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A simple asymmetric exclusion model with open boundaries is solved exactly in 
one dimension. The exact solution is obtained by deriving a recursion relation 
for the steady state: if the steady state is known for all system sizes less than N, 
then our equation (8) gives the steady state for size N. Using this recursion, 
we obtain closed expressions (48) for the average occupations of all sites. The 
results are compared to the predictions of a mean field theory. In particular, for 
infinitely large systems, the effect of the boundary decays as the distance to the 
power - 1/2 instead of the inverse of the distance, as predicted by the mean field 
theory. 

KEY WORDS: Asymmetric exclusion process; steady state; phase diagram. 

1. I N T R O D U C T I O N  

Systems of particles with stochastic dynamics  and  exclusion interact ions 
have been studied for a tong time in statistical mechanics. (1) Despite their 

simplicity, relatively few exactly soluble cases are known,  (2-7) especially 

when the invar ian t  measure does not  factorize. 
An impor t an t  class of problems deals with asymmetric  exclusion pro- 

cesses with periodic b o u n d a r y  condit ions.  In  these cases the system reaches 
a s ta t ionary state of cons tant  density, and  one is interested in density 
f luctuations and  their correlations. (8 lO) Recent interest in these problems 

is at least part ly due to their close relat ionship to growth models, ~ whose 
con t i nuum version, the K P Z  equat ion,  ~1~ is related in tu rn  to the exactly 
soluble (in one dimension!)  Burgers equation.  A direct connect ion  between 
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driven lattice gas models and the noisy Bugers equation was also estab- 
lished/ 2~ On the other hand, exclusion processes in discrete space-time are 
related to vertex models. (6) 

The purpose of this paper is to present a case which can be solved 
exactly: the fully asymmetric exclusion process on a segment of finite length 
with open boundaries with particles injected at one end with probability c~ 
and removed at the other end with probability ft. Here, unlike the case of 
periodic boundary conditions, the density is not uniform. (1~) This type of 
problem is related to growth models with a defect or inhomogeneity. ~ 14) 
These models are interesting for a number of reasons. They provide 
examples of systems far from thermal equilibrium with long-range spatial 
and temporal correlations. In some cases they exhibit phase transitions in 
one dimension, a phenomenon which does not usually occur in systems at 
thermal equilibrium. 

The model studied here is defined as follows. Consider a one-dimen- 
sional system of N sites. Each site i, 1 ~< i ~< N, is either occupied by a 
particle (ri = 1) or is empty (zi = 0). This system evolves in time according 
to the following rule: At each time step t --* t + 1, one chooses at random 
an integer 0 ~< i ~< N with probability 1/(N + 1). If the integer i is between 
1 and N -  1, then the particle on site i (if there is one) jumps to site i + 1 
(if this site is empty), i.e., 

zi( t  + 1 ) = zi(t)  zi+ l(t) 
(1) 

Zi+m(t+ 1) =Zi+l( t )  + 1-1 - -z i+ l ( t ) ]  zi(t) 

If the integer chosen is i = O, then site 1 remains occupied at time t + 1 
if it was occupied at time t, and it gets occupied with probability ~ if it was 
empty at time t. Therefore 

z i ( t +  1 )=  1 with probability Z l ( t ) + c t [ 1 - z l ( t ) ]  
(2) 

= 0  with probability (1 - ~ ) [ 1 - z l ( t ) ]  

Similarly, if the integer chosen is i = N, then site N remains empty at 
time t + 1 if it was empty at time t, and it gets empty with probability fl 
if it was occupied. So 

Z N ( t + I ) = I  with probability (1 - f l )  rN(t) 
(3) 

= 0 with probability 1 - (1 - fl) ZN(t ) 

In the present paper, the exact steady state is obtained for arbitrary 
and fl (Section 2 and the Appendix). The result is expressed as a recursion 
relation which relates the steady state of a system of length N- -  1 to that 
of a system of length N. This relation allows one to calculate the exact 
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expression of the average occupation <'Ci> N of any site i of a chain of N 
sites. The expression of the <'Ci> N is derived in the present paper only for 
the case c~ = fl = 1 (Section 3), but there is in principle no obstacle (other 
than a long calculation) to extend the results to arbitrary , and ft. In 
Section 4, the results are discussed in several asymptotic limits (large N, 
large i). Finally, these exact results are compared with the predictions of a 
mean field theory in Section 5. 

2. C O N S T R U C T I O N  OF THE STEADY STATE 

From the stochastic dynamics defined in the introduction 
[Eqs. (1)-(3)], it is easy to write the equation satisfied by the steady state. 
If one denotes by PN('Cl,..., "ON) the steady-state probability of finding the 
system in configuration {Zl,..., ru}, then the probability PN satisfies 

PN(Zl, "t'2,... , ZN) 

= N+---~ PN('Cl'  "~2 ..... "~N) 

~X 
+ ~ - - ' ~  Z l [PN(  0, "~2,'", TN)JU PN(1, "r 2 ..... TN)] 

1 
+ ~ -  [PN('Cl,  l;2 ..... TN) + (I"2 -- "el ) Pu( 1, O, "C 3 ..... ZN) ] 

-~ . . .  

1 
+ ~ [PN(Zl, ~2 ..... "ON) Ar (T'N -- "CN--1 ) PN(Z' '  "r2 . . . . .  "CN-- 2, 1, 0)] 

1-- fl 
+ ~ - ~  Pu(~l ,  "C2,..., T,N) 

fl (1--ZN)[PN(Zl,. . . ,  O)+ PN(Z 1 ..... 1)]  (4) - ~  TN--1,  Z'N_ l ,  

be written as 

a(2zl - 1) PN(O, Z2,..., "~g) 

-~- ( T 2 - -  T1) P N ( 1 ,  O, "C 3 ..... T,N) 

-]- . . .  

+( 'CN--"CN--1)PN( 'Cl ,T2  ..... "~N 2, 1 , 0 )  

+ f l ( 1  - - 2 Z N )  P N ( T I ,  l"2,_" "C N 1, 1 ) = O  (5 )  

+ 

which can 
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The problem of finding the steady state amounts to solving the 2 N coupled 
equations (5). As explained in the Appendix, it is possible to write a 
recursion relation which gives P N + I ( ' 6 1 , ' C 2  ..... ' 6 N+1 )  if one knows the 
PN('61, "C2 ..... "ON). In what follows, it will be more convenient to write recur- 
sions for weights fu(T, 1, "6 2 ..... "(N) which are equal to the PN(T1, "62,'", "6N), 
up to a multiplicative constant. Clearly, since Eqs. (4) and (5) are linear, 
they are also satisfied by the fN and the probabilities PN will then be given 
by 

P N ( T 1  ..... TN) = i N (  T , ..... T N ) / Z  N (6) 

where 

ZN= 2 "'" 2 fN('6I,'",'6N) (7) 
z I ~ O, 1 rN = O, 1 

We prove in the Appendix that all the fN(Zl, T2 ..... rN) can be constructed 
by the following recursion rule: 

f x ( 'Ci ,  "C2 ..... "~ N) 

= O : ' r u f N _ , ( Z  1 , "c2,..., Z'N_ 1) 

+ ~fl(1 --Zm) TN_ 1 [fro_ l('q, r2,..., TN-2, 1) 

+fN- , ( r , ,  T2 ..... TN__2, 0 ) ]  

-~ . . .  

The problem 
for N =  1, one can show that 

-~ 0 ~ ( 1  --  T N ) ( I  --  T N _  1 ) ' ' "  (1 - -  T2) T 1 

X E f N _  1(1,152 ..... T N - - 1 ) - ~ f N - - I ( O ,  "(2,..', TN i ) 3  

+fl(1--ZN)(1--T N 1)...(1--%)flv_l(zl,%,...,%v_l) (8) 

is, of course, easy to solve directly for small N: for example, 

and for N = 2 the choice 

f2(O,O)=fi2; f2(1, O)=afl(se+fl);  f2(O, 1)=oefl; f2(1, 1)=se 2 (9b) 

solves the steady state equation (4) or (5). So (8) together with (9) enables 
one to obtain recursively the fN for all N. 

Because the recursion (8) is rather complicated, the calculation of 
expectations in the steady state is not immediate. In Section 3 we shall see 

fl(O) =f l  and f~ (1 )=~  (9a) 
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how the average occupations <"Ci> N c a n  be obtained from (8) in the case 
= fl = 1. It is, however, interesting to note that since the recursion (8) is 

valid for any choice of e and fl, there is no difficulty, other than doing a 
long calculation, to extend the results of Section 3 to the more general case 
of arbitrary a and ft. 

Before discussing how the calculation of average occupations can be 
done from (8), it is worth noting that in the case 

~ + f l = l  (10) 

there is a simple closed expression of the f u  

f N ( T 1 ,  Z'2 . . . . .  " ~ N ) = O ~ T ( 1 - - ~ )  N - T  , T=~Zg 
i 

(11) 

which solves (4) and (5). 
This means that when (10) holds, the steady state factorizes and leads 

to very simple expressions of all the correlation functions, 

(*i)  = a  and (%rj . . . zk)  = < ~ i > < T j >  " ' "  < T k >  (12) 

3. THE AVERAGE O C C U P A T I O N S  <Ti> N 

In this section we will obtain closed expressions for the average 
occupation <~i)N of site i for a system of length N. From the recursion (8) 
on fu ,  it is clear that the only quantities needed to obtain the (~i)N are 
the following sums: 

Z N = 2 " "  " 2 f N ( ~ l ,  ''., rN) (t3) 
~1 ~N 

and 

TN,, = ~'.''" ~ rJU(rl ..... rN) (14) 
~1 "~N 

Once these sums are known, the expression for (Zi)u is simply given by 

(%) = TN, i/ZN (15) 

The difficulty in computing the Z N and the Tu, i from the recursion (8) is 
that one cannot get closed recursions for these quantities. It is necessary to 
compute at the same time other quantities: the YN(K) and the XN(K, p) 
defined by 

YN(K) = ~ - . . ~  (1 --ZN)(I --ZN--I)' '" (1 -- ZK)fN('C 1 ..... "ON) (16) 
"c I -t" N 
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XN(K, p) = ~ . . - ~  (1 - VN)" "" (1 -- *K) ~pfN(% ..... ~N) (17) 
TI VN 

By extension of the definition of the YN(K) and of the XN(K, p) we shall 
define for convenience 

Y N ( N +  1 ) = Z  N (18) 

and 

XN(N+ l, p)= TN, p (19) 

Having defined the YN(K) for 1 <~K<~N+ 1 and the XN(K, p) f o r p +  1 ~< 
K~< N +  1, one can obtain from (8) closed recursions for these quantities. 
For  the YN one gets 

YN(1)-'~-flYN 1(1) 

YN(K)= YN(K-- 1)+aflYu_l(K) for 2<<.K<<.N (20) 

YN(N + 1 ) = YN(N) + a YN- 1(N) 

This recursion, together with the initial conditions 

Yl(1)=f l  and Y l ( 2 ) = a + f l  (21) 

determines all the YN(K). 
Clearly, the length of the calculation to determine all the YN(K) 

increases like N 2 (instead of exponentially with N, as we would have 
needed had we had to calculate all the fN)" 

Once the YN are determined, one can determine recursively all the XN 
from (8): 

Xu(p + l, p )=af lYu_  l(p + l ) for 14  p <~ N--1  

X N ( K , p ) = X N ( K - - I , p ) + a f l X N _ I ( K , p )  for p + Z ~ K < ~ N  
(22) 

X N ( N + I , p ) = X N ( N , p ) + a X N _ I ( N , p  ) for l<~p<~N--1 

XN(N+ 1, N) = aYN-I(N)  

This recursion, together with the initial condition 

X1(2, 1 ) = a  (23) 

and the knowledge of the YN(K) obtained from (20) and (21), determine 
all the XN(K, p). 
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At this stage we see that one can obtain the exact values of all the 
YN(K) and the XN(K, p) for arbitrary N, for any choice of e and fl, by 
iterating the recursions (20) and (22) on a computer. 

In order to obtain closed analytic expressions, we will limit our 
calculations to the case 

= fl = 1 (24) 

The reason for this choice is to avoid manipulation of too complicated 
expressions in the calculations below. However, since the recursions (20) 
and (22) are valid for any c~ and fl, there is nothing to prevent extension 
of the results to arbitrary e and ft. 

A possible way to proceed with the recursions (20) and (22) is to 
introduce generating functions. If one defines for p ~> - 1 

Lp(2)= ~ 2NyN(N -p)  (25) 
N = p + l  

with the convention that I1o(1)= 1, the recursion (20) on YN(K) becomes 

Lp(2)-2P+~Yp+~(1)=Lp+I(2)+2[Lp_,,(2)-2PYp(1)] for p>~0 

(26) 

and 

L _  !(;.) = ,~L_ 1(,Z) + 1 + Lo(;v) (27) 

Because the Yp(1) are easy to calculate [Yp(1)= l  for all p],  one 
immediately concludes from (26) that the general solution of (26) is 

The problem now is to determine the constants A1(2) and A:(2). 
From the definition (25), it is clear that for any p the first term in the sum 
Lp(2) is proportional to ~.P+~. This is compatible with the result (28) 
only if 

A2(2 ) = 0 (29) 

The expression of A1(2) is then easy to find from the boundary condition 
(27) and one ends up with 

Lp(2)=(1--(1--4)~)1/2)P+3 1 
" ~-7 (30) 
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From the definitions (18) and (25), it is clear that this allows one to obtain 
all the ZN since 

ZN2N=L 1(2) = (1--  (1~42)m~ 2 1--22--(1--42)1/2 (31) 
N=0 - -  22 ] = 222 

This leads to the following expression for the ZN: 

(2N+ 2)! 
ZN-- (N+ 1)! (U+2)!  

One can also treat the recursions on the XN(K, p) 
functions. If one defines 

Mq, r(,~) = ~ 2NXN(N -q, N--r) 
N = r + l  

then it follows from the recursions (22) that 

M r_ 1,r(2) = 2Lr 2(2) - -  2 r fo r  

Mq, r(2)=Mq+l,r(2)+2Mq_l,r_l for 

M_l,r(2)=Mo, r(2)+2M_I,,_l(2) for 

M_1,o(2) = 2L 1(2) 

using 

r ~ l  

O~q~r-2  

r~l  

(32) 

generating 

(33) 

(34) 

To proceed, one can introduce new generating functions Hq([.l, 2) defined 
by 

H q ( ~ ,  2)  = ~ lffmq, r(2) (35)  
r--q+ l 

Then the recursions (34) become 

nq+l-Hq+2~tnq- l=2[lq+l(2Lq-2-Zq t) for q>~l (36) 

H 1 - -  Ho + 2pH_I = 2#(2 - 1) L_I + 2# (37) 

H_I=Ho+2pH 1 +2L_1 (38) 

The general solution of (36) with the boundary conditions (37) and (38) is 

Hq(p, 2 ) - -  
1 ( 1 - ( 1 - 4 2 ) 1 / 2 )  q+2 

2(1- /~) 2 . ~/q+ 1 

.q_ B1(11, 2 ) (1- - (1242P )l/2)q+ l 

.q_g2(11,2)(1-[-(1242kl)l/2)q+l (39) 
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As before, one can argue that 

B2(#, 2) = 0 (40) 

because this is the only way that the leading order in Hq is of the order 
kt q+l. Then from the boundary conditions (37) and (38), one determines 
the constant BI(#, 2) and one ends up with the following final expression: 

1 ( 1 - ( 1  42)1/2) q+2 /_/q(#,2)=2( 
1 ( . 1 - ( 1  ~42 . )1 /2 . )  q+3 

+ 
(1 --] , / )  22~ 2 ~:, 

[ I - ( 1 - 4 2 )  1/2 ] 
x # 2 1 (41) 

To obtain the average occupations, it turns out that only H_I(Ft, 2) is 
needed [see (19), (33) and (35)] and one finally gets from (41) 

1 1 - (1 - 42#) 1/2 [ 1 - (1 - 42) 1/2 1 - (1 - 4)q~)1/2] 
H ~(/~, 2 )=  1 -----~ 22# 22 ~-~- ._] (42) 

This expression is the generating function of all the TN, i [-see (14), (19), 
(33), and (35)] since 

H_1(/~,2)= ~ #" ~, ANTN, N_, (43) 
r=0  N = r + l  

Using expression (42) and the identity 

1 - (1 - 4x)  1/2 _ ~ (2n)! . 
2x .=o n! ~ ' 1 ) !  x (44) 

one can rewrite H_ 1 as 

1 ~ (2q)! ~ (2n)! 
H-l(#'2)-l-pq~oqr(q+l)[(2#)q-- = �9 , = l n l ( n + l )  ! [2~ ' - (2p)" ]  

= ~ ~ (2q)' (2n)? 2q+n#q n-1 

q=0 .=lq!(q+l)!n!(n+l) ! ~, #m rn=O 

(2q)! (2n)! 2q+.#q+m = E E E 
q=O m=O n = m + l  

(45) 

822/69/3-4-15" 
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By making the change of variables q + m = r and N = n + q, one ends up 
with 

H_l(fl,~) : ~, ~ ~N~rq~= (2q)! ( 2 N - 2 q ) !  (46) 
r=0 N=I oq!(q+l)!(N-q)!(N-q+l) ! 

By comparing with (43), we see that this gives closed expressions for the 
TN, i and therefore from (15) and (32), one obtains 

r (2q)[ (2N-- 2q)! ( N +  2)! ( N +  1)! 

(Zu-r>~V=q~=oq!(q+l)!(N-q+l)!(N-q)! (2N+ 2)! 
(47) 

It is easy to prove by recursion over r that (47) can be simplified and 
rewritten as 

1 l (2K)!  (N!) 2 ( 2 N - 2 K + 2 ) !  ( N - 2 K + I )  
( T K ) U = 2 + 4  (X!) 2 (2N+  1)! [ ( N - K +  1)!] 2 (48) 

This expression is the main result derived in the present paper. The initial 
method used to obtain it had nothing to do with the above derivation. It 
was first obtained by solving exactly the problem on a computer for small 
sizes (N~< 10). By looking at the numerical results, it appeared that some 
<zi>u were simple rational numbers and (48) was first obtained by trying 
to find an expression which would agree with these numerical results. It is 
only after this formula had been guessed as a conjecture that the above 
method was developed to demonstrate its validity. 

It is worth noting that in the whole problem (when ~ = fl = 1), there 
is a particle-hole symmetry which implies that 

<TK>N = 1 -  <TN+I_K> N (49) 

This relation, which could have been guessed from the very beginning, is 
of course satisfied by (48). 

4. S O M E  L IM IT ING CASES 

From the exact expression (48), it is easy to obtain the expression for 
<zK>u in some asymptotic limits corresponding to large systems. (15'16) 

First let us consider the limit N ~ ~ with fixed K. One gets 

(zx>~ = ~ +  (2K)! 1 (50) 
(K!) 2 22x+l 
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Then if K becomes large, keeping N ~ oe first, one obtains 

1 1 
('OK) m 2 - - 2 ~ K  -1/2 (51) 

This K-*/2 convergence is consistent with a conjecture that was verified by 
simulations (n) and with what was found recently in a model of growth with 
an inhomogeneity. (14) 

Another limit of interest is when N and K are large, with [ N -  KI >> 1 
and K>> 1. Then, using Stirling's formula, one gets 

1 1 1 1 + N - 2 K  
(rX)N 2-- c- ~__x/rcx/A/E4K(N-K)]I/2 (52) 

which becomes, in the scaling limit K =  Nx, 

1 1 1 1 - 2x 
(~X)N 2-x/-~xf~2Ex(l_x)]m (53) 

5. C O M P A R I S O N  TO T H E  M E A N  FIELD P R E D I C T I O N S  

In this section we see how a mean field theory can be developed for 
the model defined in the introduction. To do so, it is useful to first obtain 
some exact relations which relate correlation functions in the steady state. 

The easiest relation one can obtain is by requiring that in the steady 
state the average occupation (z i ( t ) )  remains unchanged. (17) Consider a 
site i (2 ~< i~< N - 2 )  at time t with an occupation number ri(t). Then the 
occupation z~(t+ 1) at time t +  1 is given by 

2 
Ti(t + 1) = z~(t) with probability 1 - - -  

N + I  
1 

= zi(t) + [1 - zi(t)]  zi_ 1(0 with probability (54) 
N + I  

1 
= Ti(t) re+ l(t) with probability 

N + I  

These three possibilities correspond respectively to the cases where the site 
updated is different from i -  1 and i, equal to i -  1, or equal to i. 

Averaging (54), one gets 

1 
( 'C i ( t  q- 1 ) )  = ( ' C i ( t ) )  -k--7-7-~. ~ E ( T i ( t )  " C i + l ( t ) )  - ( z i ( t )  Z i _ l ( t ) )  

I V + I  

+ (zi l ( t ) ) - -  (Zi(t)) ] (55) 

822/69/3 -4-15 * 
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In the steady state the expectations are time independent and one obtains 

( 3 i ) -  (3i+i 'Ci)= ( 3 i - - 1 ) -  (T'i3i 1) (56) 

This could have been guessed, since it expresses the conservation of the flux 
of particles. 

By similar reasoning one can treat the special cases of sites i = 1 and 
i = N, and one gets 

(31 ) - -  (3132 ) = c~(1 - (31)) 

~( ' rN)  = ( ' g N - - 1 ) -  (3N3N--1)  
(57) 

The steady-state equations (56) and (57) are exact. They are, however, not 
very useful to calculate the ( z i )  because the (z~) are related to higher 
correlations ( (3~zi+l ) )  which themselves are related to other correlations. 

An approximation scheme very often used in statistical mechanics is 
the mean field theory, in which the effect of correlations is neglected, i.e., 
correlations like (z iz j )  are replaced by ( 3 ~ ) ( 3 j ) .  If we denote by t i  the 
value of ( z i )  in the mean field theory, one gets from (56) and (57) the 
following equations for the ti: 

t i -  t i t i +  1 = ti 1 - t i  1 t~ (58a) 

t~ - t i t 2  =~(1 - tl) (58b) 

fltN = tN-- 1 -- tNtN 1 (58C) 

The solution of these N equations (with N unknowns) determines for any 
finite N the average occupations t i. 

These equations are nonlinear and therefore are at first sight difficult 
to solve. There is, however, a simple way of looking at Eqs. (58). We can 
rewrite (58a) as a recursion 

C 
t i+ 1 : 1 - -- (59) 

ti 

C is a constant (to be determined later). In fact C is the current of particles 
in the chain. This recursion is shown in Figs. l ~ l c .  For  C < 1/4 there are 
two fixed points 

t_+ = �89 + (1 - 4 c )  '/2] (60) 

t+ is stable and t is unstable. 
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0 0.5 1 
t i  

t i + l  
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t i+1 
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0 0.5 1 
ti 

Fig. l. 

1 

c 

t i + l  

0.5 

0 

o 05  t~ 1 

Graphical representation of the mean-field recursion relation (59) for (a )C< 1/4, 
(b) C= 1/4, and (c) C> 1/4. 

When  C = 1/4 there is only one marginal  fixed point,  and there are no 
real-valued fixed points  when C >  1/4. The  recursion (59) can be solved 
(using the fact that  ti+~ is a homograph ic  function of ti), 

- t +  t _ ( C  - ~ -  ti -1)  + (r+ - tL)  t, 
ti= (61) 

- t + t  ( t ~ + - ~ - t ~ : ~ ) + ( t ~ + - ' - t  ~ 1)t  1 

Clearly ti depends on C and on tl ; for i = N this relation can be cast as 

tu=f(C, tl) (62) 

This solut ion holds for any ~t, fl; these paramete rs  enter  through the 
bounda ry  condit ions (58b), (58c), which, together  with (62), determine,  
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Fig. 2. Schematic mean-field density profiles in (a)the low-density phase, (b)the high- 
density phase, (c) on the coexistence line, and (d) in the maximal current phase. 
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t i  

0.5 
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Fig. 2. (Continued) 

N 

tl, tN, and C. We now proceed to show graphically the different kinds of 
solutions that can be obtained. These correspond to different phases of the 
system. 

L o w - D o n s i t y  Phase .  t a = t  +0-+; t N < t  +. In this phase ta is set 
infinitesimally close to the unstable fixed point t . For many iterations ti 
stays there, and deviates from t_ only when i-~ N, either up or down, 
depending on tl. The resulting density profile is shown on Fig. 2a. 

The conditions t ~ = t  and t N < t +  are consistent with Eqs. (58b), 
(58c), and (62) provided 

c~ ~ 1/2, fl > e (63) 

In this regime we have the solution 

c~(1 -~ )  
tl = c~, tN = /~ (64) 

C=~(1 -~ )  

H i g h - D o n s i t y  Phase .  t N = t+ + 0 -+, t, > t_ .  In this phase t~ is set in 
the domain of attraction of the stable fixed point. Hence ti relaxes toward 
t+,  which is (almost) reached by the time we get to iN. The corresponding 
density profile is shown on Fig. 2b. This phase occurs when 

/ ~  1/2, /~<~ (65) 

and the solution is characterized by 

fl(1 - /~)  
t N = 1 -/~,  t I = 1 

~x 

c =/~(1 -/~) 
(66) 
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C o e x i s t e n c e  Line.  t l = t  + 0  +, t N = t + + O  . The high- and low- 
density phases described above coexist when the recursion starts at tl 
infinitesimally above t_ and iterates to the stable fixed point t+. The 
solution, shown in Fig. 2c, contains a front or "domain wall." Such a 
solution occurs when 

~ = / 3 < 1 / 2  (67) 

As usual in coexistence regions, the position of this wall depends on the 
manner in which the limits ~ ~/3  and N ~ ~ are taken. On the coexistence 
line we have 

t l = ~  , t N = l - - ~  

C=~(1  --c~) (68) 

M a x i m a l  Curren t  Phase .  t I ~> 1/2, tu ~< 1/2. In this phase the system 
attains the maximal current it can support, 

C =  1/4 (69) 

throughout the phase. The recursion is described by Fig. lb; actually for 
any finite N one has the situation of Fig. lc, with that of Fig. lb approached 
in the N---, ~ limit. The exact nature of this limit will be discussed below. 
The resulting density profile is shown in Fig. 2d. 

Except near i =  1 and i = N ,  the density is near 1/2. This kind of 
solution exists when 

and is characterized by 

~> 1/2 and /3 ~> 1/2 (70) 

1 1 
tl = 1 - ~r t N = P4-- x (71) 

The transition to this phase, along the/3 = 1 line, was recently studied by 
Krug.(~) 

P h a s e  Diagram.  Collecting the results of Eqs. (63), (65), (67), and 
(70), we obtain the phase diagram shown in Fig. 3. The low- and high- 
density phases are separated by a first-order transition line. Each of these 
phases undergoes continuous transitions to the phase at maximal current. 

The Density Profile in the N - *  on Limit. We re tu rn  n o w  to the 
maximal current phase, and obtain expressions for the density profile in the 
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Fig. 3. 

l maximal 
l o w  a o ~  current 

90.5 ~ 

high density 

o 

o 0.5 1 
o~ 

Mean-field phase diagram. The high- and low-density phases coexist on the 
heavy line. 

N ~  ~ limit. These (mean field) expressions can be compared with their 
exact analogs given in Section 4. For simplicity we restrict the discussion to 
the case 

= / ~  = 1 (72)  

In this case the boundary conditions imply 

tt=l-C, iN=C, C=�88 + (73) 

The density profile, as given by (61) in this case, takes the form 

1 1 i + t ~  
t i=~+-~( t+- t  ) tf+~t---~+ 1 (74) 

Note that for C >  1/4 the fixed points t_+ are complex. One can now 
compare the result (74) with those of Section 4. 

First, if i is fixed and N ~  ~ ,  one finds that C ~ 1/4 and that t~ is 
given by 

i + 2  
t i -  2(i+ 1) (75) 

This implies that the mean field prediction (11) is 

1 1 1 
tK- -~=  (ZK)~ 2 - - 2 K  (76) 

instead of the K -1/2 decay found in the exact solution (51). 
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Another prediction ~11) of the mean field theory which follows from 
(74) is that as N ~  ~ ,  

1 7z z 
C 4 4N 2 (77) 

and 
1 ~ cos (~x )  

(ZK) 2-- 2N sin(r~x) (78) 

for K=Nx, to be compared with (53). We see that the mean field 
prediction is a 1/N correction instead of the 1/x/N correction obtained in 
the exact solution (53). 

6. CONCLUSION 

The main results of the present paper are the recursion relation (8), 
which gives the steady state for systems of arbitrary size N, and the exact 
expression (48) of the average occupations in the steady state. 

Since the recursion relation (8) is valid for arbitrary e and/?, it is cer- 
tainly possible to generalize some of the results of this paper to this more 
general case. From the knowledge of the steady state one should be able to 
calculate also the correlation functions, in addition to the average densities. 

The phase diagram shown in Fig. 3 was obtained by a mean field 
calculation. Since the steady state is known exactly for arbitrary �9 and/?, 
it is certainly possible to obtain from (8) the true phase diagram to check 
that it remains identical to the mean field phase diagram as conjectured by 
Krug.~21) 

By exploiting the results in terms of the corresponding interface 
growth model} 12 14) one should be able to ob ta in  explicit expressions 
describing the fluctuating properties of a growing interface. 

Looking at the above results, one can wonder whether exact results 
could be obtained for the partially asymmetric case (where particles have 
a nonzero probability of jumping to their left), or to other geometries. A 
case of interest would be the ring geometry with one special bond having 
a different hopping rateJ 18) At the moment, a direct generalization of our 
results to these other cases seems difficult. One can try, however, to follow 
an approach similar to ours, by solving exactly the steady-state equations 
on a computer for small N~< 10 (easy part), guessing the general result 
from these finite-N results (difficult part), and then, it is hoped, finding a 
proof (tedious part). 

Another possibility would be to try Bethe ansatz techniques, ~8'19) 
which were used recently to calculate the gap for the ring geometry. 
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APPENDIX  

The goal of this Appendix is to prove that recursion (8) together with 
the initial condition (9) gives the steady state for all N. To prove the recur- 
sion (8), we assume that it gives the solution of the steady-state equations 
for all systems of size up to N -  1 and show that f u  built from (8) is also 
a solution of (5). To do so we need to distinguish three cases: 

C a s e  1. Z-N = 1. In this case, according to (8),fN is given by 

f N('Cl, Z-2,'", Z- N) = ~Xf N-- I(Z-1, Z-2,'", Z-N--l) (A1)  

By using the expression (A1) in (5) and the fact t h a t f u _ l  is a solution of 
(5), one finds that the condition forfN to solve (5) is 

(1 - -Z-N- -1 ) fN(Z-1 , ' " ,T 'N  2, 1 ,0 )  

-- flfN(z-1, Z-2,'", Z-N-- 1, 1 ) 

=cr 1 ) f N  I(Z-I,T2 ..... Z-N 2, 1) (A2) 

which is always satisfied, as f u  is given by recursion (8). 

C a s e  2. TN-~-TN_ 1 . . . .  Z-K+I~---0 and z-x=l  f o r  I < ~ K < . N - 1 .  
Using Eq. (8), one finds 

fN(z- l ,  % ..... z-l~ 1, 1 , 0  ..... O) 

= O~flEfN_ I(Z-1, Z-2 ..... Z'K-- 1, 1, 0,..., 0) 

+fu--1(271,  "C2,'", Z-K--l, 0, 0,..., 0 ) ]  (A3) 

For fN to satisfy (5), one needs to prove that 

( 1 - - T K - - 1 ) f N ( ~ I , Z - 2  ..... Z-K 2, 1 ,0 , . . . ,0 )  

-- fN(Z-1, "C2 ..... Z-K 2, T'K 1, 1, 0 ..... O) 

+ flfN(z-1, Z-2 . . . . .  Z-K-- 1, 1, 0,..., O, 1 ) 

=O~fl[(1--ZK_I) fN_A(Z-X,Z-2 ..... Z-K 2, 1,0 ..... 0) 

- - f N - -  I(Z-1 ..... TK 2' "L'K--I' 1, 0,..., 0) 

+ f l f u  I (TI , - ' : ,  '17K--2, Z-K--1, 1,0 ..... 0, 1) 

--  Z- K-- l f N - -  l('r21 ..... Z-K--2, 1, 0,..., O) 

+ ~fN-1(Z-1, Z-2 ..... ZK_ 2, Z-K--1, 0,..., 0, 1 )] (A4) 
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By replacing f u  by its expression (8) and (A4), one gets that (A4) is 
satisfied if 

( 1 - - l :  K 1)fN_I(TI , . . . , '~K 2 , 0 , 0 , . . . , 0 )  

- - fN- -  1('Cl, "C2 ..... Z'K-- 1, 0,..., 0 )  

=- --fN_I('Cl,. . . , '~K 2, TJK_I, 1 , 0 , . . . , 0 )  

--'r'K--lfN--l(7:l ..... 7:K 2, 1,0,...,0) 

q-flfN--l('Cl ..... "OK 2, v,v-l, 1,0 ..... 0, 1) 

+ f l f u - l ( Z l ,  %,...,  ZK ,, 0 ..... O, 1) (A5) 

Using once more the recursion (8) to replace fN 1 by its expression in 
terms Offu-2 ,  one completes the proof of (A5). 

C a s e  3.  "(N = 'lTN 1 . . . . .  "['1 = 0. In this case, 

fN(O, 0 ..... O) = flfN-- 1(0,-.-, 0) (A6) 

F o r f u  to satisfy (5) in this case, one needs that 

--O~fN(O ..... O) + fifu(O, 0,..., O, 1) = 0 (A7) 

which is a clear consequence of (A6) and of the fact that 

fN(O ..... 0, 1 ) =  O~fN 1(0, 0 ..... 0 )  ( A S )  

This completes the proof that the recursion (8) gives all the steady states 
for arbitrary N. 

A C K N O W L E D G M E N T S  

B.D. would like to acknowledge the kind hospitality of the Weizmann 
Institute, where this work was started, and the Einstein Center of 
Theoretical Physics for support. We also thank C. Kipnis, J. L. Lebowitz, 
and H. Spohn for their helpful and encouraging comments. 

This research was partially supported by the United States-Israel 
Binational Science Foundation. 

REFERENCES 

1. T. M. Liggett, Interacting Particle Systems (Springer-Verlag, New York, 1985). 
2. R. Kutner, Phys. Lett. A 81:239 (1981). 
3. H. van Beijeren, K. W. Kehr, and R. Kutner, Phys. Rev. B 28:5711 (1983). 



1 D Asymmetr ic  Exclusion Model 687 

4. P. A. Ferrari, Ann. Prob. 14:1277 (1986). 
5. A. De Masi and P. Ferrari, J. Stat. Phys. 36:81 (1984). 
6. D. Kandel and E. Domany, J. Star. Phys. 58:685 (1990); D. Kandel, E. Domany, and 

B. Nienhuis, J. Phys. A 23:L755 (1990). 
7. J. P. Marchand and P. A. Martin, J. Stat. Phys. 44:491 (1986). 
8. D. Dhar, Phase Transitions 9:51 (1987). 
9. J. Krug and H. Spohn, in Solids far from Equilibrium: Growth, Morphology and Defects, 

C. Godreche, ed. (Cambridge University Press, Cambridge, 1991). 
10. M. Kardar, G. Parisi, and Y. Zhang, Phys. Rev. Lett. 56:889 (1986). 
11. J. Krug, Phys. Rev. Lett. 67:1882 (1991). 
12. D. E. Wolf and L. H. Tang, Phys. Rev. Lett. 65:1591 (1990). 
13. D. Kandel and D. Mukamel, Europhys. Lett. (1992), in press. 
14. J. Cook and D. E. Wolf, 3. Phys. A 24:L351 (1991). 
15. H. Rost, Z. Wahrsch. Verw. Geb. 58:41 (1981). 
16. A. Galves, C. Kipnis, C. Macchioro, and E. Presutti, Commun. Math. Phys. 81:127 (1981). 
17. B. Derrida, J. L. Lebowitz, E. R. Speer, and H. Spohn, Phys. Rev. Lett. 67:165 (1991); 

J. Phys. A 24:4805 (1991). 
18. S. A. Janowsky and J. L. Lebowitz, Phys. Rev. A 45:618 (1992). 
19. L. H. Gwa and H. Spohn, Phys. Rev. Lett. 68:725 (1992). 
20. H. van Beijeren, R. Kutner, and H. Spohn, Phys. Rev. Lett. 54:2026 (1985). 
21. J. Krug, Private communication. 


