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The acoustic excitation of the~first and second boundary layer modes 
in the neighborhood of the sharp leading edge of a plate in a supersonic 
gas flow is analyzed. 

The results of experimental and theoretical investigations of the sensitivity of 
subsonic boundary layers to acoustic disturbances were described in [i-3]. The main 
conclusions of these studies were as follows. The sound waves excite instability waves 
at spatial inhomogeneities of the main flow. In subsonic flow the wavelength of the 
sound is much greater than the characteristic scale of the unstable mode; accordingly, 
intense excitation takes place at inhomogeneities whose scale is commensurable with the 
length of the instability wave. If a plate is free of irregularities andother sources 
of local nonuniformity, then the excitation is concentrated in the neighborhood of the 
leading edge on a scale of several instability wavelengths [4]. However, the oscilla- 
tions that develop near the leading edge enter a zone of strong attenuation and arrive 
at the instability point with a small amplitude. Accordingly, the mechanism in question 
may have to compete withdistributed generation due to the nonparallelism of the flow 
in the boundary layer [i]. This is much less efficient, but the buildup of the unstable 
waves takes place directly in the neighborhood of the lower branch of the neutral curve. 

The transition to supersonic flow leads to a qualitative change. The oscillation 
damping rates decrease sharply in the region lying upstream from the neutral curve, and 
the screening of the leading edge weakens [5]. As the leading edge is approached, the 
boundary layer oscillations become synchronized with the sound waves propagating parallel 
to the surface of the plate [6]. Consequently, these waves may strongly excite the un- 
stable modes. It is reasonable to assume that the neighborhood of the leading edge plays 
a dominant role in the excitation of instability of the supersonic boundary layer. This 
assumption is confirmed by experiment [7] and also finds support in the strong influence 
of leading edge bluntness on the transition point [8]. 

i. On the steady flow over a semi-infinite plate we superimpose a wave incident 
at zero angle to the wall (see Fig. i) 

P =  (?M2)-l+h Re {exp [ iaa ( X - c a * ~  ) ] } 

Here ,  P i s  t h e  p r e s s u r e  d i v i d e d  by p~U~, M > 1 i s  t he  f r e e - s t r e a m  Mach number,  
i s  t he  s p e c i f i c  h e a t  r a t i o ,  ~a i s  t he  wave number, c~ = U~(1 • l/M) i s  t he  phase  v e l o c i t y ,  
X i s  the  l o n g i t u d i n a l  c o o r d i n a t e ,  and x i s  t ime .  I t  i s  assumed t h a t  t he  f r e q u e n c y  param- 
e t e r  F = v~w*/U~  ~ 1 (~*  = aaC ~ i s  t h e  f r e q u e n c y )  and t h e  a m p l i t u d e  h i s  sma l l  enough 
f o r  t h e  l i n e a r  t h e o r y  t o  be a p p l i c a b l e .  

At a d i s t a n c e  from t h e  l e a d i n g  edge of  t he  o r d e r  o f  t h e  w a v e l e n g t h ,  L 1 ~ a~ 1, P r a n d t l ' s  
h i e r a r c h i c a l  p r o c e d u r e  can be employed:  in t he  l e a d i n g  a p p r o x i m a t i o n  t h e  boundary  l a y e r  
does no t  d i s t o r t  t h e  e x t e r n a l  a c o u s t i c  wave,  t he  boundary  l a y e r  s o l u t i o n  can be c a l c u l a t e d  
f o r  t h e  g i v e n  p a r a m e t e r s  o f  t h e  l a t t e r z  t he  c o r r e c t i o n s  t o  t h e  i n v i s c i d  d i s t u r b a n c e  a r e  
t h e n  found ( t h e y  a r e  o f  t he  o r d e r  o f  J F ) ,  and so on.  

I n  a r e g i o n  w i t h  t he  c h a r a c t e r i s t i c  s c a l e  L 2 > a~ 1 t h e  f low can be r e p r e s e n t e d  
in t h e  form o f  a c o m b i n a t i o n  o f  a s t e a d y  boundary  l a y e r  v a r y i n g  s l o w l y  w i t h  r e s p e c t  to  
X and a r a p i d l y  o s c i l l a t i n g  p e r t u r b a t i o n .  The n o n p a r a l l e l i s m  of  t h e  main f low r e s u l t s  
in  wave d i f f r a c t i o n  which d i s t o r t s  t h e  a c o u s t i c  f i e l d  in  a w a l l  zone o f  t h i c k n e s s  D. 
This  s c a l e  can e a s i l y  be e s t i m a t e d  u s i n g  t h e  e q u a t i o n  f o r  sound waves in a u n i f o r m  f low 
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Fig. i 

pyy= (M 2-1 ) p~x + 2M~p:~,+ M~p,, 

Here, p are the pressure fluctuations. The distortion of the wave number of the 
monochromatic disturbance ~L2 I, i.e., pyy = O(~a/L2)p, D = /L2/~ a. The changes in wave 
amplitude are determined by the behavior of the solution in the boundary layer, whose 
displacement thickness 6 r = A/v=L2/U~. From the equation for the longitudinal and 
transverse momenta py ~ vx, PX ~ ux, and from the continuity equation vy ~ ux; con- 
sequently, py = O(6*~)p. The hierarchical scheme breaks down when the amplitude changes 
by its own order, i.e., pyFD = O(p) or L 2 = (A~aV~) -l. Thus, in the region X = O 
(5-1~alF-112), y = O(5-1nealF-11~) the nonparallelism of the boundary .layer strongly in- 
fluences the evolution of the disturbance. 

When X ~ L 2 the viscous sublayer (Stokes layer) has a thickness 6 S = ~ and 
lies at the bottom of the boundary layer, 6S/6" ~ F§ the bopundary layer lies 
at the bottom of the diffraction zone 6*/D ~ FinS. Moreover, ~al/~ ~'~ ~ F-I/~5-112, ~al/D ~ 
FU45 In, i.e., the disturbance is shortwave in the metric of the diffraction zone and 
longwave in the metric of the boundary layer. These properties considerably facilitate 
the construction of the solution. 

When the displacement thickness is of the order of the wavelength, the locally 
parallel approximation, which describes the acoustic field and the oscillations in the 
boundary layer, holds true. The latter include the first and second unstable modes. 
In this case the characteristic longitudinal scale L 3 = A-2~a IF-I Below it is shown 
that in the boundary layer as X/L 2 ~ ~ the asymptotic form of the disturbance can be 
divided into two parts, one of which can be matched with the asymptotic form of the 
first and second modes as X/L 3 + 0. The dimensionless displacement thickness 5 has been 
included in the estimates in order to take into account the strong dependence of the 
boudnary layer thickness on the Mach number and the temperature factor. 

We nondimensionalize the coordinates and time with respect to the length and period 
of the incident acoustic wave: x = ~a X, y = saY , t = ~aU=~. We introduce the small 
parameter e = FII~5 u2. When the above is taken into account, we have the following char- 
acteristic scales : 

x = ( x .  s-~z~, s-'x~), y=(8~yo, ~y,, ~-'y~, y,) 

The characteristic regions are shown schematically in Fig. i: 0 denotes the Stokes 
�9 layer, i and 3 the boundary layer, and 2 the acoustic wave diffraction zone. 

2. In region 1 with the variables x 2 = O.(I), Yl = O(i) we represent the solution 
in the form: 

Cs=U(x~, y,)+O(e~)+h Re{u~ (x2, yj)exp[i(x,-c.t)]+O(e)} 

Vs=e3V (xz, yl)+O (e') + h Re{ev~(x2, y,)exp[ i(x~-c.t) ] +0(82)} 

P=(TM2)-'+O(e3)+h Re{p~(x2, y,)exp[i(x~--c.t)] +O(e)} 
T.=T (x~, y~)~+O (e~) +h Be{0~(x~, y~)exp [ i(xi-c.t  ) ]+O(e)} 

Here and in what follows, c a = I • i/M is the dimensionless phase velocity of the 
acoustic wave, US, VS, and T S are the x and y velocity components and the temperature 
divided by U~ and T~, respectively. 

(2.1) 
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In the highest approximation with respect to e we obtain the system 

Ut t 

(U-c . )  ~ 
( 2 . 2 )  

v, (x2, O) =0 

The prime denotes differentiation with respect to Yl, and the no-flow condition 
(2.3) is a consequence of the matching of the solution in the viscous sublayer 0 and 
the solution in the inviscid region i. It follows from (2.2) that the pressure Pl is 
constant across the boundary layer, and the vertical velocity component 

Yt 

v , = i p , ( z ~ )  ( U - c . )  ( U - c . )  ~ 

(2 .3)  

For c a = 1 -- I/M the amplitude v1(yz) has a singularity at the critical point Ylc: 
U(Ylc) = c a . The singular point Ylc must be bypassed from below in the complex Yl plane 
[9]. Considering that the undisturbed flow is self-similar, i.e., depends on the variable 

= yl//x2, we obtain the condition at the outer edge of the boundary layer 

v~=i(l-c,)p(x~)[x~k, y i ~  ( 2 . 4 )  

o ( U - c o )  ~ 

In the region 2 with variables x 2 = 0(i), Y2 = O(i) we represent the solution in 
the form: 

Us=t+O(e3)+h Re {u2 (x.., y.,.)exp[i(x,-cd)] +O(e)}  

Vs=e~V(x2, y:)-+-O(e')+h Re{ev2(x2, y2)exp [i(x,-c~t) ]+O(e)} 

Ps=('fMZ)-'+O (e3) + h Re{p2( x2, y2)exp [ i (x ,-c . t  ) ] +O (e ) } 

Ts=  t + O  (e ~) §  Re {02 (x~, y~) exp [i (x~-cot) J +0 (e) } 

In  t h e  h i g h e s t  a p p r o x i m a t i o n  w i t h  r e s p e c t  t o  e we o b t a i n  t h e  p r o b l e m  f o r  P2 

aZP: = 2i[M 2 ( l - c . ) - t ]  0 p2 - ( 2 . 6 )  
ON.. ~ O x2 

p~ (x~, ~ ) =  1, Op: (x~, O)=-iv~ (x~, O) ( l -c . )  
Oy2 

( 2 . 7 )  

pz(0, y2)=l (2 .8 )  

The i n i t i a l  c o n d i t i o n  ( 2 . 8 )  i s  a c o n s e q u e n c e  o f  t h e  f a c t  t h a t  when x = 0 ( 1 )  P r a n d t l ' s  
h i e r a r c h i c a l  scheme,  in  a c c o r d a n c e  w i t h  which  in  t h e  i n v i s c i d  zone  t h e  a c o u s t i c  wave 
has  an a m p l i t u d e  p = 1 + 0 ( r  i s  r e a l i z e d .  From t h e  c o n t i n u i t y  c o n d i t i o n s  v 2 ( y  2 ~ O) = 
v l ( Y l  ~ ~ ) ,  P2(Y2 + O) = Pl and r e l a t i o n s  ( 2 . 4 )  and ( 2 . 7 )  we f i n d  t h e  b o u n d a r y  c o n d i t i o n  

Opz =(l_c.)2kYx---p~ ' y,=0 (2.9) 
Oy2 

By direct substitution we find that the solution has the form: 
x! 

P2 = - ~ Op2 (~, o lexpl-2iy22[M2(l -c , ) - i ] /4(x2-~)}  d~+i 
o Oy2 u [ M 2 ( l - c ~ ) - t ]  

Here and in what follows arg(/+_i) = +~/4. Considering (2.9) and taking into account 
the fact that p2(x2, 0) = Pl, we obtain the integral equation for the pressure in the 
boundary layer ~ 

pi (x2)= ~ ! ] /  x--~_~ p, (~)d~-t-t ( 2 . 1 0 )  
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~ = -  (1-Co)'k {2~i[M' (l-Co)- 1]}-" 

The s o l u t i o n  o f  Eq. ( 2 . 1 0 )  i s  un ique  and can be r e p r e s e n t e d  in  t h e  s e r i e s  form: 

( 2 . 1 1 )  

p , = ~  a.(~z~)"a"", ao=t, a.=l-[ -r(/+%) 
.=o j=~ rU+t) 

It is easy to obtain the asymptotic form of the solution as x z * = [i0]: 

~ =  (8~) ~A (~ 'x2 ' )  '/' exp (~x22~/2) [ t+O (~ - ' )  ] - (~kx~)-'[ 1+0  (z2-') I, 

A = lira n-'/ 'a,?F(n+a/2)=O.035... ' ,  Re ~>0. 

The second term corresponds to the acoustic field in the wall zone. As will be 
shown below, the first and second terms are the "seed" for the first boundary layer mode 
when c a = 1 - I/M and c a = 1 + I/M, respectively. 

3. In order to construct the solution in the region 3 with variables x 3 = O(i), 
Y3 = 0(i) we employ the formalism developed in [i, 11]. Since the quantity a~z has been 
taken as the characteristic length scale, the Reynolds number is determined from the 
expression R = a~iU~/v~ = CaAie -4. We represent the characteristics of the main flow 
and the perturbation vector z in the form: 

(2.12) 

( 2 . 1 3 )  

U=U(xs, y~), V=e'Vo(x~, y~), P=P(x~),  T=T(x~, y~) 

_ _  z=[zo(x~, y3)+e"z,(x~, y~)+ . . . ]  exp [i(S-o)t)] 
X~ ( o o  oo), I S = e  -~ ~ dxs z =  u, -~Ys'  v, p ,  O, OYs ' o 

(3.1) 

The perturbation amplitude z 0 and the eigenvaiue a are determined from the boundary- 
value problem 

Ozo 
-----Aozo, zo,=Zo3=Zos=O, y3-=O; izo[~O, y3-~oo ( 3 . 2 )  

Oy~ 

The nonzero elements of the 6 x 6 matrix A 0 are given in [ii]; they correspond 
to the Lees--Lin system for two-dimensional disturbances. The eigenvalue problem is 
usually solved numericaliy, the eigensolution having the form: 

zo=a(x3)~(xs ,  y.~) (3.3) 

The amplitude function a(x 3) is determined from the conditions of solvability of 
the following approximation: 

dx3 Ox8 ' o .=~ 

Here, ~ and $ are eigenfunctions of the direct and adjoint problems; B = --i8A0/8~; 
the matrix G contains elements proportional to 8U/~x3, 8T/Sx3, V0, 8V0/SY3; their ex- 
plicit form is given in the Appendix to [ii]. We normalize the eigenfunction with re- 
spect to the condition ~(x3, 0) = i; then the amplitude of the pressure perturbation 
at the wall is equal to a(x3). The function a is determined correct to a constant mul- 
tiplier. In order to obtain a unique solution it is necessary to supplement the equa- 
tion (3.4) with initial conditions, i.e., to find the relation between the amplitude 
of the external wave and the amplitude of the oscllations of the boundary layer. For 
this purpose we will investigate the behavior of this eigensolution as x 3 ~ 0. 

We first consider the asymptotic behavior of the eigenvalue ~ and the eigenfunction 
~. In the highest approximation with respect to E the system (3.2) reduces to a bound- 
ary-value problem for inviscid disturbances which in the self-similar variables q has 
the form: 

P " -  U - c  " P'+X~a2 P' -T(U-c)~-t p = o ,  (x3, o)=o; p(x~, ~)~o, ~ (3.5) 
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Here, p is the amplitude of the pressure perturbation normalized with respect to 
the condition p(x3, 0) = i, and a prime denotes differentiation with respect to q. We 
represent the eigenvalue in the asymptotic form: 

a = t + b x 3 +  . . . .  x3--O (3.6) 

The solution of the problem (3.5) has a two-layered structure D = (DI, x~lq2) 
s 

~ l = O ( t ) ,  p=t+pl ,xs+. . . ,  pt~= ~ d z  (_co) 2 M ~ ds 
o ( 3 . 7 )  

~2=O(t) ,  p=pzo+xsp2~+ . . .  

d~p~o+2[M2(l_c,)_llbp2o=O ' dp=o ( 0 ) = d p t t ( ~ ) ,  P20 -~0, n2 ~ ( 3 . 8 )  
d~2 �9 dq~ d~l 

Solving problem (3.8), we find the eigenvalues for Re k < 0 

1 (l-c=)'k2 xs+ . co=l ~ - -  ( 3 . 9 )  
a i , 2 = l -  2 [M=( l_ca)_ t  ] "" ' M 

In F ig .  2 we have  p l o t t e d  t h e  f u n c t i o n s  R e [ a l ( x 3 ) ]  and Ym[a l (x3 ) ]  ( c u r v e s  i and 
2, r e s p e c t i v e l y )  o b t a i n e d  as  a r e s u l t  o f  t h e  n u m e r i c a l  i n t e g r a t i o n  o f  Eq. ( 3 . 5 )  f o r  a 
boundary  l a y e r  w i t h  p a r a m e t e r s :  M = 4, s u r f a c e  t e m p e r a t u r e  f a c t o r  Tf  = 1, ~ = 1 . 4 ,  Pr = 
0 . 7 2 ,  and v i s c o s i t y  c o e f f i c i e n t  c a l c u l a t e d  from th e  S u t h e r l a n d  f o r m u l a  a t  a s t a g n a t i o n  
temperature of 310~ The broken lines represent the comparison with the asymptotic 
form (3.9). Similar data for the second mode are given in Fig. 3 and compared with the 
asymptotic form to an enlarged scale in the upper left-hand corner of the figure. There 
is good agreement between the exact and asymptotic solutions. Thus, as x 3 ~ 0 the first 
and second modes are synchronized with the acoustic waves propagated parallel to the 
surface of the plate. According to the data of [12], this property exists over a broad 
range of values of the Mach number, temperature factor and frequency parameter. Calcula- 
tions based on the complete system of linearized Navier--Stokes equations have shown 
that taking the viscosity into account does not disturb the synchronization effect. 

We will find the asymptotic form of the amplitude function a(x 3) by using the form 
of expansion (3.6) and analyzing the system (3.2). We represent the eigenfunctions of 
the direct and adjoint problems in the form of a linear combination of three vectors 

so that as Y3 ~" ~ 
3 3 

~ 2 g j e x p ( Z : y J ,  ~ 2 f j e x p ( ~ N , ) ,  Rek ,<0  

Zl2=~R(t-co)+O(i)=O(A2e-O, Z::=iaPrR(l-c , )+O(l)=O(A2e -~) 

Z~2=~2-M 2 ( a - ~ )  2+O (R -I ) =2b [ I - M  ~ ( t - ~ )  ] xs+O (x?) + 0  (h-ze ') 

Here, ij are the roots of the characteristic equation. The first two vectors de- 
crease rapidly outside the boundary layer, and the third forms the solution in the in- 
viscid zone, where Re(l 3) + 0 as x 3 * 0. Therefore the main contribution to the scalar 
products entering into (3.4) is made by the asymptotic "tails" of the terms proportional 
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to g~ and I~. Taking this property into account and using the self-similarity of the 
main flow, we easily obtain 

(B.g3,t3*) (B.g,, f3*) 
<B;,~>= [ t+o(z~)] ,  ( B - ~  , ~ 2  = [ t+O(~) ]  

2~Y~'-'-~ \ Ox~ - 8 ~ x f  t' 
(3.i0) 

<G~,%>=O(xT~), p=2b[ l - M 2 ( l - c . )  ] 

Here, B~ is the asymptotic form of the matrix B as y~ ~ ~. Substituting (3.10) 
in (3.4) and integrating, in the leading approximation we find 

a(x3)=Cx3 v', C=const (3.ii) 

From r e l a t i o n s  ( 3 . 1 ) ,  ( 3 . 3 ) ,  ( 3 . 7 ) ,  ( 3 . 9 ) ,  and (3 .11 )  we f ind  the  a sympto t i c  form 
fo r  the  p r e s s u r e  p e r t u r b a t i o n s  in the  boundary l a y e r  as x 3 ~ 0 

p=p~(x~)exp [i(x~-cot) ], p,=Cx~ 'I' exp [A2e-'x,2], A ~ = - i  
(l-c~)'k: 

4[M~(i-c~)- t ]  
(3.i2) 

The first term of (2.13) coincides with the asymptotic form (3.12) correct to a 
constant multiplier, i.e., the regions 1 and 3 overlap (shaded zone in Fig. i). By match- 
ing we obtain 

C=he -'~ (Sn)J~A (~%2),/, ( 3.13 ) 

Thus, we have determined the relation between the eigensolution (3.3) describing 
the first and second boundary layer modes and the parameters of the external acoustic 
wave. The oscillations are excited over a much broader region than in the case of a 
subsonic boundary layer [4], which is attributable to the synchronization of the first 
and second modes and the sound waves. The quantity C O = h-iEU21C { depends only on the 
characteristics of the main flow through the integral parameter k. In Fig. 4 we have 
plotted the functions C0(M) for the first mode at three different values of Tf. 

There exists a normalization of the eigenfunction ~ such that the initial condition 
for a(x 3) depends only on the amplitude of the incident acoustic wave: ~4(x3, 0) = 
[2i(S -- Sa)] IIs, where S a = x3g -I is the eikonal of the acoustic wave. With this nor- 
malization the initial value of the amplitude function 

a(O)=hKo, Ko=(8~)'~A=2.093 (3 .14 )  

The results can easily be extended to the case in which the acoustic wave impinges 
on the plate at a glancing angle q, i.e., 

P= (]Mg-i+h Re { exp [i (~x+ ~z- ~t) ] } 

Here, z is the transverse coordinate, ~=arctg(~/a=), and the phase velocity c a = 
i~I/(M cos~). Calculations showed that the first and second modes are synchronized with 
the sound waves as x 3 + 0 if ~<arccos(I/M), i.e., ci,=~i~I/(Mcos~). In this case the in- 
itial amplitude of the modes is determined by relation (3.13) if (2.5) is replaced by 
the expression 
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T _M~]dN k= ![ (U-c.)~cos~ 
In Fig. 5 we have plotted the functions C0(M) for the first and second modes (curves 

1 and 2, respectively) for M = 4 and Tf = i. The expression (3.14) also holds for the re- 
normalized eigenfunction. 

We note that for the first mode the parameter 4, determined from relation (2.11), 
increases with increase in the Mach number and/or the glancing angle % It follows from 
Eq. (2.10) that the longitudinal scale of the diffraction zone 2 contracts ~1%1 -I In 
this case the asymptotic theory in question is valid under the stronger constraint s 
tt1-1/2 
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