes'. Third, for all 
w , w  r E W, if w E Q~ and w r E Q~ then w = w I. Once again, the main 
reason for ignoring these demands is that they no longer play the prominent 
role they once did. Indeed in more recent work in computational linguistics, 
particularly work in the Head Driven Phrase Structure Grammar (HPSG) 
framework (see Pollard et al. (1987)) much use is made of sorts (or types); 
and sorts are essentially pieces of atomic information that don't obey these 
three restrictions. 

Let's consider some concrete examples of AVSs. Suppose we are working 
with some linguistic theory which contains among its theoretical apparatus 
the attributes PERSON, CASE and AGREEMENT, and the atomic information 
3rd, 2nd, 1st and genitive. That is, our linguistic theorising has specified a 
signature (s A) such that {PERSON, CASE, AGREEMENT} C .~, and {3rd, 2nd, 
1st, genitive} C_ ,4. Then the following graphs are all examples of AVSs of 
this signature, as (modulo some obvious abbreviations) nodes are decorated 
only with items drawn from r and transitions are labelled only with items 
drawn from s 



134 PATRICK BLACKBURN AND EDITH SPAAN 

1st 

2nd 3rd 

What do AVSs have to do with AVMs? As has already been remarked, 
AVMs are partial descriptions of linguistic structure, and in fact the structure 
they describe is the structure embodied in the definition of AVSs. That is, 
AVMs are a formal language for describing linguistic structure, AVSs provide 
the interpretation for AVMs, and thus the relationship is that which always 
exists between semantic and syntactic entities: we talk of AVSs satisfying 
(or failing to satisfy) the AVMs. To return to our examples, the first graph, 
consisting of a single node decorated with the atomic information 1st, satisfies 
the atomic AVM Ist. Why? Because this atomic AVM demands a node 
decorated with the atomic information 1st, and the first graph is such a node. 
The second graph satisfies the AVM [AGREEMENT]II~IRR~a~rooMd 
node. Why? Because this AVM demands a node in some piece of linguistic 
structure that has the following property: a transition along an RAGREEMEN T 
relation takes one to a node from which it is possible to make an RPERSON 
transition to a node decorated with the information 2nd. The root node of the 
second graph has this property. Finally, consider the third graph. This satisfies 
the AVM 

AGREEMENT [PERSON 3rd] ] 
C A S E  genitive J 

at its root node. 
Now, we could give a precise definition of what it means for an AVS to 

satisfy an AVM, but in fact this would be a waste of energy, for, as we'll  
now see, the satisfaction relation between AVSs and AVMs is just a disguised 
version of something very familiar: the satisfaction relation between Kripke 
models and modal wffs. There are two facets to this correspondence, the 
semantical and the syntactical. We'll treat each in turn, beginning with the 
semantical. 

Consider once more the definition of AVSs as triples (W, {Rl}zec, 
{Q~}~eA). Such triples are just (multimodal) Kripke models: each Rt in- 
terprets a modal operator (1), and each unary relation Q~ interprets the 
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propositional symbol p~. To be sure, multimodal Kripke models are usu- 
ally presented as triples (W, {Ri}tec, V), where V is a valuation function 
from a collection of propositional symbols VAR to Pow(W). (In such p- 
resentations the pair (IV, {Rl}zrc) is usually given a special name, namely 
multiframe.) But obviously there is no mathematical substance to this d- 
ifference. Given a traditionally presented Kripke model (147, {Rl}l~c, V), 
we have that (W, {Rt}t~c, {V(p) : p E VAR}) is an AVS of signature 
(s VAR); and conversely, given any AVS (IV, {/~I}I~c, {Q~}~.a), we have 
that (IN, {ttl}l~C, V) is a Kripke model, where V is the function from the 
set of (a-indexed) propositional variables VAR to Pow(W) defined by 
V(pa) = Q~. In short, every AVS is a Kripke model, and vice versa. 

Now for the syntactical correspondence. Consider the following AVM. 

AGREEMENT[PERSONIst]] 
CASE nominative 

This corresponds to 

(AGREEMENT) (PERSON)lst 
/\ (CASE)nominative 

The key point to grasp is that the function of the attributes AGREEMENT, 
PERSON and CASE in the AVM is precisely analogous to the function of 
the existential modalities (AGREEMENT), (PERSON) and (CASE) in the modal 
wff. The function of the attributes is to demand the existence of certain 
transitions in AVSs, the function of the modalities is to demand the existence 
of certain transitions in Kripke models. But AVSs are just Kripke models, 
and thus the equivalence of the description languages is clear. The rest of the 
correspondence is straightforward: atomic values correspond to propositional 
symbols, and the modal wff is in effect just a linearisation of the AVM. To 
put it more generally, AVMs are just modal wffs written in a particularly 
perspicuous manner. 

This correspondence extends in the obvious manner to AVMs with full 
Boolean expressivity. For example corresponding to the following AVM: 

NUMBER -.plural 1 
CASE {nominative, genitive, accusative) J 

we have the wff 

(NUMBER)-.plural A (CASE)(nominative V genitive V accusative). 

The most important aspect of the link between modal languages and AV 
formalisms is what it tells us about unification. Recall that unification is the 
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attempt to coherently merge two AVMs. But what does 'coherent' mean? 
It means that the demands that the two AVMs make can be simultaneously 
satisfied at some node in some AVS. Now, both AVMs correspond to a 
modal wff. Call these two wffs r and ~b respectively. Then we have that 
unification succeeds iff 6 A r is satisfiable at some node in some Kripke 
model. That is, testing whether unification is possible amounts to testing for 
modal satisfiability. This observation (familiar from the work of Kasper and 
Rounds (1990) and Kracht (1989)) lies at the heart of the paper. 

The correspondence we have noted extends to richer unification for- 
malisms than the rather simple AVMs so far considered. In particular, it 
extends to formalisms that have the ability to encode re-entrancy. Re-entrancy 
is a very influential idea in unification based approaches to grammar, and we 
need to discuss it, and how it can be dealt with in modal languages. 

One of the best known notations for forcing re-entrancy is to use AVMs 
with 'boxlabels' (or 'tags'). Consider the following AVM: 

 oo] 
PRED bar 

COMP [SUBJ [~]]  

The boxlabels are the [~s. What is intended by this notation is explained by 
the following graphs: 

1 
I 

D ISUBJ 

. �9 

foo bar foo bar 

(i) (ii) 

The first graph does not satisfy the AVM at its root node. This is because 
[~]is a name: it labels a unique node. The second graph does satisfy the AVM. 
The crucial difference is that in this graph the SUBJ re-enters the graph at the 
named node. Thus all the conditions demanded by the AVM are satisfied, 
including the demand that ~iq picks out a unique node. 
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How can we make modal languages referential in this way? The key idea 
needed can be traced back to early work by Arthur Prior (see Prior (1967)), and 
Robert Bull (see Bull (1970)): it is to introduce a second sort of atomic symbol 
constrained to be true at exactly one node. These new symbols 'name' the 
unique node they are true at. In this paper these symbols are called nominals, 
and they are usually written as i, j ,  k and m. 

AVM boxlabels correspond straightforwardly to nominals. Consider once 
more the following AVM: 

PRED bar 

t coMP [st J I-i-I] 

This corresponds to the following wff: 

<SUBJ)(i A <AGR)fO0 A <PRED)bar) 
A <COMP) <SUBJ)i 

Note that the nominal i is doing the same work in the modal wff that ~ ]  
does in the AVM. More generally, the use of nominals permits a transparent 
linearisation of those AVMs that utilise boxlabels. 

Although AVM notation is widely used, it is certainly not the only no- 
tation computational linguists use to describe AVSs. Another influential 
notation arose from the command language of the PATR-II system (see 
Shieber (1986)). PATR-II is an ' implemented grammar formalism', a pro- 
gram which provides a high level interface language geared towards the 
needs of the linguist, together with a parser. The linguist writes grammars in 
the interface language and tests them using the parser. The use of path equa- 
tions for specifying re-entrancy arose from this source. A user of PATR-II 
might write: 

<VP HEAD> = <VP VERB HEAD>. 

This path equation means that the sequence of transitions encoded by the 
list of attributes on the left takes one to the same node as the sequence 
of transitions encoded by the list of attributes on the right. That is, both 
transition sequences lead to the same node. Note that although this mechanism 
permits re-entrancy to be specified, it does so in a very different way from 
the 'boxlabels' approach: no node labelling is involved. 

To capture the effect of this in a modal language, we're going to extend 
the basic language in such a way as to permit 'modal path equations" to be 
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formed. In particular, we'll  add a new primitive symbol ~ to allow us to 
equate strings of modalities. This will permit wffs such as 

(VP>< AD> <VV><VE ><HEAD>, 

to be formed, and we will define the semantics of these new wffs so that they 
capture the meaning of the PATR-II path equations. Actually, we'll  also add 
a second new primitive symbol, 0. This will be a name for the null transition, 
and with its help we will be able to write such path equations as (b)(a) ~ 0. 
This wff, for example, will mean that making an Rb transition followed by 
an Ra transition is the same as making the null transition. That is, the path 
RbR~ terminates at its starting point. 

It should now be clear that various AV formalisms correspond straight- 
forwardly to propositional modal languages. To conclude this section let's 
make our discussion of these modal languages more precise. Syntactically, 
the language L (of signature (/:, A)) is a language of propositional modal 
logic with an Z: indexed collection of distinct (existential) modalities and an 
,4 indexed collection of propositional symbols. As primitive Boolean sym- 
bols we choose --, and V. The wffs of the language are defined by saying 
that: (a) All propositional symbols pa are wffs, for all (~ E "4; (b) If r and 
~b are wffs then so are -~r r V ~b, and (1)r for all l E / : ;  (c) Nothing else 
is a wff. We define the other Boolean connectives --% A, ~ ,  _1_, and -I- in the 
usual way. We also define [l]r to be -~(I)~95, for all 1 E /: and all wffs 95. 
The following syntactic notions will be useful. The degree of a formula is the 
number of (primitive) connectives it contains. The length of a wff 95 (denoted 
by [95D is the number of (primitive) symbols it contains. (We will also use 
the '[ .  I' notation to indicate cardinality, but this double use should cause no 
confusion.) 

To interpret L we use Kripke models M of signature (/:~ .4). Such a Kripke 
model is a triple (W, {Rt)l~c, V), where W is a non-empty set (the set of 
nodes); each Rl is a binary relation on W that is also a partial function, that 
is, for every node w there exists at most one w' such that wRlw'; and V (the 
valuation) is a function which assigns each propositional symbol p~ a subset 
of W. We interpret wffs of L on models M in the familiar fashion: 

M ~ p,~[w] iff w C V(p~) 
M ~ ~r iff M ~ r 
M ~ r 1 6 2  iff M ~ r 1 6 2  
M ~ (/)r iff 3w'(wRlw' & M ~ r 

If M ~ r then we say that M satisfies r at w, or r is true in M at w. 
To sum up, the language L corresponds to the 'core' AVM notation used by 
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computational linguists. Its models are just AVSs, and the way L formulas 
are evaluated in a model is just the way AVMs are checked against AVSs. 

L lacks any mechanism for enforcing re-entrancy. This lack is made good 
in its extensions, L N and L KR. The language L N (of signature (s .4, B)) is 
the language L (of signature (s .4)) augmented by a/3 indexed collection 
of distinct new propositional symbols called nominals. These symbols are 
typically written as i, j ,  k and ra and can be freely combined with the other 
symbols in the usual fashion to make wffs. We assume that/3 is at most count- 
ably infinite. To interpret nominals we insist that any valuation must assign 
a singleton subset to each nominal. That is, an L N model is just an L model 
whose valuation has been extended to assign singletons to nominals. Because 
each nominal is thus true at exactly one node in any model, it acts as a 'name' 
identifying that node. L N corresponds to AVMs augmented with 'boxlabels' 
for indicating re-entrancy. There have been a number of logical investigations 
of intensional languages containing nominals. In addition to the early work by 
Prior and Bull already mentioned, see Passy and Tinchev (1985), Gargov and 
Passy (1988) and Passy and Tinchev (1991) for an examination of nominals 
in the setting of Propositional Dynamic Logic (PDL); see Gargov, Passy and 
Tinchev (1986) and Gargov and Goranko (1989) for nominals in the setting 
of modal logic; and finally see Blackburn (1989) for nominals in tense logic. 

The l~mguage L KR is L augmented by two new symbols, 0 and ~. The 
symbol 0 acts as a name for the null transition. In what follows we shall 
assume without loss of generality that 0 r s and denote the identity relation 
on any set of nodes W by R0. (This convention simplifies the statement 
of the following truth definition.) We use ~ to make path equations: given 
any nonempty sequences A and B made up of modalities and (0), then 
A ~ B is a path equation. Path equations are wffs and can be combined 
with other wffs in the usual way to make more complex wffs. L I;R models 
are just L models, and we interpret the path equations as follows. For all 
I1, . . . , tk,  c u {o): 

M ~ (11).-. (lk) ~ (I~)--. (l~m)[w] iff 3w'(wt~i,...-t~IkW' &WRt~... Rt~w'). 

L KR models the path equation mechanism of PATR-II. The negation free 
fragment of this language was first defined and studied by Kasper and Round- 
s (1986) and Rounds and Kasper (1986); a more detailed presentation of their 
work may be found in Kasper and Rounds (1990). Further logical investiga- 
tions of L KR may be found in Moss (1991) and Blackburn (1991). 

It is instructive (and will later prove technically useful) to examine L, 
L N and L r;R from the more general perspective provided by modal corre- 
spondence theory. This subject is the systematic study and exploitation of the 
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relationships that exist between modal languages and various classical lan- 
guages; an excellent overview is van Benthem (1984). The correspondence 
between L, L ~r and L KR and first order logic arises as follows. Note that 
AVSs (that is, K_ripke models) can equally well be regarded as models for a 
certain first order language, namely the first order language (with equality) 
that contains a binary relation symbol Ft for each Rl, and a unary relation 
symbol P~ for each Q~; we will call this language L 1. There is an obvious 
translation from our modal languages to L 1 , the standard translation. These 
are the clauses for L: 

ST(po,) = P ,x 
ST(-,r = --ST(C) 
ST(r V r = ST(C) V ST(C) 
ST((t)r  = 3y( Rzy A 

Here x is the first order variable that represents the evaluation node, and 
the [y/x] in the final clause means substitute y for all free occurrences of x, 
where y is some fresh first order variable. Note that the standard translation is 
essentially another way of looking at the satisfiability definition for L, thus it 
is clear that the standard translation is truth preserving: that is, M ~ r iff 
M ~ ST(  r Note that on the left hand side of this equivalence ~ and Iw] 
are read modally (that is, in accordance with the satisfiability definition for L 
given above) whereas on the right hand side these symbols have their standard 
first order meaning. The standard translation shows that L can be regarded as 
a very simple fragment of L l, namely a one-free-variable fragment in which 
only bounded quantification is used. 

L 1 is also the first order correspondence language for both L N and L KR. 
To see this note that we can extend the standard translation to L N by adding 
the following clause: 

s r ( i )  = = 

Again x is the first order variable that picks out the point of evaluation, and xi 
is the first order variable that we have chosen to correspond to the nominal i. 
Similarly, we can extend the standard translation L Kn by adding the clause: 

ST(( l l )  ""(Ik)  ,~ ([~)" "(ltm)) = ~y(xl~ll "' 'RIkY A Xl;gl~ ...Rltmy ). 

Both extensions are truth preserving, thus the use of nominals can be seen as 
the use of certain extra equalities, while the use of ~ is essentially the use 
of an additional form of bounded quantification. Thus all three of our base 
languages are rather small fragments of L 1. 
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These observations immediately link the modal approach of this paper 
with other approaches to Attribute Value logic which may more familiar to 
the reader. Note in particular that the standard translation links our approach 
with that of Smolka (1989). Smolka was perhaps the first person to make 
explicit the connection between AVSs and first order models, and he has 
proved a number of results concerning a certain first order language of AVSs, 
namely the language we have here called L 1 . Thus, via correspondence theory, 
many of the results of the present paper can be seen as an investigation of 
the complexity of certain fragments of Smolka's language; this includes the 
results concerning the yet to be introduced universal modality. However the 
word 'many' is important. Modal operators aren't restricted to having first 
order correspondences, and when we later consider the master modality we 
will in effect be working with a small fragment of infinitary logic. 

This completes our discussion of the theoretical background of the paper. 
Let's now turn to the issue of most immediate relevance to computational 
linguistics: the complexity of various satisfiability problems. As most AV 
grammar formalisms assume a finite collection of both attributes and atomic 
symbols, the key problem is the satisfiability problem for languages of sig- 
nature (s A) where both s and A arefinite. Actually, with one interesting 
exception, our results are insensitive to the cardinality of s for Is _> 2, 
however when we treat the richer languages involving the universal or master 
modalities extra work is required to show that our results go through for the 
case of .A finite. In order to minimise the work involved we shall proceed as 
follows. We will first prove results which hold for languages with IZ:l >__ 2 
and A countably infinite; this allows natural proofs to be given. Later on a 
very general result is proved (the Single Variable Reduction Theorem) which 
allows all these results to be sharpened to cover languages containing only 
one propositional variable p. (In fact, in order to give a complete classification 
of the problem we're even going to show that our results hold for _> 2 
when no propositional variables at all are used; all one needs is a primitive 
truth symbol -V. We will call languages with a primitive -I- symbol and no 
propositional variables languages of signature (s ~).) Finally, we know of 
no linguistic theory which puts a fixed finite upper bound on the number 
of boxlabels that may be used, thus for languages with nominals the com- 
plexity of the satisfiability problem when/3 is countably infinite is the most 
important. 

3. COMPLEXITY RESULTS FOR L, L N and L Ir 

In this section we show that the satisfiability problems for L, L N and L KR 
are all NP complete. The fundamental result is that for L, for it turns out that 
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the method used for this language generalises straightforwardly to its two 
extensions. The key to the NP completeness result for L is to show that given 
a formula ~b which is satisfiable at a node w in some model M,  we can always 
find a suitably small model M[nodes(r w) which also satisfies r Once we 
have defined Mlnodes(r w) and determined its size the NP completeness 
result is immediate. 

The definition of M[nodes(r w) follows from the following general prop- 
erty of modal languages: when evaluating a wff in a model, only a certain 
selection of the model's nodes are actually relevant to the truth or falsity of 
the wff; all other nodes can be discarded. The nodes that are relevant when 
evaluating a wff r at a node w in a model M are the nodes picked out by 
the function nodes : WFF • W ~ Pow(W) that satisfies the following 
conditions: 

nodes(p, w) = {w) 
nodes(--1r w) = nodes(C, w) 
nodes( r V r w) = nodes(C, w) U nodes(C, w) 
nodes( (1)r w) = {w} U (-J~':wRw' nodes(C, w') 

Given a model M,  a wff r and a node w we form Mlnodes(r w) in the 
obvious way: the nodes of this model are nodes(C, w), and the relations and 
valuation are the restriction of those of M to this set. The following lemma 
shows that nodes selects the correct nodes: 

LEMMA 3.1 (Selection Lemma). For all models M, all nodes w of M and 
all wffs dp, 

M ~ r /ff Mlnodes(r w) ~ r 

Proof." By induction on the degree of r Note that it follows from the defini- 
tion of nodes that w E nodes(~, w), which is all that is needed to drive the 

induction through. [] 

The selection lemma is a completely general fact about modal languages. 
It doesn't depend on any assumptions we have made in this paper; in particular 
we haven't yet made use of the fact that we're only concerned with models 
in which each of the Rt is a partial function. However when we take this 
into account we notice that Mlnodes(r w) has a pleasant property: it is very 
small. There can only be one more node in Mlnodes(r w) than there are 
occurrences of modalities in r 

LEMMA 3.2 (Size Lemma). Let rood(C) be the number of occurrences 
of modalities in r Then for all models M and all nodes w in M, 
Inodes(r w)\{w}i  G mod(r 



A MODAL PERSPECTIVE 143 

Proof: By induction on the degree of  ~b. For the base case note that for all 
atomic formulas p we have that [nodes(p, w)\{w}l  = (b, thus the result holds. 
So assume the result for all wffs of degree less than k. Now if 4> is a wff of 
degree k of the form r V 0 then we have: 

Inod s(  v 0, <__ [nodes(C, w)\{w)l + lnodes(O, w)\{w) I 
<_ rood(@ + rood(O) (by Inductive Hypothesis) 
= mod(~b V 0). 

Thus the required result holds for disjunctions. The case for negations is 
similar. 

There only remains the case for modalities, so suppose that r is a wff of 
degree k of the form {l)r We wish to show that [nodes((1)r w)\{w}} _< 
mod((l)~). There are two cases to consider. The first is that there there are 
no nodes w' such that wRzw'. But then Inodes((1) , w)\{w}! = 0 and the 
result is immediate. So next consider the case when there is a node w' such 
that w lglw ~. Note that as we are working with partial functional relations this 
w I must be unique. Thus we have the following: 

[nodes((1}~b, w) \{w) l  < Inodes(~, , w')l 
<_ 0 
< Inodes(Gw')\{w'}} + 1 
< mod(~2) + 1 (by Inductive Hypothesis) 
= mod((1)~b) 

Thus the required result also holds for modalities, and hence the truth of the 
lemma follows by induction. [] 

Together the selection lemma and the size lemma lead directly to the main 
result: 

THEOREM 3.1. Let L be a language of signature (s ~4} where ~4 is count- 
ably infinite. Then the satisfiabiIity problem for L is NP complete. 

Proof: That this satisfiability problem is NP hard is clear, for as we have 
a countably infinite collection of propositional variables at our disposal the 
problem contains the satisfiability problem for propositional calculus as a 
special case. That the problem is in NP follows directly from the fact that any 
satisfiable L wff r can be satisfied in a model containing at most rood(C) + 1 
nodes; this we know from the selection and size lemmas. Thus, given ~b we 
can non-deterministically choose a suitable model of at most this size, and 
evaluate q5 in this model in polynomial time. [] 
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Let's turn to the complexity of the satisfiability problem for the language 
L N. Recall that this language is L augmented by a distinct new set of atomic 
symbols called nominals which are constrained to be true at exactly one node 
in any model. It is easy to use the machinery developed above to prove that 
the satisfiability problem for L N is also NP complete, in fact there is almost 
nothing new to be done. Given a L N model M,  a node w in M,  and an L N wff 
r we define Mlnodes(r , w) exactly as described above. Both the selection 
and size lemmas hold, thus we are almost through. There is only one snag: 
Mlnodes(r , w) is not guaranteed to be an L/v model as some nominals may 
be not denote any node at all. But this problem is more apparent than real. 
By adjoining a brand new node (say *) to Mlnodes(r , w) and insisting that 
all 'unassigned nominals' denote �9 we convert M[nodes(r w) into an L N 
model [Mlnodes(r w)]*. Of course to maintain the truth of the selection 
lemma we have to be careful where we p lace . ,  but there are two obvious 
'safe' choices. The simplest choice is to insist t h a t ,  is unrelated (by any 
of the relations) to any of the points in Mlnodes(r w). The second, which 
is slightly more elegant, is to insist that �9 is related to w by some relation, 
but that none of the points in S is related to , ;  choosing this second option 
means that �9 point generates [Mlnodes(r w)]*. Either way it it clear that the 
addition of �9 is harmless: we still have that that [Mlnodes(r w)]* ~ r 
And [Minodes(r w)]* is still small, having at most rood(C) + 2 nodes. Thus 
by precisely the same argument as for L we have: 

THEOREM 3.2. Let L N be a language with nominals of signature ( ~, .4, B), 
where both A and 13 are countably infinite. Then the satisfiability problem for 
L N is NP complete, rn 

Finally we turn to L KR. The satisfiability problem for this language is also NP 
complete, but how are we to show this? Our definition of nodes says nothing 
about occurrences of path equations. Actually the easiest way to proceed is 
not to extend the definition of nodes, but rather to first transform L KR wffs 
into a certain special form. The following example shows what is involved. 

Suppose we have a model M which verifies (a) ~ (b) at a node 
w. This means there is a node w ~ such that wR~w ~ and wl:gbW ~. But as 
nodes((a) ~ (b), w) is undefined, in general we will not have that w' is a 
part of the small model we build. However if we first rewrite (a) ~ (b) 
into a logically equivalent form that makes explicit the existential demands 
of the path equations, everything proceeds smoothly. Rewrite (a) ,,~ (b) as 
(a) ~ (b) A ( a ) -7 A ( b ) -l-. Clearly this formula is logically equivalent to the o- 
riginal, however the new syntactic form is very useful: the two new conjuncts 
make the the modalities (a) and (b) available to nodes. Consider what happens 
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when we apply nodes to this new formula at w. As nodes commutes over A, 
we must calculate nodes((a) ,.~ ( b ), w ),nodes( ( a ) T, w ) and nodes(( b ) T, w ). 
As before, we can't do anything further with nodes((a) ,~ (b), w), but we can 
evaluate both nodes( (a) T, w) and nodes( (b) Y, w), as nodes is defined for 
such expressions. Evaluating these formulas will produce the point w ~ that 
we need to build an equivalent small model. 

Let's make this precise. Any path equation (A) ~ (B) is logically e- 
quivalent to ( A ) ~  ( B ) A  (A)T A (B)T.  For any path equation ( A ) ~  (B) 
we'll  call (A) ~ (B) A (A)T A ( B ) T  its explicit form. Given an L R wff 
q~ which we seek to satisfy, we'll  first form a new L h'R wff q~* by simulta- 
neously substituting, for each occurrence of a path equation in q~, its explicit 
form. Note that qS* is logically equivalent to ~b, and that the length of q~* is 
linear in the length of q~. The effect of this rewriting of ~b means that our 
existing definition of nodes suffices to produce all the points needed for the 
small model: precisely as illustrated in the above example, when we apply 
nodes the occurrences of the new subformulas of the form (A)T and ( B ) T  
ensure that all the needed evaluation points are selected. Thus we can make 
Mlnodes(c~, w) as before and both the selection and size lemmas hold. So, 
by exactly the same argument we have that: 

THEOREM 3.3. Let L KR be a Kasper Rounds language that has a signature 
(s .A) where .A is countably infinite. Then the satisfiability problem for L KR 
is NP complete. [] 

In the above proofs was assumed that we had a countably infinite supply of 
atomic symbols at our disposal. However most Attribute Value formalism 
use a finite number of atomic symbols. Given that the number of atomic 
symbols is some fixed finite number, might this not permit us to evade the NP 
hardness result? (As is well known, for both propositional logic and for $5, 
such a restriction lowers the complexity of the satisfiability problem to P.) 
However this is not the case here: the satisfiability problem for L (and thus 
for L N and L KR) remains NP hard, even if we use only one propositional 
variable, and one modal operator. This can be seen as follows. Consider the 
following set of L formulas: {p, Ca)p, (a)(a)p,. . . ,  (a)~p). The values of 
these formulas are all independent, that is, for any sequence of truth values 
bo,. . . ,  bk, there exists a model such that M ~ (a)*p iff bi is true. Now define 
function f from propositional formulas to L-formulas as follows: 

f(q~(P0,. . . ,  Pk)) = q~(P, Ca)p, (a)(a)p,. . . ,  (a)kp). 

Obviously, f is polynomial time computable, and ~h is satisfiable iff f(qS) is 
L satisfiable. Thus, we can summarise the complexity results of this section 
as follows: 



146 PATRICK BLACKBURN AND EDITH SPAAN 

THEOREM 3.4. If k 1 and 1.41 k 1, the satisfiability problems for L, 
L N, and L KR are NP complete. [] 

Actually, if we look at the previous encoding carefully, we can see that if our 
language contains at least two modalities, we don't  need any propositional 
variables to encode propositional satisfiability in an L formula; all we need 
is a primitive constant truth symbol T. Define: 

f(r ,Pk)) = r <a)(b>T, (a)(a)<b)T,..., <a) k <b)T). 

Obviously, f is polynomial time computable, and ~b is satisfiable iff f(4~) is 
L satisfiable, which leads to the following theorem: 

THEOREM 3.5. If k 2 and IAI k 0, the satisfiability problems for L, 
L N, and L KR are NP complete. [] 

Let's summarise our results so far. The satisfiability problem for the core 
AV language L is NP complete. Adding either of two re-entrancy forcing 
mechanisms - -  nominals or the Kasper Rounds path equality - -  does not 
increase the complexity: satisfiability remains NP complete. These results 
hold even if we have only one modal operator and one atomic symbol at our 
disposal. There is a result from the literature worth noting here: Kasper and 
Rounds (1990) show, using a disjunctive normal form argument, that when 
attention is confined to those models in which a) each atom is true at at most 
one node, b) no two atoms are true at the same node, and c) atoms are true 
only at terminal nodes, then the satisfiability problem for the negation free 
fragment of L KR is NP hard (and in fact NP complete). The interesting part 
of their result is the NP hardness part, for as their language lacks negation 
this is not obvious. The non-trivial part of our result, on the other hand, is our 
model theoretic proof that an NP time algorithm exists even if full Boolean 
expressivity is allowed. 

What can be said at a more general level about these results? From the 
point of view of modal logic they're somewhat unexpected: with the exception 
of $5 most familiar modal logics are PSPACE complete. To put it loosely, 
usually adding modalities to a language of propositional logic makes matters 
worse, but here it hasn't. The reason, of course, is due to the fundamental 
constraint on our models, namely that all the relations be partial functional. 
It's this requirement which enabled us to build small models and thus kept the 
complexity to that of propositional logic. It's worth adding that this constraint 
seems to be peculiar to the representational formalisms used in computational 
linguistics. Various representation formalisms used in AI, such as KL-ONE, 
can be viewed from a modal perspective, and as Schild (1990) has recently 
observed, terminological logics are also modal logics. But from the point of 
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view of complexity there is a difference: the modal logics inspired by AI 
typically don't usually obey the partial functionality constraint. Usually they 
are multimodal versions of K,  the modal logic which puts no constraints on 
accessibility relations. As is well known, the satisfiability problem for this 
logic is PSPACE complete (see Ladner (1977)). 

4. THE UNIVERSAL MODALITY 

In this section we are going to examine the complexity of the satisfiability 
problems for three stronger modal languages, L ~ L N~ and L KRn. These 
languages are, respectively, L, L N and L Kn  augmented by the universal 
modality. The universal modality is a modal operator written as [] which has 
the following semantics: for all models M, all nodes w, and all wffs q~ 

M ~ D~[w] iff M ~ ~[w'], for all nodes w' in M. 

That is, D~b holds iff ~b is true at all nodes. Note that all three enriched 
languages are fragments of L 1, the first order language of AVSs, as adding 
the following (truth preserving) clause to the standard translation correctly 
deals with occurrences of the universal modality: 

ST(O+) = V v ( b / x ] S T ( r  

For a detailed discussion of the logical consequences of enriching modal 
languages with the universal modality, see Goranko et al. (1992). The authors 
know of only one explicit application of the universal modality to linguistic 
theorising, namely Evan's (1987) analysis of the feature specification defaults 
of GPSG, which we shall consider shortly. However, as we shall see, the 
universal modality seems to have been implicitly used on other occasions. 

But why should linguists be interested in L ~ L N~ and LKR~ One an- 
swer is as follows. Underlying much work in Attribute Value grammar is an 
idea that can loosely be described as 'grammar equals feature logic'. Some- 
what more precisely, the use of the apparatus of unification formalisms is 
attractive to many linguists because it enables them to view grammars of 
natural languages as theories in some sort of calculus of attributes and values. 
According to such a view, linguistic structure can be adequately modelled by 
Attribute Value Structures (possibly augmented by the notion of phrase struc- 
ture), and the linguists' business is to state general constraints about which 
AVSs are admissible. Such views are discernible in some of the earliest work 
in attribute value grammar, namely Lexical Functional Grammar (LFG) (see 
Kaplan and Bresnan (1982)). Generalised Phrase Structure Grammar (GPSG) 
(see Gazdar et al. (1985)), explicitly espouses such views, and its work on 
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feature co-occurrence restrictions remains one of the best examples of the 
approach in action. More recently, Head Driven Phrase Structure Grammar 
(HPSG) (see Pollard and Sag (1987)), has taken this approach even further. 
Whereas in both GPSG and LFG the idea of unification was only one com- 
ponent (albeit an important one) of the systems, in HPSG the unificational 
apparatus completely dominates. 

It is these ideas that motivate the work of the present section. As we 
have seen the most common unificational formalisms are nothing but modal 
languages. However as they stand these languages aren't strong enough to 
express generalisations, and indeed as the 'grammar equals feature logic' 
equation has become more widely accepted, work in Attribute Value grammar 
has tended to abandon the simple languages we have considered so far in 
favour of increasingly powerful formalisms. The work of this section is an 
exploration of the computational consequences of adding just enough power 
to the base languages to enable generalisations to be expressed. 

Let's consider matters more concretely. Suppose we strengthen our lan- 
guages by adding the universal modality: what linguistic principles can we 
now express? Consider a typical GPSG feature co-occurrence restriction, for 
example: 

[VFORM FIN] =~ [-N, +V]. 

This states that if a node has the value FIN for the attribute VFORM, then 
that node has the properties of being -N and +V. In other words, only a verb 
can have tense. 

The important thing about this constraint is its generality. It's not some- 
thing which happens to hold of this or that piece of linguistic structure, it's a 
pervasive fact of English. Any AVS which doesn't satisfy this generalisation 
can't represent an English sentence. We can express this generalisation in L [] 
as follows: 

D((VFORM)fin -+ --n A +v). 

(Herefin, - n  and +v are propositional symbols and (VFORM) is a modality.) 
In short we can view the ~ notation of GPSG as what modal logicians have 
traditionally called strict implication. Viewing ~b ~ ~b in this way accounts 
for the generality of feature co-occurrence restrictions. 

Evans (1987) also makes use of the universal modality in connection 
with GPSG, but to express defaults, not generalisations. Evans uses L [] and 
mostly works with the dual of the universal modality ((>~b -- ~o-,~b), which 
he gives an autoepistemic reading: Off means that ff is consistent with all 
known information. For example he uses the wff ~(CASE)dat --* (CASE)dat 
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to express the feature specification default: 'If it is consistent with all known 
information that case is dative, then case is dative'. The idea of using a modal 
operator to express linguistic defaults is interesting, though we would argue 
that such an operator would need to be added in addition to the generalisation 
expressing universal modality. But this is to argue over details. There are 
many ideas worth pursuing in Evans work, and the underlying philosophy is 
in harmony with that of the present paper: indeed in a footnote Evans raises 
the possibility of formalising all of GPSG in a modal language. 

Let's consider the use of L KR~ This language is powerful enough to 
capture the content of the Head Feature Convention of GPSG (or indeed 
HPSG). The essence of the GPSG version is that for any phrasal constituent, 
the value of  its head attribute is shared with the value of the head attribute of 
its head daughter. For a discussion of what this terminology means, and why 
it's linguistically useful the reader is referred to Gazdar (1985); here we'll  be 
content to indicate how the constraint can be expressed: 

[ ] ( p h r a s a l  "-+ (HEAD) ~ (HEAD-DTR)(HEAD)). 

Once again note that this is a strict implication; we could rewrite it as: 

phrasal ~ (HEAD) ,~ (HEAD-DTR)(HEAD). 

Further experimentation will convince the reader that L "r;Rr~ is a language 
capable of expressing interesting linguistic constraints. However  it has also 
crossed an important complexity boundary; as we shall now show its satisfi- 
ability problem is undecidable. To prove the undecidability result it suffices 
to give a reduction from a II ~ hard problem to L KRra satisfiability. As is 
shown in Harel (1983), tiling problems provide a particularly elegant method 
of proving lower bounds for modal logics, so we'll  use such an approach 
here. 

A tile T is a 1 • 1 square fixed in orientation with coloured edges right(T), 
left(T), up(T), and down(T) taken from some denumerable set. A tiling 
problem takes the following form: given a finite set of T of tile types, can 
we cover a certain part of Z • Z, using only tiles of this type, in such a way 
that adjacent tiles have the same colour on the common edge, and such that 
the tiling obeys certain constraints? One of the attractive features of tiling 
problems is that they are very easy to visualise. As an example, consider the 
following puzzle. Suppose T consists of the following four types of tile: 



150 PATRICK BLACKBURN AND EDITH SPAAN 

Can an 8 by 4 rectangle be tiled with the fourth type placed in the left hand 
corner? Indeed it can: 

There exist complete tiling problems for many complexity classes. In the 
proof that follows we make use of a certain II ~ complete tiling problem. 

THEOREM 4.1. If[El >_ 2, and A is countably infinite then the satisfiability 
problem for  L KRn is 1I ~ hard. 

Proof." As shown in Berger (1966) and Robinson (1971), the following prob- 
lem is II~ complete: 

N • N tiling: Given a finite set T of tiles, can T tile N x N? 

That is, does there exist a function t from N • N to T such that: 

right(t(n, ra)) = left(t(n + 1,rn)), and 
u p ( t ( n , m ) )  = dow (t(.,m + 1))7 

Let T = {T1, . . . ,  Tk} be a set of tiles. We construct a formula q~ such that: 

T tiles N • N iff q~ is satisfiable. 

First of all we will ensure that, if r is satisfiable in M,  then M contains a 
gridlike structure, the nodes of M (henceforth W) play the role of points in 
a grid, Rr is the right successor relation, and R~, is the upward successor 
relation. Define: 
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Suppose M ~ r Then there exists a function f from N x N to W 
such that: f(O, O) = wo, f (n ,  m ) R r f ( n  + 1, m), and f (n ,  m)Ruf (n ,  m + 1). 

Next we must tile the model. To do this we use propositional variables 
tl , . . . ,  tk, such that ti is true at some node w, iff tile Ti is placed at w. To 
force a proper tiling, we need to satisfy the following three requirements: 

1. There is exactly one tile placed at each node. 
k 

r = � 9  A A A tj)) 
i=1 l<_i<j<_k 

2. If T is the tile at w, and T ~ the tile at the right successor of w, then 
right(T) = lefi(T'). 

= D( V A (,,)tj)) 
right(T,)= left( T y ) 

3. If T is the tile at w, and T ~ the tile at the up successor of w, then up(T) = 
down(TI). 

r = tu( V A (,@)) 
up(T,)= down(Tj) 

Putting this all together, we define r to be 4g~d A 41 A 42 A 43. We will prove 
that 7- tiles N x N iff 4 is satisfiable. 

First suppose t : N x N ~ 7" is a tiling of N x N. We construct the 
satisfying model for 4 as follows: M = (W, R~, R~, V) such that: 

W = {W~,m : n , m  E N} 
Rr = {(W,,m,W,,m+l): n , m  E N} 

V(ti)  = {Wn,m : n, m E  N a n d t ( n , m ) =  Ti} 

Clearly, 4 holds at any node w of M. To see that the converse also 
holds, suppose that M ~ r Let f from N x N to W be such that 
f ( 0 , 0 )  = wo, f ( n , m ) R r f ( n  + 1,m)  and f ( n , m ) R j ( n , m  + 1). Define 
the tiling t : N  x N ---+ T by t (n ,m)  = Ti iff M ~ t i[f(n,m)]. Note 
that t is well-defined and total by r Furthermore, if t(n, m) = Ti and 
t(n + 1,m) = Tj, then f ( n , m ) R r f ( n , m  + 1), M ~ t i[f(n,m)],  and 
M ~ t j[ f (n,  m + 1)]. Since M satisfies 42, we can conclude that right(TO 
= lefi(Tj). Similarly, if t(n,  m) = Ti and t(n,  m + 1) = Tj, then 43 ensures 
that up(TO = down(Tj). Thus, 7" tiles N x N. [] 

Thus the satisfiability problem for L KRu is undecidable. Note, however, 
that the above proof depends on having access to an unlimited supply of 
propositional variables. (The above argument shows how any tiling problem 
can be reduced to L KRa satisfiability by representing tiles as propositional 
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symbols. But there is no pre-determined size limit on the set of tiles 7" that 
we may be given.) This problem will be dealt with later. 

The satisfiability problem for L tcRt~ is in fact II1 ~ complete. Given the 
previous result, all we need to to show is that the L KRrJ validities can be 
recursively enumerated. One way of doing this is to give a recursive axioma- 
tisation of L KRca. This can be done by building on the completeness proof 
for L KR given in Blackburn (1991), but it has the drawback of requiring the 
introduction of the (otherwise irrelevant) machinery of modal completeness 
theory. Fortunately correspondence theory comes to the rescue with a general 
argument showing (at least for the case of finite/2) that L Kn~ validity is a 
r.e. notion. The argument is due to van Benthem (1984) who observes that 
when working with elementary classes of frames (that is, frames defined by 
a single L 1 formula) it is not necessary to give an explicit axiomatisation to 
show that modal validity is r.e.: if qo is the L 1 wff that defines the elemen- 
taf t  class, and if r is a modal formula such that S T ( r  ) C L 1 then r is a 
validity iff qD ~ V:r, ST(r  But here ' ~ '  denotes the first order consequence 
relation, and as this is an r.e. relation we would be through if we could show 
that the multiframes underlying our Kripke models form an elementary class. 
This is trivial: we are working with the class of multiframes that are partial 
functional. Given that / :  is finite we need merely define: 

q~ = A Vxyz (xRty  A xRl z  --+ y = z). 
lEE 

Thus we are working with an elementary class, namely the class that satisfies 
qo. Thus we conclude: 

THEOREM 4.2. I f  ls I >_ 2 and r is countably infinite then the satisfiability 
problem for L KRn is II~ complete. [] 

What  are we to make of this undecidability result? The key technical point 
is that it is genuinely due to the interaction between the ability to state 
generalisations and the ability to enforce re-entrancy. The subsequent results 
elaborate on this theme and reveal an interesting difference between L Nn 
and L Kn~ We begin by showing, using a filtration argument (see Fisher 
and Ladner (1979) for filtrations in Propositional Dynamic Logic), that the 
satisfiability problems for L ~ and L N~ are decidable. 

THEOREM 4.3. I f  r is a satisfiable L ~ or LNa formula, then r is satisfiable 
in a model with at most 2 21r nodes. 

Proof." Suppose that r is an L a wff, M = (W, {Rt}lec,  V), and M ~ r 
Let Cl(r be the smallest set that contains r and is closed under subformulas 
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and single negations. Define an equivalence relation ~ on W as follows: 

w ~ w' iff Vr E C I ( r  ~ r r M ~ ~b[w']). 

Let W E C_ W be such that W E contains exactly one element from each 
equivalence class. Let V E be the restriction of V to W E, and define R F as 
follows: 

wRIFw ' iff 3w"(wRlw rr/', w' w')  r  * �9 

Let M F = (W F, {RF}IeC, vF). M F is a filtration of M through Cl(r in 
the sense of Hughes and Cresswell (1984), thus it follows immediately that 
M r satisfies r Since the size of Cl(r is at most 2[r the size of W F is 
bounded by 221r Furthermore, M F is an L ~ model, since the definition of 
R~ ensures that R~  is a partial function for any modality l. 

Essentially the same argument works for wffs r of L Nn. We need only 
observe that for all nominals i in Cl(r if V(i) = {w} then w ~ w' iff 
w t = w. In short, all nominals in Cl(r denote singletons in the filtrations, 
and all other nominals can be assigned arbitrary singletons of W E, thus we 
again have a small model for r [] 

From theorem 4.3, it follows immediately that the satisfiability problems 
for L ~ and L N~ are both decidable in nondeterministic exponential time. 
But we can improve these results. Using methods similar to Pratt (1979) 
and Halpern and Moses (1985) we sketch a construction of a deterministic 
exponential time algorithm for both L ~ and L N~ satisfiability. 

THEOREM 4.4. The satisfiability problems for L ~ and L ND are decidable 
in EXPTIME. 

Proof" Let Cl(r be defined as in the proof of the previous theorem. Let S be 
the set of  all subsets r of Cl(r that are maximally propositionally consistent, 
and are closed under reflexivity of O; that is, if o~b C r then ~b is also in F. 
Suppose r is satisfiable in model M. Let SM be the set of subsets of Cl(r that 
actually occur in M,  that is, SM = {F E S : M ~ r[w], for some w E M}.  
Obviously, SM C_ S, but we can say more about SM. First of all, note 
that every element of SM contains the same [] formulas. Furthermore, if r 
contains a nominal ra, there is exactly one set in SM that contains m. Let 

C Pow(S), consisting of all maximal S r _C S such that: 
1. Vr, r' ~ s' ,  VDr e Cl(r  : D e  E r r ~ r  ~ r', and 
2. For every nominal m occurring in r there is exactly one set P E S r such 

that m ~ E. 
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If r is satisfiable in M, then there exists a set S'  E E such that SM C_ S ~. What 
can we say about the size of P~? Since Cl(r contains at most 21r elements, 
there exist at most 221r maximal sets S c_ S fulfilling the first condition. If r 
contains k nominals, at most IS[ k subsets of S occur in P~. Since k is bounded 
by Ir the size of P~ is exponential in the length of r 

For every S1 E P,, we will construct a list of sets $1 D $2 D $3 D . . .  
such that: if r is satisfiable in a model M,  and SM C__ $1, then SM C_ Si. 

Suppose we have defined Si. Call a set I' E Si inconsistent iff one of the 
following situations occurs: 

1. -1[:]r E I', but for all r '  E Si: ~b E U,  or 
2. For some modality l, (1)~b E r for some r  but there is no r ~ E Si such 

that V(/)~ E CI(r162 E F ~ ~ E U). 
If there are inconsistent sets in Si, then we let 8~+1 consist of all sets of Si that 
are not inconsistent. Otherwise, r is satisfiable iff r E F for some set 1 ~ E Si, 
and for every nominal m occurring in r there is exactly one set P E Si that 
contains m. 

Since S1 is of exponential size, and Si+l is strictly included in Si, the 
algorithm terminates after at most exponentially many cycles. Determining 
which sets in Si are inconsistent takes polynomial time in the length of the 
representation of Si. Thus, for every member of E, the algorithm takes at 
most deterministic exponential time. Since E is of exponential size, we can 
determine if if r is satisfiable in EXPTIME. [] 

However as the next result shows, there is a clear sense in which this result 
cannot be improved. 

THEOREM 4.5. The satisfiability problems for L D and L N~ are EXPTIME 
complete for IZ;I >_ 2, and A countably infinite. 

Proof." The upper bounds follow from theorem 4.4. To prove the corresponding 
lower bounds, it suffices to give a polynomial time computable reduction from 
an EXPTIME hard set to L [] satisfiability. We will use a suitable subset of 
Propositional Dynamic Logic. Let PDL(a, , )  be the bimodal propositional 
language with modalities (a) and (a*). We interpret wffs of PDL(a,  . )  on 
Kripke models M = (IV, R~, V), where R~ is an arbitrary binary relation on 
W, in the usual way, the key clause being: 

M ~ (a*)r iff 3w'(wR*w' & M D r 

where R~ denotes the reflexive, transitive closure of R~. In Fisher and Lad- 
ner (1979), it is proven that the satisfiability problem for PDL(a,  . )  is EX- 
PTIME hard. In fact, from careful inspection of this proof, we can conclude 
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that even the following set is EXPTIME hard: Let C consist of all PDL(a, . )  
formulas r such that r = r A [a*]r and 

1. r r are .-less and have modal depth _< 1, 
2. r is satisfiable in a model where every node has at most two successors. 

Define the reduction f from C to L rn satisfiability as follows: 
1. If r is not of the form r A [a*]r where r and r are ,-less and of 

modal depth < 1, then f ( r  = A_ 
2. For r q)2 ,-less and of modal depth < 1, f ( r  A [a*]r = s(q~l) A 

~s(r  where s is defined on ,-less formulas as follows: 
s(p) = p 
~(-~r = -~,(r 

v { )  = v 
8((a)~3) = (a l )8 (~ )  V (a2),s(,',~) 

Since s is polynomial time computable on ,-less formulas of modal depth 
< 1, f is polynomial time computable. Now, it is straightforward to prove 
the following fact by induction. If M = (W, Ra, re) is a PDL-model, and 
M ~ = (W, Ral,Ra2, Tr) is an Lt~-model, such that Ra = R~I U R~ z, then 
for all ,-less PDL(a)-formulas r and for all nodes w E W, M ~ r iff 
M ~ ]= s(r By making use of this it is easy to prove that f is indeed a 
reduction from C to L cJ satisfiability. [3 

Note that once again this reduction depends on having an unlimited supply 
of propositional variables. The following theorem will dispose of this issue 
once and for all: 

THEOREM 4.6 (Single variable reduction theorem). I f  [s >- 1, then there 
exist polynomial time reductions from the satisfiability problems for  L ~ and 
L KRr~ over signature (s .A) to the corresponding satisfiabilityproblems over 
signature (s {p) ). 

Proof" Recall that we used the following reduction from propositional satis- 
fiability to L satisfiability over signature ({a),  {p)) in theorem 3.4: 

f ( r  Pk)) = r (a)p, (a) (a)p , . . . ,  (a)kp). 

If r is satisfied in w, we build the corresponding model for f ( r  by replacing 
P .R~wk such that p is true in wi iff p~ w by a list of nodes woR~wlR~. .  

is true in w. We will use a similar encoding to to prove the theorem. Fix 
a signature (s ~4), s ~ 9. We'll use a fixed element a E s to encode 
nodes. Suppose M = (W, {Rz}tec, V) is a model, and we use propositional 
variables P 0 , . . . ,  Pk. As a first attempt to obtain an equivalent model with one 
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propositional variable, look at the encoding given above: replace each node 
w by a list of nodes woR~Wl~ R~..  . R 'wk  such that p is true in wi iff Pi is 
true in w. This doesn't quite work: consider for instance the formula Dpl. 
The obvious translation would be U (a)p. But this would mean that (a)p has 
to be satisfied in every world wi. This is too strong a requirement: we just 
want (a)p to be satisfied in every world of the form w0. We therefore need 
to be able to determine if we are at a world of the form w0. We can't use a 
propositional variable for this: we have already used our sole propositional 
variable p. The solution is to use a slightly different encoding: we will replace 
each node w by a list of 2k + 3 ~ ~ nodes woRaWlRa... RaW2k+2 such that: p is 
true in wi iff either i < k and p~ is true in w, or i = 2k + 2. Define: 

2k+l 

ao,k = A (a) i-~p A (a)2k+2p. 
i = k + l  

Then a0,~ is true in every world w0, and we will ensure that for every i > 0, 
a0,k is false in wi. Now we will show how to define the relations R~. If 1 # a, 
this is easy: we let R~ consist of all pairs (w0, w~) such that (w, w') E -Rl. We 
can't do this for R~, since every node w0 already has wl as its R~ successor. 
If (w, w') E R~, we will add (wzk+2, w~) to R~, that is, we add an R~ edge 
from the last node of the encoding of w to the first node of the encoding of 
W t" 

Now we are ready to define the reduction: 

f(r = cr0,1r A gk(r 

Here gk is inductively defined as follows: 

9k(p ) = 
= 

gk(r  v r = 
= 

gk((a)r  = 
gk(c r = 

gk((d) ~ (B)) = 

(a)ip 

9k(r  v gk(r 
A 9 k ( r  l r a 

(a>2k+3(~O,k A gk(r  

(A) ~ ( B ) [ ( a ) : =  (a) 2k+3] A gk((A)T) A 9~((B)T) 

(The notation [(a) := (a) 2~+3] denotes the result of substituting (a) 2k+3 for 
(a).) Obviously, f is polynomial time computable. Furthermore, if r does not 
contain path formulas, then neither does f ( r  It remains to prove that 6 is 
satisfiable iff f ( r  is satisfiable. 
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Let M = (W, {Rl}tec, V). Define the corresponding model Mk = 
(V, {k+EL, P) as follows: 

W = 
R; = 
Ra = 
P(p~) = 

{w ~ W" M D cr0,k} 
RII(W • W)  for l r a 
(Ro)2k+31(~ • ~) 
{w " M ~ (a)ip} 

With induction the structure of r it is easy to prove that for all formulas r 
with propositional variables in {P0, �9 ,Pk}, and for all w E W: 

M ~ gk(r iff Mk ~ r 

Now suppose M ~ f(05)[w]. Then w E W', since M ~ ao,k[w]. There- 
fore, Mk ~ 05[w], and hence 05 is satisfiable. 

For the converse, suppose that r is satisfiable. Let M = (W, {Rl}lec, V} 
be a model such that M ~ 05[v]. Let M'  = (W', {R~}te~, V') be the cor- 
responding model with one propositional variable, as sketched before the 
definition of the reduction: 

W ! 
R~ 
R" 
v'(v) 

= {w0,...,w2k+2"w c W} 
= {(wo, W'o}" wRlw'} (for I # a) 
= {(ZOi, Wi+l)"i  ~ 2k + 1} U {(W2k+2, W~))"WRaW t} 
= { w ; .  i = 2k + 2 or (~, ~ V ( p d  and i _< k)} 

It is clear that M R is isomorphic to M, therefore M'  [= aO,k A g(05)[vo]. [] 

As in theorem 3.5, we can prove that i f s  contains at least two modalities, 
we can dispense with propositional variables all together. Recall that we used 
the following reduction in theorem 3.5: 

f ( r  Pk )) = qS( (b} T, (a)(b) T, (a)(a)(b) V , . . . ,  (a> k (b) T). 

We can strengthen this. It is easy to see that the techniques of the previous 
theorem can be applied to prove the analogue of theorem 3.5. We leave the 
details to the reader. 

THEOREM 4.7. If  ls I >_ 2, then there exist polynomial time reductions from 
the satisfiability problems for L [] and L h'R~ over signature ( s  to the 
corresponding satisfiability problems over signature (s ~). [] 

Combining the previous theorem with the earlier obtained lower bounds, we 
can summarise the complexity results of this section as follows: 



158 PATRICK BLACKBURN AND EDITH SPAAN 

COROLLARY 4.1. I f  Is ~ 2, and I..41 >__ 0 then the satisfiability problems 
for L rJ and L N[] are EXPTIME complete, and the satisfiability problem for 
L KR[] is II ~ complete. [] 

An interesting aspect of the results of this section is the wedge they drive 
between L ND and L KRtT. At first sight the difference seems puzzling: after 
all, both are languages in which generalisations can be stated and re-entrancy 
forced. A closer look shows that the two languages work very differently. 
We might say that whereas in L KRta we can state genuine generalisations 
involving re-entrancy, in L Na there is a clear sense in which re-entrancy is 
only expressed within a given model. L At~ isn't powerful enough to force 
labelings. An example will make this clear. Consider the GPSG head feature 
convention again. We've already seen that its force is captured in L KRt~ by 
the following wff: 

[] (phrasal ---+ (HEAD) ~ (HEAD-DTR)(HEAD)). 

But when we attempt to capture its force using nominals we run into a problem: 
how can we label the desired re-entrancy point? It seems we must step beyond 
the boundaries of L N~ and write an expression such as the following: 

D(phra~al --+ 3i( (HEAD)i A (HEAD-DTR)(HEAD)~)). 

Now, this expression clearly captures what is required, but unfortunately it's 
not an ffvta wff but a wff of a more powerful language in which explicit 
quantification over nominals is possible. Such languages have been investi- 
gated before; Bull (1970) seems to have been the first technical investigation 
of nominals. Moreover Reape (1991) has used such a language to investi- 
gate problems in unification based grammar. However when used together 
with the universal modality, explicit quantification over nominals is (from 
the point of view of complexity theory at any rate) rather uninteresting: it 
is straightforward to show that strengthening L N~ to allow explicit quan- 
tification over nominals results in a notational variant of L ], the first order 
language of AVSs. Such a language thus has a II1 ~ satisfiability problem, just 
a s  L KRD does. 

In short, it is asking a lot to be able to express generalisations involving 
re-entrancy. The nearest we can get to it in a decidable framework seems to be 
L N[]. However, while generalisations are expressible in this language, these 
generalisations don' t  involve re-entrancy in any strong sense. It's precisely 
for this reason that we're not able to force a tiling in this language, but (alas) 
it's also precisely for this reason that it is not able express some linguistically 
useful principles such as the head feature convention, 
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5. THE MASTER MODALITY 

In this section we consider the complexity of the satisfiability problems for 
L[*], L N[*] and L KR[*], our base languages extended with the master modality 
[,]. Gazdar et al. (1988) define the master modality as follows: 

M ~ [,]~b[w] iff M ~ ~b[w] and 
M ~ [*]~[w'], for all w ' : w R l w ' ,  for some/C s 

As they only work with finite AVSs this definition is not circular, indeed it has 
the advantage of making the intended use of [,] particularly clear: [,] expresses 
recursive constraints over AVSs. (See Carpenter (1992) for a discussion of 
recursive constraints.) However it will make the following technicalities more 
straightforward if we extend the definition to cover arbitrary AVSs. We do 
this as follows. 

M ~ [*]~[w] iff M ~ 4)[w'], for all w' E W such that w ( U  Rl)*w' 
lEs 

That is, ~b must be satisfied at all nodes w' that are reachable by any finite 
sequence of transitions (including the null transition) from w. Clearly this 
definition reduces to the previous one for finite AVSs. It's also worth men- 
tioning that we have introduced a notational change; Gazdar et aL use [] for 
the master modality. We prefer to reserve this for the universal modality. 

The most important thing to note about both semantic definitions given 
above is their infinitary force: L 1 is not the correspondence language for 
[,]. As with PDL, the natural correspondences are with classical languages 
in which infinite disjunctions are allowed; in effect we are working with a 
fragment of infinitary logic. 

A number of logical results for L[*], including the construction of a com- 
plete tableaux system, have been proved by Kracht (1989). However his 
methods only yield a nondeterministic exponential time upper bound for the 

N[.] Kn[,] satisfiability problem; we improve on this below. Neither L nor L 
seem to have been treated in the literature, though Gazdar et al. (1988) note 
that some re-entrancy coding mechanism would be desirable, and Kasper 
and Rounds (1990) mention the possibility of combining the two approaches. 
L Kn[*] is this combination. 

We begin our investigation with a lemma which enables us to utilise results 
from the previous section. 

LEMMA 5.1. Let ~ be a formula that contains no occurrences of  [] or [,]. 
Then ~ is satisfiable iff[,]~ is satisfiable. 
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Proof." First suppose M = (W, {Rt}lec, V), and M ~ [3r Then for all 
w e W, M ~ r and therefore certainly M ~ [*]r 

Conversely suppose M = (W, {Rz}zec, V), and M ~ [*]r Let W r 
equal {w E W : wo(Utec Rt)*w}, and let M r be the restriction of M to W r. 
It follows by the usual generated submodel argument that for all formulas 
without [] or [,], and for all w E W': M ~ ~b[w] iff M'  ~ r It follows 
that M'  ~ r for all w C W'. But then M'  ~ t3r [] 

From this lemma, and the form of the reductions in the proofs of theo- 
rems 4.1 and 4.5, it follows immediately that the lower bounds for languages 
with t2 go through for the corresponding languages with [,]: 

COROLLARY 5.1. The satisfiability problems for L[*] and L/v[*] are EXP- 
TIME hard. The satisfiability problem for L KR[*] is II ~ hard. [] 

But do we have the the same upper bounds? The answer is almost always 
'yes', but there is one notable exception. If/2 is finite, and contains at least 
two elements, the complexity of the satisfiability problem for L KR[*] is much 
higher than that of the corresponding satisfiability problem for L KRD: we will 
show that in this case L h'R[*] satisfiability is El complete instead of 'just' II ~ 
complete. 

LEMMA 5.2. If f5 is satisfiable in M, then (9 is satisfiable in a countable 
submodel of M. 

Proof." Suppose M ~ ~b[w]. Let W' be {w' ~ W:w( l . J l ecRz )*w '  }. It 
follows by induction on the degree of q5 that M[W r ~ qS[w]. But as all our 
relations are in fact partial functions, and as we only have countably many of 
them, W ~ must be countable. [] 

THEOREM 5.1. If s is fnite, and [s I >_ 2, the satisfiability problem for 
L KR[*] is E 1 complete. 

Proof." The upper bound follows directly from lemma 5.2. To prove the 
corresponding lower bound, we will construct a reduction from the following 
E l complete tiling problem (see Harel (1986)): 

N x N recurrent tiling: Given a finite set T of tiles, and atile TI C T, can 
T tile N x N such that T1 occurs in the tiling infinitely often on the first row. 

That is, does there exist a function t from N x N to T such that: 
right(t(n,m)) = lefl(t(n + 1,m)), up(t(n,m)) = down(t(n,m + 1)), 
and the set {i : t(i, 0) = 711} is infinite? 
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Let T = {T1 , . . . ,  Tk} be a set of tiles. We construct a formula err such 
that: 

(T,  TI) 6 N • N recurrent tiling iff r is satisfiable. 

To ensure that r forces a tiling of N • N, we use the formula r constructed 
in the proof of theorem 4.1. Let r be the result of replacing every occurrence 
of [] by [.] in r Then, as in theorem 4.1, the following holds: 

I. If r  is not satisfiable, then T does not tile N x N. 
2. ff M ~ r then there exists a tiling t of N • N, and a function f 

from N • N to W be such that f(O, O) : wo, f (n ,  m)R~f(n  + 1, m) and 
f ( n , m ) R u f ( n , m  + 1), and M ~ t i [ f ( n , m ) ] i f f t ( n , m ) =  Ti. 

Now we force the recurrence: we will use a new propositional variable rowo, 
which can only be true at nodes of the form f (n ,  0), and we will ensure that 
there exist an infinite number of nodes where rowo holds and tile T1 is placed. 
Define: 

= ([*] A A  ow0 A --, (,)( owoA t,)). 
IEs 

Let err be the conjunction of r and r  In the same way as in theorem 4.1, 
we can now prove that (7-, T1) E N • N recurrent tiling iff r is satisfiable. 
[] 

In the previous proof it is essential that we can force a propositional 
variable to be true at w only if w is reachable from w0 in a finite number 
of R~ steps. We can't force this in L KRo, nor in L KR[*] if s is infinite. 
(Indeed the previous proof doesn't  go through for s infinite as then r  is 
not a formula.) As we shall now see, in the case where s is infinite, the 
satisfiability problem for a language with [,] is never more complex than the 
satisfiability problem for the corresponding language with []. 

THEOREM 5.2. l f  s is infinite, then 
1. The satisfiability problems for L[*] and L N[*] are EXPTIME complete. 
2. The satisfiability problem for L KR[*] is II ~ complete. 

Proof: The lower bounds follow from corollary 5.1. For the upper bounds, 
we will reduce the satisfiability problems for L[*], L N[*], and L h'R[*] to the 
satisfiability problems for the corresponding languages with [~. The claim 
then follows from theorems 4.5 and 4.1. To get rid of occurrences of [,], 
we define function g from []:I-less formulas to formulas without ~ or [.] as 
follows: 

g ( p )  = p = g ( r  v = g(r v 
g(<l)r : ( l )g(r  g ( [ . ] r  p[.]r g((A) ,~ (B>) : (d)  ~ <B) 
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We have to ensure that p[.]r mimics the behaviour of [.]r In particular, if 
-~p[.]r holds at some node, this node should have a (multi-step) successor 
where g(-~r holds. We introduce new modalities (--1r for all formulas 
[ . ] r  Cl(r and we will force that for every node w satisfying -~p[.]r 
there exists a node w ~ such that wR-~r t and 9(-1r holds at w ~. Let/2~ 
consist of the modalities occurring in r and the new modalities (-~b) for 
[.]~b E CI(r Since s is infinite, we may assume that/Y C/2. Our reduction 
f is defined as follows: 

f(r = g(r A rq(p[,]r ---+ g(r A A [/]P[*]r A O(~p[,]r ---+ (~r162 
IEs J 

Obviously, f is polynomial time computable. Furthermore, if r doesn't 
contain nominals and/or path equations, then neither does f(r  It remains to 
prove that r is satisfiable iff f ( r  is satisfiable. 

First suppose r is satisfiable. By lemma 5.2, there exist a countable model 
M = (W, {-Rt)tec, V)A, and a node w0 E W such that M ~ r Define a 
model M as follows: M = (W, {Rt}/eL, ~'), such that: 

1. Rt = Rt for I occuni'ng in r -Rl = (b for I ~ s 
2. For [,]~ E C/(r R-,r is such that: 

a. w.R-~r ~ M ~ -~b, and w(Ulez: RI)*w'; and 
b. 3w'" wR.-,V,w' i f fM ~ -1[*]r 

3. V(p) = V(p) for p occurring in r w E ~-(p[,]r iff M ~ [,]~b[w]. 

Obviously, if M ~ r then M is well defined, and M ~ f(r 
For the converse, suppose f ( r  is satisfiable, let M = (W, {Rt)lec, V), 

and w0 E W be such that M ~ f(r We may assume that Rl = ~ for 
l ~/2. It is easy to prove that for all formulas ~ E Cl(r and for all w E W, 
M ~ r i f fM ~ g(r and thus r is indeed satisfiable. [] 

It remains to prove EXPTIME upper bounds for L[*] and L N[*] for finite 
s 

THEOREM 5.3. If s is finite, and IEI >_ 2, then the satisfiability problem for 
L[*] is EXPTIME complete. 

The lower bound follows from corollary 5.1. For the corresponding upper 
bound, we will give a reduction from this satisfiability problem to the satisfi- 
ability problem for a suitable subset of Deterministic Propositional Dynamic 
Logic (DPDL). This proves the theorem, since the satisfiability problem for 
DPDL is in EXPTIME (see Ben-Ari et al. (1982)). Our DPDL subset is 



A MODAL PERSPECTIVE 163 

the multi-modal propositional language with modalities (1) for all 1 E s  
and ((Ulec l)*), which we will abbreviate as (,) .  We interpret wffs of this 
language on Kripke models M = (W, {Rt}lec, V), where Rt is a partial 
functional binary relation on W, in the usual way, the key clause being: 

M k (,>r iff qw'(w(U Rl)*w' & M ~ r 
IE,C 

Let r be an L[*] formula. It is obvious that r is a satisfiable L[*] formula iff 
r is a satisfiable DPDL formula. [] 

THEOREM 5.4. If#. is finite, and IZ;] > 2, then the satisfiability problem for 
L N[*] is EXPTIME complete. 

The lower bound follows from corollary 5.1. For the corresponding upper 
bound, we will give a reduction from the satisfiability problem for L N[*] to 
the corresponding satisfiability problem for L[*]. The theorem then follows 
from theorem 5.3. Suppose r is an L N[*] formula, and m l , . . . ,  rak are all 
the nominals occurring in r We can view nominals as ordinary propositional 
variables, with the extra requirement that each nominal is satisfied exactly 
once. We can't quite force that, but it turns out that forcing the following 
requirements for every nominal m that occurs in r are enough to obtain the 
required reduction. 

1. All nodes where ra holds are equivalent with respect to Cl(r 
2. If m is true, and --,[.]~b, ~b hold at w for some [.]~b E C/(r  then there 

exists a node w ~ reachable from w by a non-m path such that ~ r  holds 
at w t 

To force the second requirement, we introduce new propositional variables 
ra(.)_, O for each [.]~3 E Ul(r and each occurring nominal m. r a ( . ) ~  will 
be true if --,r has to be fulfilled by a node reachable by a non-m path. Now 
define the reduction f :  

f ( r  = r A Av, ecl(c)([*](m ~ #') V [*](m .-.-+ -1r 

A V, Vz c 
-. 

It is obvious that if r is satisfiable in a model where every nominal ra occurs 
exactly once, then f(~b) is satisfiable. 

Conversely, suppose f ( r  is a satisfiable L[*] formula. Let M = 
(W, {Rl}l~c, V) be a model such that M ~ f(r  Define relation ,.o 
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such that: w ~ w' r (w = w') or M ~ m[w] and M ~ m[w'] for some 
nominal m occurring in r It is easy to see that ,-~ is an equivalence relation, 
and filtrating over ,,~ (compare theorem 4.3) yields a model for r [] 

As in the case of languages with o ,  we can reduce the number of proposi- 
tional variables. Define gk([*]r = [*](cr0,k ~ g ( r  in the construction of 
theorem 4.6, and define f ( r  P/~)) to be 

2kq-2 

O'o,k A gk(r A [*](~ro,~ ---+ ([a]2k+3a0,k A A[/]Cro,k A A (a)i('cr~ A A[I]-L))) 
l~a i=1 lea 

to get the analogue of theorem 4.6 for languages with [,]. The extra conjunct 
in f force more similarity between the original model and the encoded model: 
[,] can force more structure than Q. In a similar way, we can get the analogue 
of theorem 4.7. Details are left to the reader. 

We can summarise the complexity results of this section as follows: 

COROLLARY 5.2. If 2, and IA[ 0 the satisfiability problems for 
L [*l and L N[*] are EXPTIME complete, and the satisfiability problem for 
L K/~[*] is II ~ complete for s infinite, and ~ complete for s [] 

Clearly the results of this section are very bad; does this mean such infinitary 
extensions should be abandoned? We believe not: an interesting case for 
their linguistic interest is made by Keller (1991), who works with a language 
even stronger than L KR[*], namely PDL augmented with the Kasper Rounds 
path equality. Among other things Keller shows how this language can give 
a neat account of the LFG idea of functional uncertainty. Thus the idea 
seems linguistically interesting: the pressing task becomes the search for well 
behaved fragments. 

Finally it should be remarked that Gazdar et al. (1988) emphasize a dif- 
ferent application for L[*]. Instead of viewing it as a grammar specification 
formalism, they use it to define syntactic categories; indeed the greater part 
of their paper is devoted to showing how a wide variety of treatments of 
syntactic category can be modelled and compared using L[*]. An interesting 
corollary of this is that they are not particularly interested in the satisfaction 
problem: the problem of most concern to them is how expensive it is to check 
a category structure against some fixed category description r Clearly this 
is a very much simpler problem; in fact they show that it is solvable in linear 
time if r is a wff of L[*]. Their result extends to wffs of L N[*] and L KR[*]. 
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6. CONCLUDING REMARKS 

In this paper we have investigated the satisfiability problem for a variety of 
modal languages of AVSs. The following table summarises the results for 
the case of most interest in computational linguistics: both s and .,4 finite 
(IZ;i _> 2, I./tl > 0). 

L L N LKR 
NP complete NP complete NP complete 

[] EXPTIME complete EXPTIME complete II ~ complete 

[.] EXVHME complete EXPTIME complete E] complete 

As a final remark, let's see what happens if [s - 1. Intuitively, this should 
make things easier, and indeed it does. Consider for instance the languages 
with only [.] and (a) as modalities. It is easy to see that a formula in these 
languages is satisfiable iff it is satisfiable on a (possibly infinite) model of 
the form w o R a w l R ~ w 2 R ~ ' "  or on a model of the form woR~w~R~ . . .  
R~ wk R~ Wk+ 1Ra �9 �9 �9 R~ wm R~ wk. In this situation path equations or nominals 
don't make the situation more complex that for L[*]. 

In fact L[*] is very like propositional linear temporal logic with operators 
X (next time) and G (always in the future). Formulas of this language are 
interpreted on N, the natural numbers in their usual order, as follows: X r  
holds at i if r holds at i + 1, and Gr  holds at i iff for all i' _> i, r holds 
at i'. Using the fact that satisfiability for this language is PSPACE complete 
(see Sistla et al (1985)), it is easy to prove that the satisfiability problems for 
the languages with only (a) and [*] as modalities are PSPACE complete as 
well. Using similar methods, we get the same results for the corresponding 
languages with []. We leave the details to the reader. Combining these remarks 
with theorem 4.6, and theorem 3.4, we can summarise the results for [s = 1 
as follows: 

THEOREM 6.1. I f  [s I = 1, and l 4l ~ a, the satisfiability problems for  L, 
L N, and L KR are NP complete, and the satisfiabilityproblemsfor L ~ L Nn, 
L KRcJ, L[*], L N[*], and L KR[*] are PSPACE complete. [] 

There remains much to do. In this paper we have confined ourselves to lan- 
guages with full Boolean expressivity, hence the results of this paper are 
essentially limitative. An important problem to turn to next is the exploration 
of weaker fragments. Obvious choices would be fragments with only con- 
junction and disjunction, or fragments with only conjunction and the negation 
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of atoms. Results for some such fragments exist in the literature, but a more 
detailed examination seems both possible and desirable. Further, it would be 
interesting to look for tractable fragments involving [] or [.]. A good way of 
approaching this topic would be to add strict implication =~ as a primitive 
symbol to various fragments of L, L N or L KR (as we saw earlier, it the 
implicit combination of [] and --+ provided by ~ that is the most important 
use of the universal modality) and then to look for restricted forms of strict 
implication that are useful but tractable. 

It is the belief of the authors, however, that modal logic has more to offer 
computational linguistics than an analysis of unification formalisms. We've 
already seen a hint of this in Evan's use of D to look at feature specification de- 
faults, and in the the use of L[*] to specify grammatical categories. Moreover 
modalities figure in recent work in categorial grammar; see Roorda (1991) for 
example. However there seem to be further possibilities. A particularly inter- 
esting one concerns the organisation of computational lexicons. An important 
task in this application is the developed of formalisms for representing and 
manipulating lexicai entries. DATR (see Evans and Gazdar (1989)) is such 
a formalism, and an examination of its syntax and semantics suggests that it 
is open to modal analysis. What sort of benefits might result from such an 
analysis? Complexity results and inference systems are obvious answers, but 
there is another possibility that might be more important: modal logic might 
provide 'logical maps' of possible extensions. 

This point seems to be of wider relevance. In recent years modal logicians 
have explored a wide variety of enriched systems, some of which clearly 
bear on issues of knowledge representation. As has already been mentioned, 
Schild (1990) has made use of correspondences between core terminological 
logic and modal logic to obtain a number of complexity results for terminolog- 
ical reasoning. However more correspondences are involved. For example, 
terminological reasoning may also involve the 'counting quantifiers'; that is, 
we may want to perform numerical comparisons. The modal logic of such 
counting quantifiers (and a great deal more besides) has been investigated 
by van der Hock and de Rijke (1991). Their work covers such topics as 
completeness, normal forms and computational complexity and is of obvious 
relevance to the knowledge representation community. 

Finally, there may be deeper mathematical reasons for taking the modal 
connection seriously. Modal logic comes equipped not only with a Kripke 
semantics, but with an algebraic semantics, and duality theory, the study of 
the connections between the algebraic semantics and the Kripke semantics, is 
a highly developed branch of model logic; see Goldblatt (1989) for a detailed 
recent account. While some use of the algebraic semantics has been made in 
connection with Attribute Value structures (Reape (1991) for example, uses 
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it to make connections with Smolka's work, and Schild (1990) utilises an 
algebraic approach to simplify his presentation) in general it seems that a tool 
of potential value has been neglected. It certainly seems sensible to explore 
the links with algebraic approaches to knowledge representation formalisms, 
such as that of Brink and Schmidt (1992). 
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