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We derive the phenomenological dynamics of interfaces from stochastic 
"microscopic" models. The main emphasis is on models with a nonconserved 
order parameter. A slowly varying interface has then a local normal velocity 
proportional to the local mean curvature. We study bulk models and effective 
interface models and obtain Green-Kubo-like expressions for the mobility. Also 
discussed are interface motion in the case of a conserved order parameter, pure 
surface diffusion, and interface fluctuations. For the two-dimensional Ising 
model at zero temperature, motion by mean curvature is established rigorously. 

KEY WORDS: Ginzburg-Landau models A and B; spin-flip models; lattice 
gases; interracial dynamics; motion by mean curvature; Green-Kubo formula 
for the interracial mobility. 

1. I N T R O D U C T I O N  

Commonly ,  distinct the rmodynamic  phases are spatially separated th rough  
a sharp transit ion region where the order  parameter  changes rapidly from 
one phase to the other. For  many  reasons it is of interest to unders tand the 
dynamical  behavior  of  this interface. In  the simplest case the bulk dynamics  
does not  conserve the order  parameter.  Then, according to the s tandard  
phenomenological  theory, (1-3) one represents the interface as a smooth  
surface and postulates that  the local normal  velocity is propor t iona l  to the 
local mean curvature. Our  aim is to relate this phenomenological  theory to 
microscopic models. 

As a general program,  our  task is comparable  to the derivation of fluid 
dynamics  either from the Bol tzmann equat ion or, more  fundamentally,  
from the Hamil tonian  dynamics  of interacting microscopic particles. In  
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both cases there are slowly varying "modes." For fluids they arise from the 
conservation laws: transport over macroscopic distances is constrained by 
conservation and therefore takes a long time. For interfaces these are the 
slow Goldstone modes due to the broken translational symmetry, which 
force the intrinsic interface motion to be much slower than the bulk relaxa- 
tion. For a fluid the hydrodynamic fields vary on a macroscopic scale. 
Locally the fluid is in equilibrium. Similarly a small piece of the interface 
should be flat on the average with the local statistics of the order parameter 
given by the equilibrium distribution. Thus the common issue is a separa- 
tion of space-time scales which allows for a macroscopic (contracted) 
description. 

The derivation of hydrodynamics is a very traditional subject, well 
exposed in many textbooks on kinetic theory and nonequilibrium statistical 
mechanics. The common belief (which does not secure against surprises) is 
that the physical picture is clear and the derivation well understood on a 
formal level. To push such a program further toward mathematical rigor 
leads to interesting, deep dynamical questions to many of which we do not 
have even the glimpse of an answer. Still one expects (and hopes) that the 
traditional physics wisdom will be corroborated eventually. For interface 
motion such a coherent picture is missing or, at least, has not been stated 
with the standard of precision which we are used to in equilibrium statistical 
mechanics. Our primary goal is to supply the missing pieces. 

At this point it is necessary to spell out the microscopic models and 
the corresponding phenomenological theory in more detail. A prototypical 
model is the ferromagnetic Ising model at sufficiently low temperatures and 
at phase coexistence (external field h = 0). We assume stochastic spin-flip 
dynamics satisfying the condition of detailed balance. In particular, the 
order parameter is no t  conserved. We further assume to have the + phase 
coexisting with the - phase separated by an interface which varies slowly 
on the scale of the lattice. Therefore, on a scale large compared to the 
lattice constant, we can represent the interface as a smooth surface s 
embedded in R 3. The driving force for the interface motion is supplied by 
a lowering of the surface free energy. Let us introduce the surface tension 
o. In general it depends on the local orientation of the surface element, i.e., 
on the local normal ft. The surface free energy is then defined by 

F=fdf~(~) (1.1) 

Phenomenologically, it is postulated that the interface velocity along the 
local normal is given by 

6F 
v ,=  - / . t ~  (1.2) 
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Here/~ is called the mobility of the interface. In general, it depends also on 
the local orientation. 6F/6S is the change in free energy due to a small 
variation of the surface. If a and # are isotropic, then v,, is proportional to 
the local mean curvature. Therefore we refer to (1.2) as the mean curvature 
equation in general. 

The core of our paper deals with the derivation of Eq. (1.2) from the 
underlying stochastic model. For this undertaking, at least, the quantities 
appearing in the mean curvature equation should have a precise 
microscopic meaning. The surface tension has a well-established statistical 
mechanics definition, (4'5) which will be briefly recalled at the end of 
Section 2. On the other hand, the mobility has been discussed so far only 
in rudimentary form. Thus our first task is to find a microscopic expression 
for the mobility. This will be done in Section 3, where through a linear 
response argument we obtain a formula rather analogous to the Green- 
Kubo formula for transport coefficients in fluids. Having identified the 
quantities on the right side of Eq. (1.2), we turn in Section 5 to the 
problem of establishing that the motion of the interface is governed by 
mean curvature in the limit of slow variation. 

On the microscopic scale the interface is noisy and there is no sharp 
distinction between bulk phases and the transition region. A typical inter- 
face width is expected to be of the order of the bulk correlation length. For 
many applications such an intrinsic structure can be ignored. This results 
then in effective interface models, for which the bulk is structureless by 
definition and the interface is a single-valued function with respect to a 
given reference plane. The reasoning leading to the phenomenological 
theory still applies and a slowly varying interface should also be governed 
by Eq. (1.2). Effective interface models will be discussed in Sections 6 and 7, 
where we also point out a direct link to the hydrodynamic limit of lattice 
gases in the case of two bulk dimensions. 

Once motion by mean curvature is established, one can study small 
Gaussian fluctuations around the deterministic behavior. Our discussion in 
Section 9 is standard and included only for the sake of completeness. 

There has been considerable mathematical activity with the goal to 
establish the existence of the large-scale limit for stochastic models.(6'7) So 
far, only bulk dynamics with a conservation law has been studied. It is 
therefore a natural problem to investigate whether our reasoning can be 
pushed to mathematical rigor. Our results are rather modest. We prove 
motion by mean curvature for the two-dimensional Ising model at zero 
temperature (Appendix A). In Appendix B we present partial results on the 
Ginzburg-Landau effective interface model. Basically, we lack a uniqueness 
theorem for the corresponding equilibrium Gibbs measures. We hope that 
the appendices serve as an invitation to further investigations. 
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For the everyday phase coexistence of liquid and vapor the conserva- 
tion laws are of crucial importance for the interface dynamics. There is no 
difficulty to incorporate such a conservation law into the stochastic model. 
For example, in our prototypical example of the Ising model one simply 
has to substitute the spin-flip dynamics by spin-exchange dynamics. Then 
the order parameter is dynamically conserved. Clearly, the interface motion 
then changes drastically and Eq. (1.2) is no longer applicable. In Section 10 
we derive the interface dynamics in the case of a conserved order parameter. 
In fact, beyond bulk diffusion no further transport coefficients appear 
in the equations of motion. There is a somewhat different route of how 
a conservation law may show up. Effective interface models are used to 
describe a crystal in equilibrium with its gas phase. If ad- and desorption 
processes are very slow, then relaxation is governed by pure surface diffu- 
sion and therefore the height relative to the reference plane is conserved. 
The corresponding equations of motion turn out to be a conventional 
modification of Eq. (1.2). However, the analog of the mobility acquires a 
very different physical interpretation. 

In (1.2) it is implicitly assumed that the surface tension depends 
smoothly on ft. This assumption breaks down below the roughening 
temperature of a high-symmetry plane, where the surface tension has a 
cusp. In Section 8 we explain how Eq. (1.2) extends to such a singular 
situation. Among other novel properties we find that facets may be formed 
spontaneously. 

2. M I C R O S C O P I C  M O D E L S ,  S U R F A C E  TENSION 

Models with a nonconserved order parameter are standardized. ~8-1~ 
One distinguishes Ginzburg-Landau models where the field variables take 
continuous values and spin-flip models with values +1 only. Their 
common feature is that at zero temperature they have two configurations 
of minimal energy related by flip symmetry. Neighboring variables are 
sufficiently strongly coupled so that at small temperatures two stable 
phases persist. 

Let us first describe the Ginzburg-Landau model on the simple hyper- 
cubic lattice Z d, d>~ 2. At each lattice site x e Z d there is a continuous field 
variable ~b(x). A field configuration ~b in volume A has the energy 

E 2+ Z v(O(x)) (2.1) 
( x , y ) , x , y ~ A  x E A  

Here ( -, �9 ) denotes a pair of nearest neighbors, ~: > 0, and the potential V 
has the usual reflection-symmetric double-well shape. In particular, V(~b)= 
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V(-~)), V(~)~c1~)2-.~-c2, Cl>0  , V ' ( m + ) = V ' ( m _ ) = V ' ( O ) = O ,  m + =  
-m =m*>0, V"(m+)= V"(m )>0, V"(0)<0. 

The order parameter field ~b is governed by the stochastic differential 
equations 

d 
qk,(x) = x zlqJt(x ) -- V'(qk,(x)) + (2/fl) m r (2.2) 

x ~ A .  Here 3 is the lattice Laplacian. ~,(x) is normalized white noise, 
independent at distinct lattice sites, ( ~ ( x ) ~ , ( y ) ) =  6 x y 6 ( s - t ) .  fl stands 
for the inverse temperature. Clearly, the drift in (2.2) is the gradient of H. 
Therefore, in finite volume A, the dynamics (2.2) has as unique invariant 
measure the Gibbs distribution 

Z-le-/~H(~) I-[ d~(x) (2.3) 
x~A 

and the dynamics is stochastically reversible with respect to this measure. 
If/~ is sufficiently large, then in infinite volume the reflection symmetry 
is broken. There are two distinct, translation-invariant phases, ( . ) +  
and ( - ) _ ,  with ( ~ b ( x ) ) + = - ( ~ b ( x ) ) _ > 0 ,  both stationary under the 
dynamics (2.2). 

In the literature (9) one often considers the formal continuum limit of 
(2.2), yielding 

0 
-~ (~(x, t) = ~ Aq~(x, t) - V'(e)(x, t))  + (2/fl) m k ( x ,  t) (2.4) 

with ~ normalized space-time white noise. For d~> 2, Eq. (2.4) is not well 
defined and some short-distance cutoff, as in (2.2), is needed. In the 
zero-noise limit, fl ~ ~ ,  Eq. (2.4) goes over to the Allen-Cahn equation r 

~t (~(x, t) = ~c zlqk(x, t) - V'(qJ(x, t) ) (2.5) 

In the case of spin-flip dynamics we choose specifically the ferro- 
magnetic Ising model with nearest neighbor couplings. At each site of the 
lattice there is a spin variable a(x )  taking values _ 1. A spin configuration 
is denoted by a. It has the energy 

H(cr) = - J  ~ cr(x) cr(y) (2.6) 
(x,y),x,y~A 

with the coupling constant J > 0 .  (We could allow for more general 
couplings, as long as they are translation invariant, ferromagnetic, 
symmetric under spin flips, and of finite range.) 
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In order to define the dynamics, we have to specify the flip rates. We 
allow only single spin flips. The spin at site x reverses its sign with rate 
Cx(a), depending on a only through the spin configuration close to x. 
The specific functional form of Cx is not important. We only require that 
Cx(a) > O, Cx(a) is translation invariant, and c~(~r) satisfies the condition of 
detailed balance in the form 

cx(a) = cx(a ~) exp{ - fl [H(~ ~) - H(o) ]  } (2.7) 

Here ax stands for the configuration a with the sign of a(x) reversed and 
H ( o ~ ) - H ( a )  is the energy difference in the flip from a(x) to - o ( x ) .  The 
generator of the flip process is defined by 

Lf(a)= ~ c~(a)[f(ax)-f(a)] (2.8) 
x G A  

A probability distribution on spin configurations pt(a) evolves according to 
the master equation 

d 
dt P '(~ = ~ [cx(ax) P'(Ox) - c~(o) p,(a)]  = L*p,(a) (2.9) 

x G A  

In finite volume the master equation has the unique stationary solution 

Z le -//H(~) (2.10) 

As for the Ginzburg-Landau model, if fl is sufficiently large, then for 
infinite volume the spin-flip symmetry is broken. There are two ferro- 
magnetic phases, ( . ) +  and ( . ) _ ,  with ( a ( x ) )+  = - ( a ( x ) ) _  >0,  both 
stationary for (2.9). 

Next we recall the definition of the surface tension, o(h). The basic 
idea is to compute the excess free energy due to the presence of an inter- 
face. We choose a box d such that Ixj[ <~l, j =  1 ..... d - 1 ,  and Ixa[ <~M, 
M>> l. We force an interface with average normal h by imposing + -  
boundary conditions. This means to fix a(x)= 1 for x e 8A n {x l f i .  x ~< 0} 
and a(x) = - 1  for x e S A  n {x [ fi . x > 0 }  with 8A the set of sites bordering 
A. Let Z + _ ( I , M )  be the corresponding partition function and let 
Z+ +(/, M) be the partition function for the all + boundary condition. The 
excess free energy is proportional to the interface area. Therefore 

a(fi) = Ifial lim (2l+ 1) - ( a - l )  
l ~ o O  

x lim { I } Moo~ - - ~ [ I ~ 1 7 6  (2.11) 



Interface M o t i o n  in Models with Stochastic Dynamics 1087 

The prefactor It, d] is included because ~r(r~) is defined as the free energy 
excess per unit Euclidean area. Clearly the full a(t~) has to be pieced 
together from the various sectors where (2.11) makes sense geometrically. 
o-(1i) is strictly positive and vanishes as fl$ tic. For d =  2, a(r~) is known 
explicitly. (5,12) 

In the case of the Ginzburg-Landau model we adopt the same route. 
The field is now fixed at ~b(x)=m+ for x ~ S A ~ { x l ~ . x < < . O }  and at 
~b(x)=m_ for x ~ S A n { x [ h . x > O } .  Here Z + _ ( I , M )  is the corre- 
sponding partition function and Z++(I, M)  the one with all + boundary 
conditions. The surface tension a(~) is again defined through (2.11). 

3. M O B I L I T Y  

The mobility plays the same role for interfaces as transport coefficients 
do for fluids. Thus we would expect also some sort of Green-Kubo 
formula. To derive it, we employ a linear response argument, which we 
carry out for the case of the stochastic Ising model. We study the response 
of the', interface to a uniform small external magnetic field h, h > 0. Let 
( a(x) > + = m + = - m _  = m* be the spontaneous magnetization. Then, on 
the macroscopic scale, a small deformation of the surface yields the extra 
free energy - h ( m +  - m  ) 6S. Therefore the local normal velocity becomes 
[compare with (1.2)] 

v n = - #  - h ( m + - m  ) (3.1) 

(We adopt here the convention that the normal points into the - phase.) 
Thus the magnetic field induces the systematic velocity 

v = u h ( m + - m  ) (3.2) 

If we could obtain a microscopic expression for the systematic interface 
velocity, Eq. (3.2) would identify the mobility #. 

Let us enforce an equilibrium interface with average normal h by 
imposing appropriate + - boundary conditions as explained at the end of 
the previous section. Note that the boundary conditions also enter into the 
flip rates. We impose now a small external field by modifying Cx(a) to the 

~(h) ff new flip rates % ( ) .  As before they must satisfy the condition of detailed 
balance 

c~)(~) = c(f)(~ x) e x p {  - f l E H ( ~  x) - H ( ~ )  - 2 h ~ ( x ) ]  } (3.3) 
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We study the change in magnetization, 

d 
< ~ a(x) > (t) = - 2  ~ (c(f)(a) a(x))(t) (3.4) 

x x 

where ( - ) ( t )  denotes expectation with respect to the spin distribution at 
time t. It contains two contributions: (1)a change v (m+-m_)  [~d[ -1 
(2l+ 1)d-1 due to the displacement of the interface with average velocity v, 
and (2)a bulk change. We hope to subtract out this second contribution 
by the change in magnetization when starting initially in an equilibrium 
state with all + boundary conditions. If we do this, we obtain 

v~  [hal (m+ --m_) -1 (2l+ 1) -(a-l) 

• ~ ( -2)[(c~ ' ) (a)  a(x))  +_ ( t ) -  (c~h)(a) a(x)) + + (t)] (3.5) 
x 

Here the index + - ( + + ) indicates the initial state and the boundary con- 
ditions for the dynamics. For the interface velocity v to be approximately 
time independent, t has to be large compared to the bulk relaxation time. 
On the other hand, t has to be small compared to the time when the pinning 
at the boundary becomes important and to the time when nucleation of the 
+ phase in the bulk - phase sets in, which would then completely destroy 
the interface. 

As always in linear response arguments of this kind, one hopes to 
single out the plateau value by first letting h--* 0 and then t ~ oe. We 
differentiate (3.4) at h = 0, denoted by a prime. This yields 

-2  Z +_ (t)]' 
x ~ A  

E = -2B ~ (eLtc'(a) cr(x))+_ + 
x ~ A  

=2fl ( c x ( a ) ) + _ - 2  ds 2 
x ,  y c A  

ds (e L(t- S)L'eLSCx(a) a(x) 5 + - ] 

( c~(a) a(x) eLSCy(a) a(y) ) +_ ] 

(3.6) 

and correspondingly for + +. We used the condition (3.3) of detailed 
balance and that the initial state ( . ) + _  is stationary. Properly speaking, 
we should add indices + -  both at the generator L and the rates c~(a) 
because they depend on frozen boundary spins in OA. 

Since the interface is pinned at the boundary, we first take the limit 
/, M ~ ov so as to get rid of spatial boundary effects. Afterward we take the 
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limit t ~ ~ in order to single out the stationary response. By comparing 
with (3.2), we arrive at the following Green-Kubo-like formula for the 
mobility: 

#(r~) =2//(m+ - m _ )  -2 Ifiat { l i ra  (2l+ 1) - ( a - ~  

x lira ~ ( ( c x ( ~ ) ) + _ - ( q ( a ) ) + + ) - Z f o  
M ~  x r  

x lim Y, ((q(~)~r(x)eL'cy(a)~(y))+ 
m ~ o o  x, y E A  

- -  ( Cx(t7) O'(X) e L t c y ( 6 )  (r(y) ) + + )} 

dt lim (2 l+  1) -~a ~) 
l ~ o o  

(3.7) 

Note that only equilibrium time correlations enter. 
The mobility depends on the orientation of the interface, which is 

hidden in the definition of the ( . )  + _ state. The first sum is the average flip 
rate compared in a state with and without interface. It is rather plausible 
that this difference decays rapidly with the distance away from the interface 
and that therefore the first sum is of order (2l+ 1) (a-l). The second term 
in (3.7) reflects that the response to the external field is not instantaneous. 

The Green-Kubo integrand is fairly complicated. We will discuss its 
zero-temperature form in the following section, expecting that this reflects 
correctly the whole low-temperature regime, fl >> tic- 

The linear response argument for the Ginzburg-Landau model runs in 
complete parallel. The term corresponding to Cx(a) in (3.6) equals one and 
therefore the first difference in (3.7) cancels. The term corresponding to 
2cx(a) ~(x) in (3.6) equals ~ A~b(x)- V'(q~(x)). Therefore the mobility in 
the Ginzburg-Landau model is given by 

# ( ~ ) = - f l ( m + - m  )-2 dt lim (2 l+1)  -(u- l)  
l - ~ c O  

X lim 
M ~ o o  

x, y ~ M  

{ ([~c ~ o ( X )  - v'(Oo(X))] [~: ~O,(y) - v ' (O,(y)) ]  > + _ 

- ([~: J ~ 0 ( x ) -  v'(r  J O , ( y ) -  v % ( y ) ) ] ) + + }  (3.8) 

with m+ = (~b(x))+ = - m  . 
According to the fluctuation-dissipation theorem, the Green-Kubo 

formuh must also yield the fluctuations in the total magnetization. To be 
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specific, let us consider the stochastic Ising model. The total magnetization 
in volume A at time t equals then 

MA(a,)= ~ a,(x) (3.9) 
x ~ A  

Now 

MA(at)-- M~(a) = - 2  ds y" Cx(as) a,(x) + Jg(t) (3.10) 
x E a  

with J//(t) a martingale. Since at is a Markov process, we have 

( ~ ' ( t )  2 ) = 2t( M A(a)( -- L) M A(a) ) (3.11) 

assuming that ( . )  is stationary. In (3.10) we take the integral to the left 
side, square, and average. Since the cross term vanishes by reversibility, we 
have 

([MA(a,) -- MA(a)]2> 

=4t ~' (ex(a)) -4 ds ds' ~ (c=(a,)a,(X)Cy(a,,)as,(y)) 
xc - -A  x ,  y e A  

(3.12) 

Now if ( . )  = ( . )  + +, then the first summand proportional to t is canceled 
by the leading contribution from the time integral. For large t we obtain 
then a constant proportional to the volume ]A[. On the other hand, if 
( . )  = ( . )  + _, then for large t there is a constant contribution proportional 
to [A I, which may be canceled by subtracting ( . ) +  +, and in addition a 
contribution which grows linearly in time and is proportional to the inter- 
face area. It is this "diffusion coefficient" which is singled out by Eq. (3.7), 

1 tlim (2 /+  1) - (d- l )  #(fi) = fl(rn + - m _ )-2 ,limo+ 

x M-+oolim ( ([MA(a,) - -MA(a)]2)+_ -- ([MA(at)--MA(a)]2)++)} 

(3.13) 

Just as for transport coefficients in fluids, the mobility can be obtained 
either from a linear response to a bulk magnetic field or from the 
fluctuations in the bulk magnetization. 
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4. ZERO-TEMPERATURE (NOISE) LIMIT 

It is instructive to check our linear response argument first for the 
Allen-Cahn equation as one of the few microscopic models with a noncon- 
served order parameter for which the mobility has been computed before. 
Clearly, in this equation there is no mechanism for nucleation. Thus we can 
let t--* Go first, thereby obtaining a constant interface velocity, and then 
h-*0 .  

The Allen-Cahn equation with an external field h, h > 0, reads 

8t ~b = ~ &b - V'(~b) + h (4.1) 

Since only the direction orthogonal to the interface is relevant, we may as 
well take d =  1 in (4.1). We are looking for a traveling front (kink) solution 
of the form wh(x-v(h)t)  which satisfies 

KW'h' + v(h ) w'h -- V'(Wh) + h = 0 (4.2) 

We choose h sufficiently small, such that there are still only two stable fixed 
points, m+(h) and re(h) ,  satisfying V'(m+_(h))=h. The kink solution is 
from one stable to the other stable fixed point and satisfies the boundary 
conditions wh(-T-oo)=m+(h). Equation (4.2) then has a unique solution 
provided we fix the origin, e.g., by requiring wh(0)= 0. For  h = 0, we have 
v(h) = O. We expand as v(h) = vlh + (9(h 2) and wh = w + h~, + (9(h2), where 
w satisfies (4.2) for h = O, 

tr -- V'(w) = 0, w(-T oo) =m_+, w(0) = 0 (4.3) 

For  later purposes it is also convenient to introduce the operator 

d z 
V"(w(x)) 1 ~ (4.4) 

obtained from the linearization of (4.1) at w. Hw is a one-dimensional 
Schr6dinger operator. Its ground state is w' with energy zero. The 
continuum edge starts at V"(m+). Since the potential in Eq. (4.4) decays 
exponentially, there are only a finite number of bound states in between. 
With this notation the linearization of (4.2) at h = 0 reads 

HwO--U1Wt- 1 = 0  (4.5) 

Multiplying on the left by w' results in 

if ]1 v(h)= dxw'(x) 2 ( m + - m  )h+(9(h 2) (4.6) 
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Therefore, according to the Allen-Cahn equation, the mobility is 

(4.7) 

Since the surface tension ~ac equals 

O'AC ~--- R7 f dX W'(X) 2 (4.8) 

we are in agreement with ref. 11. Note that, according to Eq. (1.2), this 
means that for the Allen-Cahn equation 

vn = ~cK (4.9) 

independently of the particular shape of the potential V, where K denotes 
the local mean curvature. 

We have to check whether the linear response argument of Section 3 
agrees with (4.7). We will do this in two different ways. First, we simply 
repeat our argument for the Allen-Cahn equation. Second, we expand (3.8) 
in 1/ft. We will find that all three results agree with each other. The second 
approach has the advantage of yielding some information on the 
Green-Kubo integrand. 

We linearize Eq. (4.1) as w + h C t .  Then 

tO = ~ ' =  -Hw~O'+ I, #Jo=O (4.10) 

On the other hand, linearizing around w = m+ yields 

8-~ 0,+ = - H + O +  + 1, q~-=0 

with 

(4.11) 

Therefore the subtracted change in magnetization to linear order in h 
equals 

d f dx (x)]= f ee--'w'1(x)--eV(m+)'l d--t 
(4.13) 

d 2 
H+ = -tc--~x2 + V ' ( m  + ) (4.12) 
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Note that the subtraction is needed, because otherwise the x integration 
would diverge. To understand the large-t behavior in (4.13), we use the 
Feynman-Kac formula as 

f dxEx(exp l -  f~ ds V'(w(w(s)))]-exp[- f~ ds V"(m+)]) (4.14) 

Here Ex denotes average with respect to the Brownian motion c0(.) starting 
at x. We split the x integration into Ix[ ~< t and Ix[ > t. For starting points 
x with [xJ > t the Brownian motion has an exponentially small probability 
to reach the neighborhood of the origin. But away from the origin the 
integrand is exponentially small as a function of x. Thus the integral for 
Ix[ > t  is bounded by const.exp[-V"(m+)t]. For Ix[ ~<t, we consider 
each term in (4.13) separately. From the eigenfunction expansion of Hw we 
get the ground-state contribution IS dx w'(x)]2/S dx w'(x) 2. All other terms 
are bounded by 2texp(-Elt), where E l > 0  is the energy of the first 
excited state (or the continuum edge if there is none). Thus, taking the 
limit t--* oo in (4.13) yields 

- m  )2/f dxw'(x) 2 (4.15) (m+ 

which, according to (3.2) and (3.5), results in the mobility #AC. Note that 
in (4.13) the limit t-~ ~ is approached exponentially fast. 

We now turn directly to the large-fl behavior of the Green-Kubo for- 
mula (3.8). At this stage we are not specifically interested in lattice effects. 
Therefore we take the formal continuum limit, which at the perturbative 
level causes no harm. (To recover the lattice, we only have to substitute 
everywhere the lattice Laplacian.) We choose the interface normal to be 
r~:  (1, 0 ..... 0) and split accordingly x =  (xl, x• A : A ~  +A•  Also, let us 
denote the Green-Kubo integrand by 

G(x, y)  = - /3{ < [~  ~r - v ' ( r  [~c 3 r  - v ' ( r  > + 

- ( [~  J r  v' (r  [~ ~ r  v ' (r  ) + + } 

(4.16) 

In the limit/3 ~ oo, ( . )  + concentrates at w. Since ~c Aw - V'(w) = O, 
C, vanishes. To next order we expand the solution of the Ginzburg- 
Landau equation (2.4) as ~b(x, t ) =  w(x)+ ~-mO,(x ). Then 

~@t = - (Hw - K Ax) ~,, + x ~  ~(t) (4.17) 
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In this approximation ( - > + _  becomes a Gaussian measure with 
covariance 

<~b(x )~b(y )>+_=<x[ (nw- tCd . )  l ly) (4.18) 

Also, expanding in (4.16), 

K ZI4)(x)-- V'(~(X))~ - f l - l /2 (Hw-K A • ~l(x ) (4.19) 

Thus, to leading order in/3-~ the Green-Kubo integrand can be evaluated 
in the Gaussian approximation. Inserting (4.17) and (4.19) in (4.16) yields 

d Ct(x, y)~-~ [(<xlL e -Hw' l Y l > -  <x,[ e-n+t'lYl>)<x• e '~a• [y• 

(4.20) 

We note the following decay properties: If we perform the limits as in 
(3.8), then 

fods l im  (2l + l ) - ' a -1 ) l imoo  f dax f day C,(x, y) 

=fdxlfdy~((x~le-n~tlYl>-(xlle-H+!ly,> ) (4.21) 

This quantity came up already in the context of the Allen-Cahn equation. 
It converges exponentially fast to its limit ( m + - m ) 2 / ~  dxl w'(Xx) 2. On 
the other hand, for t > 1/E, we can approximate the difference in (4.20) by 
w'(xl) w'(yl). Therefore 

io dS C~(x, y)_~ w'(x,) w'(y,)(x• e ' ~ '  lY• ) (4.22) 

which decays on a length (tOt) U2 along the interface. 
Next we turn our attention to the two-dimensional Ising model. As 

/3 ~ c~, energy-increasing flips are forbidden. The interface dynamics is 
determined by flips which conserve the energy. The corresponding rate 
is denoted by Co. It sets the overall time scale and, in physical applica- 
tions, would still depend on the temperature. Note that, in contrast to the 
Ginzburg-Landau equations, at zero temperature the dynamics is still 
noisy. Therefore the mobility must be determined through Eq. (3.7). 

Let us first consider the surface tension, which can be computed 



Interface Motion in Models with Stochastic Dynamics 1095 

explicitly. (12) Let 0 denote the angle between the interface and the 1 axis. 
Then, including the first-order correction in/~-1, 

a(O) = 2J([cos O r + [sin 01) + fl- l{lsin 0J log[Jsin 0[/(Jcos Of +/sin 0[)] 

+ ]cos 0[ log[Jcos 0[/(Icos 0[ + Isin 0l)]} (4.23) 

The surface tension is a difference between energy and fl-1 x entropy. 
To evaluate the Green-Kubo formula (3.7), it is convenient to regard 

the interface location as a function relative to the diagonal. Even if not 
so initially, this function will become single-valued exponentially fast. We 
label the interface slopes as t/j= _+1, j =  0, + 1 ..... With respect to the 
measure ( . )  + _, in the limit fl -~ oe, the r/j are independent with average 
(r/j) = u = (sin 0 - cos 0)/(sin 0 + cos 0), 0 ~< 0 ~< 7r/2. The average flip rate, 
(cx(a))+_, translates to lCo((qj+l--qj)2)=lCo(1--U2 ). The term 
( cx(a) a(x) eLtCy(a) a(y) ) + _ transcribes to 

�88 - r/j)0 (,i+1 - t/At ) (4.24) 

It cancels out to zero upon spatial summation. By inserting everything in 
(3.7) we obtain for the mobility 

fl_~o Isin 20J 
U(0) = [sin 0[ + [cos 0[ 

(4.25) 

It is of interest to compute also the normal velocity. In the variational 
derivative 6F/6_r the energy makes no contribution. Therefore, in our 
approximation, the normal velocity does not depend on/~ (except through 
Co) and is given by 

v. = Co([sin 01 + ]cos 01) -2 K (4.26) 

with K the local curvature. 

5. SCALING LIMIT:  M O T I O N  BY M E A N  C U R V A T U R E  

Up to now we have discussed only pieces of the interface which are 
flat on the average. The link to the mean curvature equation (1.2) is still 
missing. To establish it, we first have to explain the relevant length and 
time scales. The bulk equilibrium phases have a finite correlation length 
which is of the order of the lattice spacing. Deviations from equilibrium 
relax exponentially fast, defining a relaxation time T which is of the order 
of a typical flip time per spin. (Actually it has been argued convincingly 
that in the pure phases the generator has no gap in spectrum. Still, the 
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magnetization is expected to decay according to a stretched exponential.) 
In the traditional, capillary wave picture the interface has an intrinsic width 
of the order of the correlation length. At best up to this precision we can 
define meaningfully the interface location. We are interested in a situation 
where the interface is slowly varying such that 

K~r (5.1) 

with K its typical mean curvature. The interface will then move slowly and 
we must consider times such that 

t/z ,> 1 (5.2) 

We will argue that motion by mean curvature becomes exact in these limits 
provided they are linked diffusively. In particular, away from the interface 
the bulk maintains equilibrium. 

Even in thermal equilibrium the interface undergoes ondulations and 
shape fluctuations on a scale large compared to ~. For a reference plane 
with linear dimension I these are of the order x//1 in two and of the order 
log l in three dimensions. For d > 3 the fluctuations are bounded with the 
same behavior in d =  2 below the roughening transition. Since we study 
deformations of the order l, such ondulations are negligible in the limit 
considered here. Note that very close to the critical point ~ and r are large 
and the scale separation (5.1), (5.2) may become meaningless. The merger 
of interface fluctuations and critical behavior is a fascinating topic in itself, 
but is outside the present scope. 

Let us choose a smooth (codimension-one) surface 22 0 in R a, e.g., the 
surface of a droplet, and let it evolve according to Eq. (1.2) to the surface 
22, As explained in Sections 2 and 3, the mobility and the surface tension 
must be an input from the microscopic model. We should mention that in 
general the interface motion will be rather complex. For example, minority 
droplets have the tendency to shrink and will disappear after a finite time. 
Before doing so, droplets may split, at least in dimension d~> 3. On the 
other hand, for the spinodal decomposition after a symmetric quench, one 
obtains a hierarchical network of interlaced + and - phases. Under mean 
curvature, this network will coarsen a s  N~. (13"14) 

We approximate the continuum by an underlying lattice with lattice 
spacing ea, i.e., by (~aZ) a. Here a is a length and the scaling parameter 
will tend to zero. To be specific, let us discuss the Ginzburg-Landau 
model. The initial measure for the stochastic evolution should reproduce 
approximately the interface 22 o. Let A~- be the open domain of the + 
phase and A o be that of the - phase at the initial time t =0.  22 0 is 
their common boundary. Now, one possible choice would be to impose, at 



Interface Motion in Models with Stochastic Dynamics 1097 

time t = 0 ,  ~b0(x)=m + [ m _ ]  for xeA~m(eaZ)  a EAo c~(gaZ)U], where 
m+ = - m _  is the spontaneous magnetization of the equilibrium phases. 
Note that when viewed on the scale of the lattice the interface has a mean 
curvature of order e, thus is of slow variation. At the initial stage the 
interface will be essentially frozen and the field ~b,(x) will approach a local 
equilibrium distribution. To observe a macroscopic interface motion, we 
have to go to the diffusive time scale of order e-2t. At such long time we 
conjecture the following: 

(i) (Mean curvature equation) Let Zt be the surface at time t as 
obtained through motion by mean curvature (1.2) from Zo and let A +, 
resp. AT, be the corresponding open domains of the + ,  resp. - phases. 
Then 

lim (O~-2t(r))=~ m+ if reA~+ (5.3) 
,-~o (m_  if reA '  

Note that r is a finite macroscopic distance, i.e., a distance e-la on the 
scale of the lattice, away from the interface Z t. 

(ii) (Local equilibrium) If r e A + (A'_), then the joint distribution of 
{~b~-z,(r + eax) I x ~ A c Z d, IA] < oo } approaches as e --+ 0 the equilibrium 
distribution corresponding to the + ( - )  phase. [-Properly phrased, 
r should be replaced by the closest point to r on the lattice (eaZ)d.] 

Our conjecture may be supported by a formal computation familiar 
from the theory of fluids3 ls~ This will not be repeated, simply because it 
does not shed any additional light on the validity of the mean curvature 
equation. Basically, one has to assume that certain (nonstationary) 
space-time correlations decay sufficiently rapidly, which in itself is already 
rather close to (i) and (ii). 

For the Allen-Cahn equation our conjecture has been proved by de 
Mottoni and Schatzmann/.6) and Evans et aL (17) The latter work covers a 
more general situation. Both groups assume initial local equilibrium. In 
this context it means that the initial profile transverse to the interface is 
given by the kink solution of the Allen-Cahn equation. In Appendix A we 
prove motion by curvature for the two-dimensional Ising model at zero 
temperature in full agreement with the results in Section 4. Our conjecture 
is further supported by effective interface models, as to be discussed in the 
following section. 

We carefully avoided any statement on shape fluctuations of the 
interface. We only claim that it becomes sharp on the macroscopic scale. 
This is true even if the shape fluctuations would be as large as e -  1 + aa with 
some 6 > 0. 

822/7l/5-6-17 
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6. EFFECTIVE  I N T E R F A C E  M O D E L S  I: M O B I L I T Y  

As we have seen, the zero-temperature Ising model has the drastic 
simplification that, at least locally, the interface can be represented as a 
single-valued function with respect to a reference plane, e.g., the one 
orthogonal to the (111) direction. As the temperature is increased there is 
some probability for overhangs. Also, bubbles of the wrong phase occur. 
Effective interface models are based on the idea of avoiding such complica- 
tions by fiat. They can be derived from bulk models in the limit of strongly 
anisotropic couplings. We are not so much interested in this particular 
limit here, and study effective interface models in their own right. Our 
point is that the mean curvature equation is so general that it must apply 
also to effective interface models. 

We represent the interface as a single-valued function over a reference 
plane which is taken as Z d- 1, d~> 2. At each site x e A c 7 d- 1 there is a 
height variable ~b(x), where either ~b(x)eR or ~b(x)eZ. The region 
{x, Xd [ Xd< ~b(x)} c A x R (resp. A x Z) corresponds to the + phase and 
the region {x, Xdl Xd>~ ~b(x)} corresponds to the - phase. 

There is considerable freedom of how to choose the energy function. 
The crucial physical constraint is that the energy remains unchanged under 
the global shift ~b(x) to ~b(x) + b for all x e A and all b e R (resp. Z). In the 
case of continuous height variables a standard example is 

H(O) = ~ V(gk(x) - (b(y)) (6 .1)  
( x , y ) , x , y ~ A  

with V an even convex function, V(~b)~> C~ 2 with c > 0. [As will be seen, 
less stringent conditions may suffice, e.g., for d =  2 only V(~b)t> c I~b] 1+~ for 
some 6 > 0 is needed.] If we regard ~b(x) as the (scalar) displacements of 
the atoms in a crystal, then (6.1) is the usual anharmonic elastic energy. To 
model the underlying lattice Z d, one would have to add to (6.1) the term 

Olatt(~) = E cos[2n~(x)] (6.2) 
x ~ A  

For discrete height variables the usual energy is 

H(~b) = 2 J  ~ 14,(x) - 4,(y)l  ~ (6 .3)  
( , x , y ) , x , y~A  

J > 0. Here c~ = 2 is the discrete Gaussian model and a -- 1 is the solid-on- 
solid (SOS) model. In the SOS model admissible spin configurations have 
an energy as in (2.6), up to a global constant. 
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To define the dynamics, we follow the standard recipe. We regard the 
energy as potential and add noise. Then 

d 
y t   t(x) = - Z 

( x , y ) , x , y ~ A  

V'(~b,(x) - (b(Y)) + (2/fl) m lb,(x) (6.4) 

x e A. As before, the white noises are independent for distinct sites. With 
free boundary conditions the invariant measure e -nil has infinite total 
weight because of the shift invariance of ~b(x) to (~(x)+b. To have a 
finite normalization, we must break this symmetry through appropriate 
boundary conditions. 

In-~se ~bt(x ) takes discrete values, we specify the rate e+(V~b) for the 
jump from ~b(x) to ~b(x)+ 1 and the rate c~-(V~b) for the jump ~b(x) to 
~b(x)- 1. Our notation is supposed to indicate that the rates depend on the 
height configuration only through height differences to ensure that the shift 
symmetry is preserved. The jump rates satisfy the condition of detailed 
balance, 

c+(V(~)=c2(V(~X+)exp{-fl[H(~X+)-H((J)]} (6.5) 

Here ~b x+ (~U-) stands for the configuration ~b with the height variable at 
x increased (decreased) by one. The generator for the dynamics is given by 

Lf(~b)= ~ {c+(V~b)[f(qU+),f((~)] +c;(V(~)[f((~x-)-f(q~)]} (6.6) 
XEA 

We can now follow the path laid out by the bulk models already. 
Before doing so, let us write the mean curvature equation in our specific 
choice of coordinates. By assumption, the interface is described by the 
single-valued function ht on R a- 1. Let a(Vh) be the (surface) free energy 
per unit area in the reference plane of the interface with slope Vh. Then, in 
Eq. (1.2), 

F= r d a- ix o'(gh(x)) (6.7) 
J 

and 

6F a-1 O 
6h(x) ~ l  ~g~(Vh(x) )  (6.8) 

with a~=Oa/Ou=, u==Oh/Ox~. Let # be the mobility relative to the 
reference plane. According to (1.2), the normal velocity is then given by 

# 6F 
v, = [ 1 + (Vh) 2] t/2 6h (6.9) 
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But I-1 + (Vh)2]l/2vn is just the velocity along the h axis. Therefore the 
mean curvature equation reads 

d--1 ~2 

L~t h, =/~(Vh,) E a~t~(Vh,) ~ h, (6.10) 
c~,fl= 1 

with a=# = d2a/au= au#. We emphasize that in (6.10) the mobility # and the 
free energy a are defined relative to the reference plane. Equation (6.10) has 
the structure of a nonlinear diffusion equation, only the "diffusion matrix" 
a=# depends on Vh, rather than h t itself. 

The (surface) free energy can be defined either canonically or through 
a suitable slope chemical potential. In the first case we consider the box 
A= [- l , l]  a-1. We pick an average slope u and impose the boundary 
conditions ~b(x)= u. x for x e OA, the sites bordering A. Let Ha, u be the 
corresponding energy. Then (in the case of continuous height variables) 

a(u)= _/~-1 lim (2l+l)-~a-1)logf Iq dr (6.11) 
l ~ o o  x ~ A  

Note that we can transform (6.11) to zero boundary conditions by the 
shift ~(x)= r  Then ~(x)= 0 for x e dA and in terms of r the 
bond (x,x+e~) has the interaction energy V([r 
c~ = 1,..., d -  1. a(u) is convex (we are not aware of a proof). This can be 
seen from (6.10). If a~a had a negtive eigenvalue, then the interface motion 
would be unstable. 

In the grand-canonical prescription we add a slope chemical potential 
to the energy as 

d--1 

Z Z 2~V~r (6.12) 
- - l < ~ x i < l , i = l , . . . , d - - 1  a = l  

Here V~b(x)=r  e~)-r with e~ the ~th unit vector. This can be 
read as modifying the interaction potential for the bond (x, x+e~) to 
V(V~b(x)) - 2,V~b(x). (6.12) sums to a pure boundary term of the form 

d--1 

Z ~(q~(xl,...,l, .... xa_~)-r .... xa_x)) (6.13) 
~ = t  ~a 

where ?c~=(xa ..... xd_~) with deleted ~th coordinate. Thus the slope 
chemical potential corresponds to adding a linear boundary term to H. 
We define the "pressure" 

p(2)= _fi-1 lim (2/+ 1)-(u-~)logf [I d(~(x) b(q~(O)) 
l ~  cx3 x E A  

x exp -flH(r ~ ~ ,~=V~b~(x) (6.14) 
- - l < ~ x i < l , i = l , . . . , d - - I  ~=1  
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To break the translation symmetry, we pinned the height ~b(0) at zero. 
Clearly, with [A[ the number of sites in A, 

e x p [ -  tip(2)[A[] 

= f d a- ~u [AI a- '  exp[fl(2, u) IA[ ] f Y[ dq~(x) 6(~b(O)) exp( - f lH)  
x ~ A  

= 1  

~- f dd- lu IA]d-~ exp{ -~[~(u)  - 2-u] IAI} (6.15) 

Therefore p(2) is the Legendre transform of the free energy, 

p(2) = inf (~(u) - 2. u) (6:t6) 
u 

and hence concave. 
Mobility is the next item on the list. The most direct approach is 

through the fluctuations in the magnetization, which is taken to be m+ 
below and m_ above the interface. Then, up to a global constant, the 
magnetization is simply 

MA(Ot)=(m+--m_) ~ q~t(x) (6.17) 
x E A  

for the height configuration ~bt. We repeat our argument from the end 
of Section 3. Expectations with respect to ( . ) + _  are now replaced by 
expectations with respect to the Gibbs measure ( . ) (u) ,  where the average 
slope of the interface is fixed to be u through the boundary conditions 
~b(x) = u. x, x e t?A. We obtain then 

#(u) = -fl(m+ - m _ )  -2 {lina (2/+ 1 )  - ( d - l )  (MA(q~)(-L) MA(q~))(u) 

-- dt lim (2/+ 1) - (a - ' )  (LMA(qk).eLtLMA(O))(u) (6.18) 
l--* oO 

Properly speaking, L should also carry the index u, because the dynamics 
depends on the boundary conditions. 

For the Ginzburg-Landau dynamics 

L ~ r ~ ~ V'(~b(x)-O(y)) (6.19) 
x E A  x ~ A  ( x , y )  
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In the second term of (6.18), LMA sums up to a boundary term and 
therefore vanishes as l ~ m. 

For the first term in (6.18) we use 

= - / ~ - I Z - 1  I ]  d(~(y) E (~(w) E z-27~exp[-/~HA,.(~b)] 
y ~ A  w ~ A  x ~ A  

=/3 -1 IAI (6.20) 

Therefore the mobility of the Ginzburg-Landau model equals 

u = 1 (6.21) 

This result is rather special. Already if we added the cosine potential to 
(6.4), then both terms in (6.18) would contribute and the mobility would 
acquire a nontrivial inclination dependence which is no longer computable. 

For the models with discrete height variables 

L ~ ~b(x)= ~ [c+(V~b)-c~-(V~b)] (6.22) 
x c A  x ~ A  

Therefore, using detailed balance (6.5), 

Cx (v~) (u) 
l x ~ A  

f? - dt lim (2 /+1 )  -(d ~) ~ ~ ( [Cx+(V~)-c2(V~)]  
l ~ o v  x ~ A  y ~ A  

x eZt[cff(Vfb) -- Cy-(V~b)] ) (u ) t  
) 

(6.23) 

7. E F F E C T I V E  I N T E R F A C E  M O D E L S  I1: S C A L I N G  L I M I T  

Locally an interface configuration is rough and fluctuates. To compare 
it with the smooth solution of the mean curvature equation (6.10), 
we average the height variables over some small macroscopic region. 
Mathematically it is more convenient to sum them over an arbitrary test 
function f. In the scaling limit distances both in the reference plane and 
along the ~b direction have to be rescaled. We want to make sure that the 
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initial ql field represents a smooth interface with slow variation on the scale 
of the lattice. Therefore we require, at time t = 0, 

lira e (a- 1) E f (~x)  e(bo(X) = f d a-  lr f ( r )  ho(r) (7.1) 
~ 0  x 

with probability one. Note that the first prefactor, e (a 1), comes from 
normalizing the sum and the second prefactor, e, from rescaling the ~b 
direction. We conjecture as follows: 

(i) (Mean curvature equation) For t > 0 we have 

l ime (a- I) ~ f ( ex )  s~b~ 2t(x ) = f d d-  tr f ( r )  hi(r) (7.2) 
x 

with probability one and h t satisfies Eq. (6.10) with initial condition ho. 

(ii) (Local equilibrium) Locally the interface fluctuates and the 
mean location is changing. Therefore the local statistics is better studied in 
terms of height differences. We pick a macroscopic point ro which on the 
scale of the lattice becomes [e - l ro ]  ( [ . ]  denoting the integer part). We 
consider the differences 

~b,-2,([e- lro] + y) -- r [ e -  lro] + x) 

As e . ~ 0  their joint distribution should be given by the equilibrium 
measure with slope Vh,(ro). 

On a formal level, the validity of (7.2) is easily demonstrated. We have 

dt ~x f ( e x )  eO,-2,(x) 

d - - 1  

= - -e (a -1 )Z  Z e - ' ( f ( e x  + ee~)-- f (ex))  V'(V~q~-2,(x)) 
X ~=I 

qt- g(d--1) E f ( g x )  g - - ' ~ - 2 t ( X )  

x 

(7.3) 

The square of the noise is 

~2(d-- 1) Z Z f(13X) f ( w )  ~-- 26xy6(~-- 2( s -- t) ) = 6(S -- t) e 2(a- 1) ~ f (ex)2  
x y X 

(7.4) 
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which vanishes as e ~ 0. If at the long time e-2t the interface is locally in 
equilibrium, then 

__~(d--1) ~ d~f (ex)  V'(V~b,-2,(x)) 
x 

f d a-  lr O~f(r)(V'(V~q)(O)))(Vht(r))  (7.5) i 

O ~ f =  Of/dr=. Now, for the equilibrium measure, ( . ) (u ) ,  with boundary 
conditions ~b(x) = u .x, x e OA, we have 

Z <v'(v,O(x))>(u)= Y, (v'(vj~(x)+u~))(o) 
x e A  x e A  

= IAI a=(u) (7.6) 

for large volume IAI. By inserting (7.6) in (7.5), and (7.4) and (7.5) in (7.3), 
we obtain Eq. (6.10). Thus effective interface models give further support to 
the mean curvature equation (1.2). 

Several parts of our argument can be improved. As the net result, we 
lack the proof of some plausible properties of the equilibrium states. One 
reason for our difficulty is certainly the fact that the equilibrium measures 
are massless and have slowly decaying correlations. Since this discussion is 
somewhat technical, it is relegated to Appendix B. 

There is a further general property of effective interface models: In the 
case of two dimensions the surface slope is governed by an exchange 
dynamics. The scaling limit for the interface is equivalent to the 
hydrodynamic limit for the slope. For notational simplicity we stick to 
Ginzburg-Landau models, commenting on discrete height variables at the 
end. 

Let us define the slope variables 

rl(x ) = (J(x + 1 ) -  ~b(x) (7.7) 

The q's are really bond variables, but we may ignore this feature for a 
one-dimensional reference lattice. The height differences are governed by 
the stochastic differential equation 

d 
q,(x) = V'(rl,(x + 1 )) - 2V'(r/,(x)) + V'(rl,(x - 1 )) 

+ rVt(x + 1) - ~t(x)  (7.8) 

These are just the discretized evolution equations for a conserved field 
(model B). We note that with respect to the equilibrium measure the q(x)'s 
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are independent with distribution Z - l e x p [ - f l V ( q ( x ) ) ] d ~ 1 ( x ) .  The 
boundary constraint ~b( _+ l) = +_ul means fixing the total slope as 

l - - 1  

tl(X ) = 2lu (7.9) 
x =  - - I  

which in terms of the slope gas is the canonical constraint. The scaling limit 
(7.2) translates to the hydrodynamic limit for (7.8), which has been studied 
extensively (7) with proofs available. (18) The mean curvature equation corre- 
sponds then to a nonlinear diffusion equation for the slope (d /Ox)hr  = u,, 

as  u, = ' ( " ' )  o11(.,) u, (7.10) 

( a l l ) -  1 is the compressibility of the slope gas and # is its conductivity, i.e., 
the response in the slope current to a small external driving field. #or11 is 
the bulk diffusion coefficient. In general, both t r ,  and # depend on the 
local slope ut. The conductivity is given by a standard Green-Kubo 
formula as the space-time integral over the slope current correlations./71 It 
agrees with Eq. (6.18) specialized to d=  2. 

We can also turn our construction around by first defining a lattice 
gas with spin exchange dynamics. If ( t(x)= _+_+1 denotes the spin (=slope) 
variables, then 

(,(y) (7.11) 
y =  - - I  

with some freedom of how to define the left boundary, ht(x) can then inter- 
preted as the height of an effective interface model. In our example the 
height differences are + 1. They would take integer values in the standard 
SOS model. 

8. R O U G H E N I N G  T R A N S I T I O N  

Some of the models discussed previously undergo a roughening trans- 
ition at a temperature TR. For example, in the three-dimensional Ising 
model with temperature T< TR a (001) interface is smooth in the sense that 
typical fluctuations away from the average interface location are bounded, 
whereas for TR< T< Tc the interface is rough and fluctuations diverge 
logarithmically. ('9'2~ Below the roughening temperature the surface tension 
has cusps, implying a faceted equilibrium shape. One may wonder whether 
the mean curvature equation extends to such a somewhat singular situation. 
We claim that it does so and want to explain how. 
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To illustrate the situation we consider the (2 + 1)-dimensional sine- 
Gordon model. To our advantage, the stiffness and the mobility for this 
model have been computed by Nozi~res and Gallet (2') by means of a 
dynamic renormalization group. We will heavily rely on their results. The 
sine-Gordon model is an effective interface model of Ginzburg-Landau 
type with energy 

H=• ~ [~b(x)-~b(y)]2-2 ~ cos[2~b(x)] (8.1) 
( , x , y> ,x ,  y e A  x ~ A  

with ~b(x)e R and A an l•  l box. 2 fixes the strength of the pinning 
potential, 2 > 0 .  Following the computation leading to Eq. (6.18), we 
obtain the mobility 

# ( u )  = 1 - f l fo  dt ~ (2n2) 2 (sin[2rC~bo(O)] sin[2n~b,(x)])(u) (8.2) 
x ~ Z  2 

where we have formally taken the limit l + oo. If u = 0, then for/~ sufficiently 
large the interface is smoothJ =2'23) Therefore in (8.2) we may expand around 
q)t(x) = 0. The equilibrium measure is then Gaussian with energy 

/1=  x ~' [-~b(x) - ~b(y)] 2 + 2(2~) 2 1 ~ ~b(x)2 (8.3) 
(,x, y ) , x ,  y E A  x ~  A 

The corresponding equations of motion are linear and yield an exponential 
decay to equilibrium. Inserting in (8.2) and expanding the sine, we finally 
get 

u(0) = 0  (8.4) 

in the limit /~ ~ oo. In their computation Nozi6res and Gallet obtain 
/~(0) = 0 for all T <  TR. 

The physical mechanism for a vanishing mobility is nucleation: 
Because of the small excess density in the gas (-- - )  phase, droplets are 
formed on the smooth surface {~b(x)=0}. They disappear rapidly unless 
they have reached a critical size, in which case they expand, cover the 
whole surface, and form the layer {~b(x)=1 }. Such an activated process 
leads to a growth velocity v ~ exp(-c/h) .  Therefore the mobility vanishes. 
As the interface is slightly tilted, it necessarily contains thermally 
roughened steps. At kinks, nucleation occurs without cost in energy. A step 
moves then with a velocity proportional to h. Therefore the interface has a 
growth velocity proportional to the step density, which implies for the 
mobility 

~(u) = a lul (8.5) 
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for small [u[ and T <  TR. Here a is a coefficient depending on T and the 
model parameters. At larger lul the mobility levels off. For T~> TR, a = 0  
and # ( u ) ~ p ( 0 ) > 0  smoothly as u ~ 0 .  In particular, # (0 ) jumps  to a 
nonzero value at TR. We do not know how such detailed properties could 
be extracted from the Green-Kubo formula (8.2). 

For the surface tension Nozi6res and Gallet obtain 

1 3 ~ ( u )  = ~o + b lul + ~c lul (8.6)  

for T <  TR with a0, b, c positive coefficients. In order to emphasize the 
qualitative behavior, we ignored in our discussion the anisotropy due to 
the lattice structure of the substrate A. Strictly speaking, cr and/~ depend 
on u and not just on lul, 

For T >  TR, o and ~t depend smoothly on u and the mean curvature 
equation is well posed. Let us insert then in Eq. (6.10) our findings (8.5), 
(8.6) valid for T <  TR. Since a has a cusp at u = 0, the stiffness matrix G~ 
has a &singularity at u = 0. However, when multiplied by p, the singularity 
gets canceled, because # is continuous and #(0)=  0. Therefore 

~(u)=alu l_2(b+cu2)  ( u~ - u ,  u2"~ \-u1'~2 u~ ) 

u2 ulu2"] (8.7) 
+ 2ac ullu2 u~ ,] 

The matrix kto-(u) has the eigenvector (u~, u2) with eigenvalue 2acu 2 vanish- 
ing as ]u] ~ 0. The orthogonal eigenvector has the eigenvalue a(b + cu2). 
Equation (6.10) is still well posed. Since ~t~r(u) has a zero eigenvalue for 
u = 0 ,  the level set {x lVht (x)=0}  has to be treated as a free boundary. 
This describes how facets dissolve under mean curvature motion. If ht 
depends only on Xl, then the dynamic equation for Ul, = Oh~/Oxl becomes 

c~ 2 0 2 
Ot ul~ = ~ ac 0x----~1 (u,t) 3 (8.8) 

which is the well-studied porous medium equation. (24) As one of its main 
features, an initial bump of compact support maintains compact support 
with a diameter increasing as t 1/6. For further details we refer to ref. 25. 

9. INTERFACE FLUCTUATIONS 

The scaling limit (7.2) is a law of large numbers in the sense that, on 
t h e  chosen scale, typical configurations are well approximated by the 
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solution of the mean curvature equation. Therefore we expect to have a 
Gaussian fluctuation theory for small-size deviations from the typical 
profile. For fluids such considerations would lead to fluctuating 
hydrodynamics. (7) 

Let us discuss first effective interface models. For them, by definition, 
the interface is sharp and the bulk phases have no fluctuations. Thus we 
can follow the standard procedure. We fix an average inclination u and 
want to study the static equilibrium fluctuations in the interface gradients. 
For this purpose we define the fluctuation field 

Vr  = e-(a-1)/2 2 f ( ex ) [VO(x)  - u] (9.1) 
x 

with f a smooth averaging function, as before. In the limit e --* 0, Vf f ( f )  
should become jointly Gaussian with mean zero and covariance 

Id6~__ 1 1 - 1  (V~r Va~(g))  = f d d-  Jk f ( k ) *  '2(k) k~,k,~ ~rT~(u ) k~,k,~ (9.2) 
7, = 1  

(For particular cases such a scaling limit is proved in refs. 26 and 27.) We 
recognize under the integral the small-k limit of the full structure function 

So:l~(k) = 2 eikx( I r e  q~(x) - u~] [VBq~(0 ) - us]  }(u) (9.3) 
x 

with k e BZ, the first Brioullin zone. a~(u)  is the stiffness matrix at average 
inclination u [compare with (6.10), (6.11)]. 

For the time-dependent fluctuations we linearize the mean curvature 
equation (6.10) around the constant profile h t ( x ) = u . x .  We add noise 
in such a way that the Gaussian measure (9.2) is stationary. Then the 
fluctuations are governed by the Langevin equation 

d--1 
~ t ~ t = # ( u  ) ~ a=~(u) O ~ t + [ 2 # ( u ) ] l / 2 r  t) (9.4) 

~,/~= 1 

0~ = C/Ox~. The stochastic differential equation (9.4) defines the Gaussian 
process f t .  We expect that 

f (ex)[O,-2,(x)  -- u .  x]  = f dx f ( x )  ~t(x) (9.5) lira (d-- 3)/2 2 e--~O d X 

in the sense of convergence of joint distributions. 
We may also consider fluctuations around a nonstationary interface 

ht, i.e., the fluctuation field 

e - (d- 3)/2 ~ f ( ex )  [(b~-~t(x) -- h t(ex) ] (9.6) 
x 
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Their e --. 0 limit is again governed by a linear Langevin equation. Invoking 
the extended local equilibrium hypothesis, the noise is assumed to be 
locally as in (9.4). Therefore 

8t it = L,~, + [2p(Vht)] ~/2 ~(. ,  t) (9.7) 

with L, the linearization operator for the mean curvature equation, 

d--1 

L , ~ =  ~ {# (Vh t )8~[a~(Vh t )8~J+#p(Vh , ) [8~a~(Vh , ) ]Sp~}  (9.8) 
~ , f l= l  

with ,up = 8t~/8u/~. 
For bulk models the quantity of physical interest is the order 

parameter correlation in a state with interface. Rather than entering into 
generalities, let us discuss one example, namely an initially flat and 
uncorrelated interface. We fix an inclination Uo and impose the + state in 
the half-space {x] Uo . x < 0 }  and the - state in {xl Uo-x~>0}. We would 
like to compute then the time-dependent correlations 

(r  r r ( y ) ) , -  (o'(x)), ( r  (9.9) 

say for the stochastic Ising model. For distances larger than the correlation 
length ~ and times larger than the relaxation time z we expect that the 
interface correlations are well described by a fluctuation theory identical in 
form to the one developed for effective models. We only have to identify 
the appropriate parameters in the Langevin equation (9.4). 

With respect to the reference plane {X[Uo.X=0}, the free energy 
equals 

f(u)[1 + (U--Uo)2] 1/2 (9.10) 

Therefore the stiffness matrix at uo becomes 

a~(Uo) = f~(Uo) + f(Uo) 5 ~  (9.11 ) 

f ~  = 82f/Su, Su~. The mobility at Uo is just ~(Uo) of the bulk model. 
We regard o(x) as defined on R e taking values ~ 1 in each elementary 

cube. We set x =  (xjl, x j_) with xtl the coordinate in the reference plane. 
For I x - Y l  > ~ and t > �9 we approximate 

(a(x) G(y)),- (~(x)), (a(y)), 

~- (m + -- m_  )2 [ ( O(x~ - ~,(Xll)) O(ya - ~t(Yll))) 

- ( O ( x .  - ~ t ( x l l ) )  ) ( O ( y •  - {,(Yii)) ) ] (9.12) 
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with 0 ( z ) = - I / 2  for z > 0  and O(z)=l /2  for z<0.  Here ~t(xll ) is the 
solution of (9.4) with stiffness matrix (9.11), mobility #(uo), and initial 
condition ~(xl l )=0.  Therefore ~,(xtl ) is Gaussian with mean zero and 
covariance 

C~(xu, YlL) = f de -  lk ~r~(uo) k=k~ 

x exp[ik-(xl~-YII)] (9.13) 

where we introduced by hand an ultraviolet cutoff. Inserting in (9.12) yields 

(~r(x) a(y) ) , -  (or(x)), (~r(y) ) t 

~_ (m ~ - m _  )z f d2q exp{- �89 xll) q~ + C,(y~l, YI~) q~] } 

• {1 - e x p [ - C t ( x i l ,  Ylt) qlq~]}(qlq2) -1 exp[i(q~x• + q2 Y~_)] (9.14) 

If C,(xtl, YII) ~< 1, we may expand the exponential. Then 

(6r(X) a ( y ) )  t -- (tT(X)) t ( a ( Y ) ) t  

"~ (m+ - -m ) 2 Ct(xtt, ytl)[2nD(t)] -1 e x p [ -  (x~ + y~)/2D(t)] (9.15) 

with 

11o ~ if d = 2  
D(t) = C,(O, O) ~- g t, if d=  3 

if d~>4 

(9.16) 

10. BULK D Y N A M I C S  WITH CONSERVED ORDER 
P A R A M  ETER 

If the bulk dynamics conseryes the order parameter, then the interface 
motion is strongly constrained by the conservation law. The mean cur- 
vature equation has to be replaced by a more complicated, in fact, nonlocal 

for large t. For d > 3 the limit t ~ ~ yields the large-distance part of the 
static correlations. Since the interface is smooth, i.e., has bounded fluctua- 
tions, the correlations orthogonal to the interface decay rapidly. Along the 
interface one has slowly decreasing correlations, as predicted by capillary 
wave theory. 
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evolution equation. We will argue that despite additional mathematical 
complexities the conceptual framework is simple--at least up to a certain 
degree. In particular, beyond the bulk diffusion coefficient, there is no 
additional transport coefficient appearing in the macroscopic equation of 
motion. 

]For the sake of concreteness we consider a lattice gas with nearest 
neighbor attractive forces between particles. The occupation variables are 
t/(x) = 0, 1; 0 standing for empty and 1 for occupied. The energy reads 

H= -J  ~ q(x)~(y) (10.1) 
( x , y >  

J > 0. The equilibrium states are those of the Ising model. Below the critical 
temperature there is a high-density fluid phase, density p+, and a 
low-density gas phase, density p . The dynamics of the lattice gas is 
specified through the exchange rates c(x, y, 0) between nearest neighbor 
lattice sites. We assume detailed balance by requiring 

c(x, y, rl)= {o(AxyH(q)) for 
for 

[x-- yl =1 
(10.2) 

I x -  y[ > l 

with g(2)= e-PXg(-2)> 0. Here AxyH is the difference in energy after and 
before the exchange between lattice sites x, y. 

On the diffusive time scale the bulk density is governed by the 
nonlinear diffusion equation 

Q 
~-~ p, = v .  [D( ; , )  v p , ]  (lO.3) 

D is the bulk diffusion matrix. It is related to the bulk conductivity a by 
the Einstein relation 

D = ) ~ - l o  " (10.4) 

with Z the static compressibility. In the same fashion as the mobility, the 
conductivity is defined through the linear response in the average current 
to an external driving force, i.e., to a bias in the exchange rates. Explicitly, 
a is given by the Green-Kubo formula 

o-~,/~ = �89 e~)>(p) -- f ?  dt ~ (j~(x) eL~[a(O)>(p) (10.5) 
x 

j~(x) = c(x, x + e~, rl )[rl(x) - rl(x + e~,)] (10.6) 
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Here e L' is the formal solution of the master equation. Its matrix elements 
(err),,, are the transition probability from t/to t/' in time t. The expectation 
( . ) ( p )  is in the translation-invariant equilibrium state with density p, 
0<p~<p , resp. p+~<p<l .  Under our particular assumptions D is 
diagonal, i.e., D~ = 6~BD, but in general there is no reason for such a 
simplification. 

We note that for T> To, D(p)> 0 in the whole interval 0 ~< p ~< 1 and 
the long-time dynamics is properly described by Eq. (10.3). For T< Tc the 
situation is more complex. First of all by (10.4), (10.5), D is defined only 
outside the interval of phase coexistence and D ( p _ ) >  O, D(p +)> 0. We 
formally extend the definition of D to D(p)=0  for p _ < p < p + .  The 
nonlinear diffusion equation must be read then as a free boundary value 
problem. (For the Ginzburg-Landau model with conserved dynamics our 
claims are actually mathematical theorems. (28)) Let us assume that our 
macroscopic volume A consists of a domain A;- where pt<<.p_ and a 
domain A + where p~>~p+ separated by a sharp interface 22~. By con- 
servation of mass its normal velocity is given by 

(p+ - p _ )  v ,=  -r~-[D(p+)Vp + - D ( p _ ) V p t -  ] It, (10.7) 

where +, resp. - ,  refers to the limits being taken from the domain A +, 
resp. A~-. The nonlinear diffusion equation (10.3) has to be solved with the 
boundary conditions p+ = p+, p;- = p_ at 22, and, say, no-flux boundary 
conditions at OA. 

We observe that (10.3), (10.7) have many stationary solutions. In fact, 
for any particular choice of the interface 27 we just have to set pt= p~_ in 
A +, p t = p _  in Af .  The set of steady states gives us an indication of the 
mechanism for the long-time behavior: in each phase the lattice gas tries to 
reach its equilibrium density and the resulting flux imbalance pushes the 
interfaces. Once the equilibrium densities are reached, there is then no 
further motion on the diffusive time scale, although the system has not yet 
reached global equilibrium. 

As an aside we remark tha t  we could choose also the initial density 
Po to be inside the interval of phase coexistence, p < p 0 < p + .  The 
microscopic model is then metastable or even unstable and phase 
segregates. Equation (10.3) merely predicts pt=po on the diffusive time 
scale. This just means that after ~-2t exchanges per bond the droplets have 
reached a size proportional to g-z/3tl/3, which is still small compared to the 
macroscopic length e -1. Spinodal decomposition is a topic outside our 
discussion and we will continue to assume that the initial state is locally 
thermodynamically stable. 

Beyond the diffusive time scale the interface motion is governed by the 
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Gibbs-Thomson effect: for a large equilibrium fluid droplet with radius R 
the density equals p+ +c+/R inside and p_ +c /R outside the droplet 
with certain positive coefficients c+, c_. Our interface is slowly varying on 
the scale of the lattice. Therefore at pieces of positive curvature (as seen 
from the + phase) there is a slight excess density on both sides of the inter- 
face, whereas at pieces with negative curvature there is a slight depletion. 
These density variations drive the system eventually to global equilibrium. 

As before, let us consider a lattice constant ~a, equivalently an inter- 
face variation on the scale e-1. According to Gibbs-Thomson the densities 
are p+ +~u, in A + and p_ +~ut in AT. The density gradient is then of 
order e and according to Eq. (10.7) the interface velocity is of order e. Thus, 
macroscopic interface motion appears on the time scale e-3t (exchanges 
per bond). The nonlinear diffusion equation should still hold and reads on 
the new scale 

8 
e -~ ut = V.  [D(p + + cut) Vut] (10.8) 

in A + and correspondingly for A 7. Since D(p+)> 0 and D(p_)> 0, we 
obtain 

V. [D(p+(_)] Vut=0 (10.9) 

in A +, resp. A/-. The conservation law (10.7) is already scale invariant and 
yields 

( p + - p  ) v , = - h . [ D ( p + ) V u + - D ( p _ ) V u [ ]  [z, (lO.lO) 

Of course, such considerations cannot really tell us what happens at 
the interface. For a more quantitative point of view we turn to the 
Cahn-Hilliard equation. Since we are away from the critical point, fluctua- 
tions are not so important and we should get a reasonable indication of the 
dynamics of the lattice gas. The Cahn-Hilliard equation reads 

8 
r = -Lo~(X a r  V'(r (10.11) 

with the Onsager coefficient Lo fixing the time scale. Equation (10.11) is 
just like the Allen-Cahn result only modified by - A  in front from the 
conservation law. Pego (29) studies the interface motion under the 
Cahn-Hilliard equation through a formal asymptotic expansion precisely 
on the same space-time scale as introduced here. He obtains (10.9) and 
(10.10) with D~t3(p+(_))=8~t~LoV"(p+(_)). Clearly, since Eq. (10.ll) is 

822/71/5-6-18 



1114 Spohn 

isotropic, D is scalar. For Cahn-Hilliard the conductivity is Lo and 
V"(p) = X(p) -1, we therefore have agreement with (10.4). At the interface 
Pego obtains the boundary conditions 

(P+-P-) V"(P+)U+=XIf dxw'(x)2] K s, 

(P+-P-) V"(P-)Ut =KIf dxw'(x)2] K z, 
(10.12) 

They are independent of Lo, implying that only static, equilibrium 
quantities can be involved. Thus, the correspondence to the lattice gas is 
unambiguous: ~c Sdx w'(x) 2 is the surface tension and V"(p) the inverse of 
the compressibility X. If we set the chemical potential as 

~eq + ~ (10.13) 

then u=g(p+ t_ ) )#  in At +, resp. A;-. Thus the chemical potential is the 
quantity that is continuous across the interface. 

We conclude that for a stochastic lattice gas on a spatial scale e - la  
and on a time scale ~-3t the local chemical potential deviates by order 
from its equilibrium value at coexistence [cf. (10.13)]. This deviation is 
governed by 

(V.aoV#, )=0  (10.14) 

with boundary condition 

(P+--P-) #t=a(~)Klz, (10.15) 

Here a0 is the conductivity matrix as given by the Green-Kubo formula 
(10.5) evaluated at phase coexistence and a(fi) is the surface tension as 
defined in (2.11). The normal interface velocity is then determined by 

( P  + - -  P -- ) Vn = - - /~"  O '0 (V~t  + - -  V l A t  ) IZ', (10.16) 

We remark that for a stochastic Ginzburg-Landau model with conserved 
order parameter, i.e., model B, in the standard lattice discretization we 
have (~o)~ = 6~,pLo with Lo the bare global Onsager coefficient. Thus for 
this model only the static surface tension enters into the macroscopic 
equation. 

A further support of Eqs. (10.14)-(10.16) comes from the observation 
that they lead to the correct equilibrium interface. We consider a macro- 
scopic domain A with a single fluid droplet immersed in the gas phase and 
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either no-flux or periodic boundary conditions. Then the volumes of A,+ 
and of A 7 do not change in the course of time, since 

d l A T l - - f z d f  v. dt 

= _(p+ _ p _ ) - i  fxt df~. cro(VP + - -VPt  ) 

= 0  (10.17) 

by (10.14) and the divergence theorem. On the other hand, the surface 
tension changes as 

d dfz fz d tF=~ df a(fi) = df a(fO v.K 
t t 

= - ( P  + - P -  I_ d f  ao(V , + - 
t 

= _ _ ( p  + __ p _ ) - - 2  fA dar (V#t. aoV#t) (10.18) 

again by (10.14) and the divergence theorem. Thus the surface free energy 
decreases with the constraint of a constant droplet volume. We expect then 
that ,ut converges to a constant value as t ~ oe and that the stationary 
droplet shape is given by minimizing the surface energy at constant droplet 
volume. This is just the equilibrium shape according to the Wulff 
construction. 

11. SURFACE DIFFUSION 

A crystalline surface against vacuum relaxes through surface diffusion, 
i.e., atoms diffuse on the surface and try to equilibrate. The corresponding 
stochastic model is the obvious modification of the effective interface 
models in Section 6. As before, at each site of the reference lattice there is 
a height variable if(x), x E A, taking integer values. The energy of a height 
configuration is given by (6.3). We prescribe exchange rates c(x, y, V4) for 
nearest neighbor bonds (x, y) .  Here c(x, y, Vq~) is the rate for the jump 
from ~(x), q~(y) to ~ ( x ) - l ,  4 ( y ) + l .  The rate c depends on ~ only 
through the height differences in the neighborhood of the bond (x, y) .  
Note that, in general, c(x, y)#c(y,x). The exchange rates satisfy the 
condition of detailed balance with respect to the energy (6.3) in the form 

c(x, y, Vq~)=c(y, x, Vq~Xy)exp{-fl[n(q~xy)-H(qJ)]} (11.1) 
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Here ~b xy denotes the height configuration ~b with q~(x), ~b(y) substituted by 
1, + 1. 

In the phenomenological approach the starting point is the conserva- 
tion law for the height, 

0 
~ h + V . j = 0  (11.2) 

with j the surface current. One then postulates that the surface current is 
proportional to the gradient of the chemical potential, i.e., 

j = -/~V 6F (11.3) 
6h 

/~ is the surface mobility. In general, it depends on the local slope Vh. Here 
# is a ( d - 1 ) x  ( d - 1 )  matrix. Carrying out the variational derivative in 
(11.3), we obtain the surface diffusion matrix 

d--1 

O~,~= ~ #=7~r~ (11.4) 
7=1  

Since the set of equilibrium states is not altered by the conservation 
law, the surface free energy is still given by Eq. (6.11). The surface mobility 
# is now defined through the linear response in the surface current to a 
small bias in the exchange rates. Most naturally the bias is imposed by 
adding a linear external field to the energy in the form 

- (E .  x)  (11.5t 
X 

and requiring that the biased rates satisfy detailed balance with respect to 
H ~e~. Since the linear response argument follows standard lines (see ref. 7 
in the case of lattice gases), we may jump directly to the conclusion. The 
mobility is given by the following Green-Kubo formula: 

fl I 6=~ < c(O, e~) )(u) #=7 

f? - 2 dt ~ ( [c (0 ,  e=) - c(e~, 0 ) ]  
X 

x eL'[c(x, x + e ~ ) - c ( x + e ~ ,  x)] ) (u)  1 (11.6) 

e, 7 = 1 ..... d - 1 .  As before, fl is the inverse temperature and e Lt is the 
transition probability for the surface dynamics ( - ) (u )  is the equilibrium 
average for a fixed mean slope u. 
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We expect that the macroscopic dynamics (11.2), (11.3) becomes exact 
in a scaling limit for which the appropriate time scale is now g-4t because 
of the conservation law. At present, there are no positive results to record. 
In two dimensions it is of advantage to go over to the slope gas. The equi- 
librium measure ( . ) ( u )  becomes then a product measure. The dynamics of 
the slope gas is unusual, because two neighboring exchanges occur always 
simultaneously. Such lattice gases have not been studied so far. In fact, we 
do not have a single example where the time-delayed part of the response 
vanishes and thus no example for an explicitly computed mobility #. 

At low temperatures the probability of surface excitations is small. We 
can think of them as a dilute gas of charges with positive sign for excita- 
tions above and negative sign for those below the average surface. Under 
the exchange dynamics they perform almost independent random walks 
and annihilate each other upon collision. The built-in steps serve as sink 
and sources. In this picture the mobility is just the conductivity of the gas 
of excitations. In particular, even for the high-symmetry plane u = 0 below 
its roughening transition the mobility does not vanish. This is in marked 
contrast to the nonconserved (evaporation) dynamics. 

As one application of physical interest we mention that the macro- 
scopic equations (11.2), (11.3) describe the spontaneous formation of facets 
for the high-symmetry plane below TR. This topic is somewhat off the main 
track and is more fully explored in ref. 25. Here we just want to explain the 
mathematical mechanism and to point out the difference from the porous 
medium equation (8.8) valid for the nonconserved dynamics. Let us 
consider the physical dimension d = 3 and let us assume for simplicity that 
the initial profile depends only on the coordinate along the 1 axis, here 
denoted by x. It is convenient to write down the dynamics in terms of the 
slope u t = aht/ax, 

0 02[ 02 ] 
o t u t =  - ~x 2 l~(u,)-~x2 g(ut) (11.7) 

Here g = o" 1 . Therefore g is a strictly increasing function with g(u) = - g ( - u ) .  
Below T R the surface tension has a cusp [cf. Eq. (8.6)] and therefore g 
has a jump discontinuity of magnitude 2b at u = 0. The mobility is even, 
kt(u) = / t ( - u ) ,  by symmetry, and, as argued above,/~(u) > 0. Such types of 
equations have been studied in the context of nonlinear filtration 
problems. ~176 To have the correct notion of a solution, one defines 

v = g(u) (11.8) 
and rewrites (11.7) as 

0 02[ 02 ] 
0 tg - l (v , )=~- -x  2 I~(g l(vt))-~x2Vt (11.9) 
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Note that g-1 is increasing and vanishes on the interval [ -  b, b]. Thus we 
have for Ivl ~<b and every t 

0 4 
O=-~x4 V t (11.10) 

Its solution has to be matched to the solution of Eq. (11.9) for Iv[ ~>b in 
such a way that the current is continuous. This leads to a fre~ boundary 
value problem for the set of points {xl Iv,(x)[ = b}. If the initial height 
profile is periodic, then pieces with zero slope expand, which means that 
facets of the high-symmetry plane form. After a finite span of time the facet 
is completed and the surface healed. 

12. C O N C L U S I O N S  

We have introduced a variety of stochastic models with the common 
feature that in thermal equilibrium they have two spatially coexisting 
phases. We argued that a slowly varying interface is governed by the 
appropriate macroscopic equation in a scaling limit. Most importantly we 
have identified the quantities appearing in the macroscopic equation in 
terms of well-defined time-dependent equilibrium correlations of the 
underlying microscopic model. 

A novel situation arises when the chemical potential (=external 
magnetic field) is moved slightly off phase coexistence. Specifically, let us 
consider the nonconserved case and let us restrict ourselves to times much 
shorter than the nucleation time of the now metastable phase. Clearly, a 
planar interface acquires a net velocity depending on the orientation. Thus 
the macroscopic equation becomes 

6F 
Vn = - ~  ~-~ + v(~) (12.1) 

with v(~) the systematic velocity along ~. Since the mobility and the surface 
free energy are equilibrium notions, it is slightly inconsistent to keep their 
form in (12.1) also for the driven interface. Only to linear order in the 
chemical potential difference are we allowed to ignore such changes and 
this was used in the identification of the mobility. 

The planar interface moving with velocity v(h) shows one surprising 
feature, as first noticed in ref. 31 and intensively studied in recent years. (32) 
In equilibrium the interface has small Gaussian fluctuations around its 
mean location. As soon as v(fi) ~ 0, fluctuations increase and, more impor- 
tantly, they are no longer Gaussian. This phenomenon is known as "kinetic 
roughening," because the interface roughens under systematic motion. 
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Driving can also be implemented for models with a conserved order 
parameter. For surface diffusion one could bias particles along the surface, 
although a physical realization may require some ingenuity. For lattice 
gases one possibility is to drive through boundary conditions: we impose 
on the left side of the box a density p < p_ and on the right side a density 
p > p +. There is then a sharp interface parallel to the boundaries of the 
slab. Its fluctuations are suppressed compared to thermal fluctuationsJ TM 

A P P E N D I X  A. Z E R O - T E M P E R A T U R E ,  
T W O - D I M E N S I O N A L  IS ING M O D E L  

The stochastic dynamics of the zero-temperature, two-dimensional 
Ising model is defined by the flip rates 

if n(x )=3 ,4  
1 if n(x) = 2 

C x(~ )  = 
C 1 if n(x)= 1 
Co if n(x)--O 

(A.1) 

x ~ Z  2. Here n(x) is the number of nearest neighbors y of x such that 
a(y)  = a(x). Energy-increasing flips are forbidden. Flips that conserve the 
energy have rate one, thereby fixing the time scale. The energy-decreasing 
rates Co and cl are free parameters in principle. Physically, we expect 
Co>~C 1 ~ 1. 

An ambitious goal is to prove that if initially the spins are independent 
with, say, E(a(x))= 0, then after the long time e-2t one has sharp inter- 
faces which (on the spatial scale ~-1) are governed by mean curvature with 
mobility (4.25). 

A more modest project is to impose initially a domain of + and a 
domain of - spins such that they are separated by a single, non-self-inter- 
secting con tour?  (7 is a sequence of connected bonds on the dual lattice). 
Under the rules (A.1) such a situation is not strictly maintained in time. 
For example, we could have a + spin with east, west neighbors + and 
north, south neighbors - .  By flipping, ? would split into two. Such 
complications can either be estimated to have a small probability or be 
forbidden by a slight modification of (A.1). 

In passing we should mention the closely related contour model. (34) 
Here the configuration space is restricted to single closed, non-self-inter- 
secting contours. Both energy-increasing and energy-decreasing spin flips 
are allowed (subject to detailed balance), but illegal flips leading out of the 
configuration space have rate zero. In the stationary measure, a contour of 
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length 17[ has the weight e -~ Irl. For the contour model, motion by mean 
curvature has not been proved yet. 

Returning to zero temperature, we note that a tractable situation is 
obtained by requiring that 7 consists only of bonds el, e2 (i.e., the contour 

consists only of bonds directed to the right and upwards). (35) If we iden- 
tify el with 0 and e2 with 1, then the dynamics on the sequences of 0, l's 
as induced by the rates (A.1) is precisely the symmetric exclusion process 
with nearest neighbor exchanges. Proving motion by curvature corresponds 
to the hydrodynamic limit for symmetric exclusion. This is a well under- 
stood subject (7) and results in the mobility (4.25). 

We could regard the contour V also as a single-valued function with 
respect to the x axis. Let ~b(x)e Z, x e Z, be the corresponding height. Then 
the height differences r/(x)=~b(x+ 1)-~b(x) are nonnegative and are 
governed by the zero-range process with rate function c ( n ) =  1 for n >~ 1, 
c(0)=0.  Again motion by curvature corresponds to the hydrodynamic 
limit for the zero-range process. 

With the present constraint, clearly, we do not cover "critical" points 
where the tangent vector to the macroscopic interface is parallel to one of 
the coordinate axes. One may worry whether the mean curvature equation 
actually applies at such singular points, in particular since the (entropic 
part of the) surface tension and the mobility vanish and are not differen- 
tiable at such points. We are going to use the mapping to zero range to 
prove that such doubts are unfounded, fortunately. 

We consider a cylinder [1,..., N] x Z with periodic boundary condi- 
tions, N =  [~-1], [q] denoting the integer part of q. The interface is given 
by the single-valued function x ~ ~b(x) e Z, x = 1 ..... N, with spins equal to 
+ 1 below and equal to - 1  above ~b. We set c1 = 2 and forbid flips that 
would make ~b multivalued. The height process is then governed by the 
rates 

c + (~b) = c(fb(x + 1) - r + c(qk(x - 1) - ~b(x)) 

c~- (~b) = c(r - q~(x + 1 )) + c (O(x )  - ~b(x - 1 )) 
(A.2) 

where c ( n ) =  1 for n >~ 1, c ( n ) =  0 for n ~< O. The height differences q ( x ) =  
~b(x + 1 ) -  ~b(x) now take values in 7. We can think of their dynamics as a 
two-component zero-range process. The component A corresponds to 
r/(x) > O, the component B to q(x) < O, and "empty" to q ( x )  = O. The A and 
B particles jump according to zero range. If an A particle jumps to a site 
with a B particle present (or vice versa), they annihilate each other instan- 
taneously. Thus we have the diffusion-reaction process A + B--* O, well 
studied in the case of independent particles [i.e., e (n )  = n, n > O, e (n )  = O, 
n~0-].(36, 37) 
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For our particular coordinate frame, motion by curvature reads 

0 
O t t = ~ x  \ S x ' ]  

U 
a'(u) - - -  (A.3) 

l + ] u l  

on the circle [0, 1 ]. Equivalently the slope ut = (~/Ox) h t is governed by the 
nonlinear diffusion equation 

0 0 2 
~ u, = ~x2 o"(u,) (A.4) 

Thus we have to show that the two-component zero-range process is 
governed by (A.4) on a large scale. This looks like a problem covered by 
methods which are standard by now. The difficulties with the conventional 
approach can be understood from the peculiar structure of the set of 
stationary measures. Clearly for t ~ oo the majority component survives 
and has then an independent geometric distribution conditioned on the 
total number of surviving particles. Thus the stationary measures split into 
a set of stationary A measures and of stationary B measures which are 
singular with respect to each other. Therefore any simple-minded version of 
relative entropy for the time t measure of the qt process is bound to be 
infinite. Standard methods very heavily rely on entropy and entropy 
production estimates and it is not clear how they extend to the present 
situation. 

As explained to me by Horng-Tzer Yau, fortunately there is a some- 
what different technique availableJ 38) 

Let us introduce the single-site distribution for the stationary 
measures. We set for u > 0 

{0 "(1 + u ) ( ' + ~ )  if 
p(")(n) = if 

for u<O 

{~ P(u)(n)= lul I"l ( l  + [ul) ~l.l+,) 

and 

p(~ = 50, 

Here u is the average density, u = Z ,  p(")(n)n. 

T h e o r e m  1. Let the scaled height process be given by 

n>~0 
(A.5) 

n < 0  

if n > 0  
(A.6) 

if n~<0 

(A.7) 

r "m- ~r 1X) (A.8) 
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with x = e, 2e,..., Ne. In the obvious way we regard ff~ as a piecewise con- 
stant function on the circle [0, 1 ]. Let  h t be the solution of the curvature 
equat ion (A.3) with initial da tum ho, assumed to be C 1 on the circle [0, 1]. 
Let  the initial measure # '  of  the ~t processes be a product  measure such 
that  

#'(~l(x) = n) = p("~ (A.9) 

with u o = (d/dx)h o. Then, for all t/> 0, 

lim E ( ; ] d x [ ~ ( x ) - h , ( x ) ] 2 ) = O  (A.10) 
s ~ 0  

ProoL We first discretize (A.3) as 

r 
at h~(x) = ~ ' ( ~ ' ( u ; ( x ) ) -  ~ ' (u~(x -  ~))) 

(hA1)  
u,-~-~ i[h~(x+~)- h~(x)] 

x = ~, 2e,..., Are, with initial condi t ion h~o(X)= ho(x ). We regard h~ and u~ as 
piecewise constant  functions on the circle [0, 1]. 

We have 

F'(e ~, [h~(gx)-gO~_zt(x)] 2) 

t, t N 

- 2  t_ ds 8 y, {u;(~x) ~'(u;(~x)) - f f l ( U ~ s ( ~ X ) )  E(t/~-2,(x)) 
, x = O  

- u~(ex) E(sg(t/,-2,(x))) + E(lr/,-2,(x)l - Isg(r/,-2,(x))[)} (A.12) 

with t / t(x)=~bt(x + 1)-~b~(x) and sg(n) = - 1 ,  0, and 1 for n < 0 ,  n = 0 ,  and 
n > 0, respectively. Under  the time integral we want  to average locally 
exploiting that  the t/, process restricted to a bounded  interval of lattice sites 
should be in one of its s tat ionary measures as e --* 0. Let  us denote  them by 
( . ) ( u ) ,  where (tl(x))(u)=u. With respect to ( . ) ( u ) ,  the q(x)'s are 
independent  and 

({ t / (x)  = n} ) (u)  = p(")(n) (A.13) 

We note  that  
( s g ( r / ( x ) ) ) ( u )  = rr'(u) 

(I~(x)l  - Isg(~/(x))l >(u) = ua'(u) 
(A.14) 
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We now fix an integer l > 0  and divide [1,..., N]  into blocks Bj of ! 
sites each, j =  1,..., M =  [Nil]. The block B~t+l = [Ml+ 1,..., N]  has a 
length less than/. Let yj be the left endpoint of Bj. We also define the block 
averaged density 

v~(J) = l  Z ~/~-2t(x) (A.15) 
l x ~ j  

Note that the v~(j)'s are random variables. In (A.12) we average locally 
using that 

~ ~ f(q~-2,(x))~-(f)(v;(j)) (A.16) 
x e  Bj 

This substitution results in an error W which we will have to estimate. We 
obtain 

E (a x~__ 1 [ht(ex)-eO,-2,(x)] 2) 

= - 2  f~ dsE (M -1 ~ [u:(~ys)-v:(j)] 
j ~ l  

x [#(u;(eyj))  - a'(v~(j))]) + W(e, l) (A.17) 

Since a' is increasing, the integrand is nonnegative. Therefore 

E (e ~ [ht(ex)-e~-2t(x)]2) <~ W(e, l) (A.18) 

Thus we only have to show that W(e, l) vanishes as we first let e --, 0 and 
then l-~ ~ .  For th~s purpose we need three estimates. 

(i) (Lattice approximation) We have the following result. 

L e m m a  2. There is a constant b such that 

for all x e  [1, 0]. 

ProoL Ref. 39. 

By Lemma 2 

[u~(x) - u,(x)[ ~< be (A.19) 

1 

lim Io dx [h~(x)-h,(x)]2=O 
~ 0  

Therefore it suffices to consider the limit e--+ 0 in (A.I2). 

(A.20) 
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(ii) (A priori bounds) Since the r/(x)'s are unbounded, we must 
make sure that they do not become too large. 

L e m m a  3. Let lUoI ~ Uma x. Let f be an increasing function of IqL in 
the sense that f(l~l)~< f( l~ ' l )  if Ir/I ~< Ir/'l, i.e., Irt(x)l ~ I~((x)l for all x. Then 

E(f(Itt,I )) ~ <f(Ir/I)>(Um.x) (A.21) 

Proof. We follow ref. 6 and compare the process Ir/t [ with a standard 
zero-range process ~,. To do so, we have to realize both processes on the 
same probability space. Let 2t(x, ___) be independent Poisson processes 
with intensity 1/2. Let us fix one particular realization. For the ~, process, 
if a "mark" for ~t(x, + ) [2t(x, - )] appears, then a particle is transferred 
from x to x + 1 [ x -  1 ]. The mark is ignored if ( ( x ) =  0 at that time. The 
r/t history is constructed correspondingly with the additional rule that an A 
particle [r/(x)> 0] and a B particle [r/(x)< 0] annihilate each other on 
site and instantaneously. Clearly, if for the initial configuration 1,71 ~< if, then 
I~,1 ~< I~,1 for all t > 0. Therefore, if initially ( has the same distribution as 
It/I, then 

E(f(Itbl)) <~ E(f(l~,[)) (A.22) 

By assumption, the initial measure for ~ is stochastically smaller than 
(')(Umax). By the monotonicity of (, and the invariance of ( . ) ( U m J  we 
conclude 

E(f(~,))~< <f(Jt/J)>(Umax) I (A.23) 

Lemma 3 implies the uniform bound 

E([rb(x)l) < Umax (A.24) 

and allows us to replace in (A.12) r/~-2,(x) and Irh-2,(x)[ by their cutoff 
version hR(t/(x)), resp. hR([t/(x)[), with hR(n)=n for Inh ~<R, hR(n)=0 for 
In[ > R, at the expense of an error exponentially small in R. 

(iii) (One block estimate) Let p~ be the distribution of t/,-2, and let 
fi~ be its space-time average, i.e., 

~ ( f )  = 7 Nx=, g~(Zxf) (A.25) 

with Zx the shift by x and f a bounded function on Z N. 
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k e m m a  4. Let g : Z - - , R  be bounded and let ~ ( u ) = Z ,  p(")(n)g(n). 
Then 

( i (1 x~/1 ?](X)) ) l i m  lim sup fie 1 g(q(x))-~, 7 a~0 7x= 1 
ProoL Let f be a bounded local function. Then 

1 
[ # 7 ( % f ) -  #~)(%f)]  = tfi~(Lf) ~ 2  1 x~ 

and therefore 

= 0  (A.26) 

(A.27) 

lim fi'(Lf) = 0 (A.28) e-*O 
Thus the limit points of fie restricted to the interval [1,..., 1] are stationary 
measures for the t b process in the interval [1,..., l] with closed ends. 

1 These are I ] x = l  P~ conditioned on ~ = 1  tl(x)=n for n ~>0 and 
[I t p(-1)(tl(X)) conditioned on ~2 t = 1 x = 1 t/(x) = n for n ~< 0. The limit l ~ oe 
in (A.26) follows then from the law of large numbers. | 

To complete our argument, we have to estimate the error W(e, l). 
We just consider the fourth term on the right-hand side of (A.12) with 
corresponding error term W4(e, l), the other terms being similar. We have 

W4(t?, , l )  = ds  ~ Ues(~X) ]. . l;(g(rl(X)) ( A . 3 0 )  

1 

"= x~Bj 

with g bounded. By adding and subtracting we obtain 

t N 

W4(8 , l)  ~ ~ ds ~ ~ lu~(~x)  - c~,(~x)l + (sup lu;(ex)l) 
~0 X=I X 
• fo t l M 

:,~B s \ x~B: 
(A.31) 

with //~(ex)= u](wi ) for x ~Bj. By Lemma 2, the first term vanishes as 
~--,0. lu,~l is bounded by Uma x. The second term in (A.31) is not quite of 
the desired form. There is a time average, but the space average is only 
over multiples of/. We repeat then the estimate leading to (A.17) only with 
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the partition {Bj, j = 1,..., M} shifted by y units, y = 1 ..... l -  1. This leads 
again to (A.31) with the correspondingly shifted partition. Summing up, we 
are led to an expression of the form (A.26), which by Lemma 4 vanishes in 
the limit e ~ 0, l ~ ~ .  

APPENDIX  B. G I N Z B U R G - L A N D A U  EFFECTIVE 
INTERFACE M O D E L  

We consider the Ginzburg-Landau model of Section 6. The dynamics 
is governed by Eq. (6.4). The potential V is even, bounded from below as 
V(~b) ~>c h~b{ l+a for suitable c, 6 >0,  and twice differentiable. As reference 
"plane" we choose the box A(e)= [1,..., N ] d c Z  d with periodic boundary 
conditions, N =  [e-*],  [q] denoting the integer part ofq. To smoothen 
somewhat our notation, we take d +  1 as the dimension of physical space 
and set fl = 1. 

We have no" proof of the mean curvature equation. However, the 
strategy used for the zero-temperature Ising model seems to be promising. 
We would like to compare then the height process with the solution of the 
mean curvature equation in the L 2 norm. When carrying out this program 
one notices that the real gaps relate to the equilibrium measures. Therefore 
the purpose of this Appendix is to provide a list of missing properties--in 
the hope of motivating further research on massless Gibbs fields. 

If V is strictly convex and V(~b)f> c~b 2 with c > 0, then the equilibrium 
measures satisfy the Brascamp-Lieb inequality. (4~ It provides bounds on 
correlations in terms of a Gaussian measure. Thus we may as well assume 
these stronger properties for the potential V. 

According to Section 6, the mean curvature equation reads 

a 02 
N h ,  = E ~ r = e ( V h , ) ~ h ,  (B.1) 

~,fl=l 

on the torus [0, 1] d. For this equation to be meaningful we need the 
following result. 

P r o p o r W  1. The surface free energy a defined in (6.11) and the 
"pressure" p defined in (6.14) exist, are Legendre transforms of each other, 
and have some smoothness as a function of u, resp. 2. 

Let the scaled height process be defined by 

~b~(x) = e~b~-:,(e-ix) (B.2) 
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x e eA(~). In the obvious way we regard ~b ' as a piecewise constant function t 

on [0, 1] a. Let h~ be the solution of (B.1) with initial datum ho. We would 
like to prove that 

lim E (f dUx[h,(x) __~et( X ) 1  2 ) = 0  (B.3) 
e ~ O  [0 ,1 ]  a 

for t > 0, if so at time t = 0. 
We discretize Eq. (B.1) as 

d 

~th;(x) = -  ~ V~*a~(V~h~(x)) (B.4) 

x ~ A(e). Here a= = ~3afi?u,, V~ f (x )=  e - l ( f ( x  + e e l ) - f ( x ) )  with e~ the ath 
unit vector, and V "* denotes the adjoint gradient operator. By a 
straightforward computation 

=E(~ Y~ [ho(~X)-~o(X)] ~) 
xeA(e) 

xEA(e) ~ = 1  

- ~(Wh;(~x)) E(V~-~,(x)) 

-V~h;(~x) E(V'(V~-2Ax)))+ E(V~-~s(X) V'(V~-~s(X)))}- 1] 
(B.5) 

The right side of (B.5) involves only the height differences 

~/(b) = r/(x, y) = ~b(y) - ~b(x), b = (x, y), Ix -Y] = 1 (B.6) 

residing on the directed bonds of the lattice. Note that r/(b)= - q ( - b ) ,  
- b  = (y, x). Being the gradient of ~b, the rotation of the vector field q has 
to vanish. More explicitly 

r/(b) = 0 (B.7) 
b e ~  

for any closed loop cg in A. Equivalently 

(P): ~ r/(b)= 0 for every plaquette 
b E ~ '  
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provided A is simply connected. The space of height difference configura- 
tions is constrained by (P). The dynamics of the height differences is 
governed by the stochastic differential equation 

d * 
~t/t(x, y ) =  -- ~ {V'(rb(y, y + e ) ) -  V'(tlt(x,x+e))} 

e, le[ = 1 

+ x ~  Oft(Y) - r~,(x)) (B.8) 

* means that the sum is restricted to run only over those bonds such that 
both their endpoints are in A. The unique invariant measure for (B.8) is 
then 

Z-1 l-I dq(b) e-  v("(b))6(rot q) (B.9) 
b 

with 6(rot ~/) as short hand for the set of linear constraints (P). 

(i) (Local ergodicity) We follow the standard argument, e.g., in the 
form given in re[ 28, and consider the space-time averaged local measure 
for the height differences in the limit e--, 0 (possibly along subsequences). 
Let us call the limit measure/~. This is a measure on the space of height 
differences on the lattice Z a satisfying the set of local constraints (P). By 
construction # satisfies (a)an entropy bound, (b) translation invariance, 
and (c) stationarity. 

This last item has to be spelled out. We consider a box A with border- 
ing sites 8A and denote by A b the set of bonds such that at least one of 
their two endpoints is in A. Then in terms of the conditional measure 
stationarity reads 

f (LAf)  l~(d~(b), b e A  b I ~l(b), be (Ab) ~) = 0  (3.10) 

for all strictly local, smooth functions f. Here LA is defined through the 
Dirichlet form 

- ( f ,  L A f )  = Z -1 ~ H d~](b) e -  r("(b))f(rot r/) 
b~A b 

X E E [~f/(~(x,x+e) -12 ( B . X l )  

xeA e, lel = 1 

(B.10) has a unique solution. It is written down more easily for the height 
variables. Fixing the q(b)'s with b in the complement of A b determines the 
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heights ~k(x), x e~A, up to a global constant. Given O(x), x e~?A, the 
unique solution to (B.10) is 

z - l ( ~ )  exp I -  
<x,y>,x, y E A  

- ~ v(O(x) - ~,(y))J 
<x, y > , x ~ A ,  yr  

which are the usual DLR equations. 

v(O(x)-~(y)) 

[I d~(x) (B.12) 
x E A  

Proper ty  2. Let # be a probability measure for the height differen- 
ces q(b), b e (Zd) b, satisfying the local linear constraints (P). # is assumed 
to have a bounded free energy per unit volume, to be translation invariant, 
and to be ergodic with respect to translations. The conditional measures of 
p satisfy the DLR equations (B.12) (which are to be read for height dif- 
ferences in the obvious way). Then # is unique and given as the infinite- 
volume limit of (B.12) with boundary conditions ~k(x)=u.x, xec~A, 
u= = p(t/(0, e=)), e = 1,..., d. 

(ii) (Local averaging) Following the strategy in the proof of 
Theorem 1, we should average locally in (B.5). Let <. >(u) denote the 
expectation with respect to the equilibrium measure /~ of Proposition 2. 
Then we need 

P r o p e r t y  3. 

(a) <r/(O, e.)>(u)=u. 
(b) (V'(t/(0, e~))>(u)=a~(u) 

(c) { ~ tl(O,e,)V'(q(O,e~))-l>(u) 

(B.13) 

(B.14) 
d 

= ~ u~a~(u) (B.15) 

Formally (a)-(c) are easily verified. (a) holds by definition. (b)is  
shown in (7.6). For (c) we use the grand-canonical measure [compare with 
(6.14)]. We introduce the slope chemical potential 2 and use that 2~ = as 
in the infinite-volume limit. Therefore we have to show that the left side of 
(B.15) equals u. 2. We have 

1 
- -  Z (r - r  v ' ( r  - r 
[AI < x , y > , x , y r  

1 
= IA] ~ ~ 0~(x) V'((~(x)-~(y)) 

xr  <x,y>,x, y e A  

(B.16) 

822/71/5-6-19 
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Therefore, up to boundary terms, 

tl(O, e~) V'(tl(O, e~)) - 1 
~ 1 

= - - ~  ~I d~(x)6(~)(O))exp ~ 2~ (x , x+e~)  
xffA 1 xeA,x+ee~A 

x [ A ~ A  q~(x)0~--~ exp [ -  <x,y>~,y~AV((~(X'--~)(Y')] - 1  

I A[ ~ 1 xeA ,x+e~A  

We partition A(e) into boxes Bj of side length l, j =  1,..., M =  (N/l) a. 
Let uT(j) be the value of V"h~ in the middle of the j th  box and let 

vT(j)=l -a ~ V~b,-2t(x) (B.18) 
x~Bj 

be the box averaged height. Then, up to an error from the local averaging, 
the time integral in (B.5) becomes 

I O  ~ ' ~ " ~ " 
- 2  d s M  -1 ~" E [Us=(J)--Vsa(J)][(l~(Us(J))-- f fa(V 

j = l  1 

fO M - 1 j  2 ffl ~ " ~ " = - 2  ds d2 E [u~,(j)-v~,( j)]  
~ 1 

x a~m(v~(j) + 2(u](j)-- v](j)))[u~a(j) - v~a(j)]) ~< 0 (B.19) 

since {a~a/>0} as a dx d matrix. 
We conclude that the central open problem is Property 2. In a some- 

what disguised form, this is the uniqueness problem for the massless Gibbs 
measures of effective interface models. 
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