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Averaged equations describing the turbulent diffusion of a chemically 
active admixture in coordinates tied to the instantaneous values of 
the concentration of another passive admixture are obtained. The 
results can be readily extended to the case of an arbitrary number 
of different chemically active admixtures. An advantage of this 
approach is the separation of the scales of the fluctuating and 
average motions, which makes the proposed average diffusion relations 
applicable even at times on the inertial interval. 

The need to obtain the characteristics of multicomponent diffusion transport of 
various admixtures arises in many problems of physical kinetics in turbulent flows [I, 
2]. In [i] certain particular solutions are considered and an approximate method of 
analyzing the fuel diffusion in the lean part of a flame is proposed. 

i. Formulation of the Problem 

The instantaneous equations describing the various kinetic processes in turbulent 
flow can be written in the following form: 

ac + p (vV)c - -d iv (D~pVc)=Wp P at 

az p-~-+ p ( v V ) z - d i v ( D , p V z ) = O  

(i.i) 

(1.2) 

Equation (1.2) describes the turbulent transport of a passive admixture that does 
not take part in chemical reactions. The concentration z is so normalized that in the 
region in which the fluid is turbulent 0 < z < i, while in the regions of potential flow 
z = 0 and z = i. The concentration of the active admixture c depends on the results 
of the reaction and satisfies Eq. (i.i) with the source term W(z, c). In averaging Eq. 
(i.I) (especially when W depends strongly on z and c) it is necessary to find the com- 
bined characteristics of the z and c concentration fields. It is assumed that the active 
admixture does not have much effect on the dynamic parameters of the turbulence. Gen- 
erally speaking, the system of kinetic equations (i.I), (1.2) may contain n equations 
for the concentrations of the various admixtures c i with source terms Wi(z, c i .... , c n) 
(i = i, 2 ..... n). Below we consider the relations for a single active admixture, but 
this does not impose any limitations on the system of kinetic equations, since all the 
arguments are applicable to each admixture concentration c i. 

In some special cases a simple steady-state relation may be obtained between the 
concentrations z and c. For example, if D z = D c and W = 0, then the dependence c(z) = 
alz + a 2 (a I and a 2 are constants) turns the system (I.I), (1.2) into an identity. We 
will call these equilibrium solutions. Another type of equilibrium solution was obtained 
in [i] for the turbulent combustion of nonpremixed gases in the presence of a source 
having a sharply expressed maximum in the neighborhood Az of the stoichiometric value 
z = z s. The solution can be represented by the following relations: 

d~c(z) 
c(z)=O, O<z<z,- -Az ,  N dz ~ = - -  W(z ,  c(z)), z . - A z < z < z . + A z  

(1.3) 
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c(l) 
c(z) = -  (z-z~), z ,+Az<z<l  

- - Z t  

where N is the instantaneous or average value of the scalar dissipation N = ~(Vz) 2 The 
dependence (1.3) can be used only if the quasistationarity condition is sati fled, for 
which it is necessary that Az ~ z o (z o is the characteristic macroscale of the fluctua- 
tions of the concentration z). 

The existence of a steady-state relation between the instantaneous values of c and 
z is the exception rather than the rule. In condensation theory, in which z represents 
the frozen thermodynamic parameters and c the condensate concentration, a relation of 
type (1.3) cannot be constructed [2]. The same situation also arises in many problems 
of combustion theory, for example, in connection with fuel diffusion in the lean part 
of a flame, for which an approximate integral method is proposed in [I]. 

A detailed characteristic of the z concentration field is the admixture concentration 
probability distribution function P(z) which satisfies the equation 

0 0 2 
Ot (P(z)p)+div(<v>,P(z)p) + Oz"-; (<N>~P(z)p)=O (1.4) 

where p = p(z) is the density of the medium. 

Equation (1.4) was obtained in [i], where the coefficients <V>z and <N> z were also 
analyzed and where numerical calculations were made for P(z) and analytic approximations 
constructed. An important experimentally confirmed result is the nondependence of the 
conditional mean scalar dissipation <N> z on the value of z within the turbulent flow 
0 < z < I, which is associated with the weak statistical correlation between the small- 
scale fluctuations (which determine the instantaneous value of N) and the large-scale 
fluctuations (which determine the instantaneous value of z) [i]. This property relates 
only to the passive admixture, for whose concentration the boundary conditions are as- 
signed as described above and there is no source term. 

2. Equation for the Conditional Mean Concentration <c> z 

First of all, we will obtain a relation for the joint probability density of the 
passive and active admixtures -- the fun~ ~on P(z, c), which also depends on the param- 
eters x and t. We start by assuming thz ~he diffusion coefficients D z and D c are 
identical and equal to D. We will then ~end the results to the case of different dif- 
fusion coefficients. 

We introduce the function ~=6(z(x, t)--z~ t)--c ~) of the physical coordinates x 
and t ~ d the parameters c ~ and z ~ which depends on the realizations of the fields 
z(x,z) d c(x,t). Applying the rules for the differentiation of Dirac delta-fractions 
[3], obtain the following identities: 

0-7=- (2 .1)  

div (Dp V~p) ---- 

0 ( , r e ) -  ~ (,Vz) v * = - ~ e o  T?-~o 
az ~z 

(OeO), ((Vc) ZDp~p) +2 ~ ((Vc.Vz)Dpr 

(2 .2)  

(o~z~ 2 0* --5 (,div(DpVc)) ---~z o (•div(DpVz)) - -  ((Vz)'Dpr (2.3) 

We then substitute the relations (i.i), (1.2), (2.2), and (2.3) in the equation 
(2.1) and in order to write the convective terms in divergence form we add the equation 
obtained and the unaveraged continuity equation multiplied by the function ~. We average 
the relation obtained taking into account the identities <~> = P(z ~ c~ <B~> = <B>zoc o 
P(z ~ c~ where <B>zoc o denotes the averaging of the quantity B for z = z ~ c = c ~ . 
Since the chemically active admixture does not affect the dynamic turbulence 
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characteristics, in the isobaric approximation the density depends only on the concentra- 
tion z: p = p(z). Finally, we will estimate the term on the left of Eq. (2.3) (setting, 
for simplicity, 0 = const and D = const + 0): <D div(pV~)> = D div(pVP(z ~ c~ + 0. 

The result of these substitutions is the unclosed equation for the joint probability 

density: 
0 
0--7 (P(z~ c~176176176 e~ 

02 02 
(OzO)~ (<D(Vz)2>2,oP(z ~ c~ Oe o Oz o (<D(Vz.  Vc) >~%o 

0 ~ 0 
~ooop(z ,c~ = 0c o P(z~176 + ,-'7-z-~o,~ (<D(Vc) 2 ~ - - ~  (<W>,o,op(z~176 (2 .4)  

t o e )  ~ 

The possibility of obtaining a relation for P(z, c) was noted by Kuznetsov. In 
what follows, as in Eq. (1.4), the superscripts have been omitted from the variables 
z ~ and c ~ 

We now turn to the derivation of a relation for the conditional mean concentration 
<c> z. We introduce the notation: c==<c>z, V==<V>~,~':=<Iu Nz=<N>~=<D(Vz)=>z. We multiply 
Eq. (2.4) by c and integrate it with respect to c from --~ to +~ (from 0 to +~, if the 
concentration c takes only non-negative values). The last two terms on the left of Eq. 
(2.4) and the term on the right are integrated by parts: 

0 0 
7 [  (c,P (z) P) +div (<vc> ~P (z) p) = W , P  (z) p + -~z ~ (z) (2.5) 

0 
~ ( z ) = 2 < D ( V z . V c )  >,P(z) p - ' ~ z  (<Nc>~P(z)p) (2 .6)  

The physical significance of relation (2.5) becomes clear when it is integrated 
with respect to z from z I to z 2 (0 < z I < z 2 < i). The terms on the left of (2.5) de- 
scribe the convective transport of the active admixture averaged on the understanding 
that the instantaneous value of the concentration z lies on the interval (zl, z2). On 
the right of (2.5) we have the conditional mean source term W and the mean flux $ across 
the isoscalar surface z = const. We will now examine the suitability of Eqs. (2.4)-- 
(2.6) for describing the combined diffusion of admixtures having different diffusion 
coefficients D c and D z. If we introduce an auxiliary admixture, whose concentration z* 
satisfies the same initial and boundary conditions as the concentration z, but which 
has the diffusion coefficient Dc, then relations (2.4)--(2.6) can be used for determining 
the combined characteristics of the admixture concentrations c and z*. In their turn, 
in accordance with the general notions of turbulence qualitatively confirmed by the experi- 
mental data of [4] the turbulent fields of the admixture concentrations z and z* will 
differ only on scales of the order of the Kolmogoroff scale Nm determined from the diffu- 
sion coefficient D m = max(Dc, Dz). Considering that qm + 0 as D m + 0 and that on these 
scales the admixture concentration c varies by an amount c D + 0, we may conclude that 
P(z, c) + P(z*, c); <c> z + <C>z*. Thus, the relations obtained for identical diffusion 
coefficients are suitable for describing the combined dynamics of admixtures with dif- 
ferent diffusion coefficients on scales that exceed the scale qm" 

In order to close Eq. (2.5) it is necessary to approximate the correlations entering 
into Eq. (2.6). We will proceed to construct an expression for the flux $ after investi- 
gating the behavior of a selected particle in the passive admixture field. 

3. Particle in Passive Admixture Field 

Let us suppose that a certain admixture consists of a set of small noninteracting 
inertialess particles. We will call the instantaneous value of the passive admixture 
concentration in the neighborhood of a selected particle the coordinate of that particle 
in the space of instantaneous values of the passive admixture concentration (or in z- 
space). At the initial instant of time let the particle be located within the turbulent 
field in the neighborhood of the point x0 in physical space and have the coordinate z 0 
(0 < z 0 < I) in z-space. We denote the deviation from the initial value in z-space by 
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zl(t) (z1(t 0) = 0) and its derivative by ~ l ( t )  : dzl/dt. 

At times on the inertial interval the random process ~z(t) may be assumed to be 
stationary, since the particle is unable to leave the neighborhood of x0. where the tur- 
bulent field is homogeneous. We will consider the correlation <~1(tz)~z(t2)>z0 = K(t 2 -- 
tl). The function K(t) is proportional to the second derivative of the standard devia- 
tion <(z1(t)2>z0 (see, for example, [5, 6]). The subscript z 0 indicates that the averag- 
is conditional only with respect to those realizations of the turbulent field in which z 
takes the value z 0 in the neighborhood of x0 at t = t o . 

We note that the time dependence of the standard deviation should relate two scales 
-- the time scale and the scale of variation of the admixture concentration z. At times 
on the inertial interval of turbulence (see [I, 6]) this relation should be realized 
through the turbulent energy dissipation <S>z0 and the scalar dissipation <N>zo , param- 
eters of the inertial interval that do not depend on the Reynolds number Re. From di- 
mensional considerations it follows that this relation is unique 

consequently 

<(z,(t))2>~o=A<N>~o(t-to), A =eonst ( 3 . 1 )  

1 d 2 
KU) --<(zi(t))2>~o =0 (3.2) 

2 ds 

Equation (3.2) indicates that at times on the inertial interval the motion of the 
particle in z-space may be regarded as a process with uncorrelated increments. In order 
to simplify the calculations as far as possible, we will assume that in the first approx- 
imation the velocities of the particle and the medium coincide: 

i~=O(V:z) when /)=const, p=const. 

The o r d e r  o f  m a g n i t u d e  o f  K(0)  -- <P(vaz )2>z0  i s  d e t e r m i n e d  by t h e  c o r r e s p o n d i n g  

K o l m o g o r o f f  s c a l e s  K(0)  z ( z n / t ~ ) 2  = <N>/t  ~ / ~ e  >> 1 I f  i t  i s  assumed t h a t  t h e  c o r -  
r e l a t i o n  does  n o t  d e c r e a s e  s u f f i c i e n t l y  r a p i d l y ,  t h e n  t h e  p a r t i c l e  s h o u l d  " e s c a p e "  f rom 
t h e  t u r b u l e n t  f l u i d  (0 < z < 1 ) .  The i n t e g r a l  o f  t h e  f u n c t i o n  K ( t )  w i t h  r e s p e c t  t o  t i m e ,  
which  g i v e s  t h e  d i f f u s i o n  c o e f f i c i e n t  in  z - s p a c e ,  c a n n o t  i n c r e a s e  w i t h o u t  bound as  t h e  
R e y n o l d s  number Re i n c r e a s e s ;  f rom t h i s  i t  f o l l o w s  t h a t  t h e  c h a r a c t e r i s t i c  t i m e  c o r -  
r e s p o n d i n g  t o  t h e  f a l l  i n  t h e  c o r r e l a t i o n  i s  t ~ .  The q u a l i t a t i v e  b e h a v i o r  o f  t h e  f u n c -  
t i o n  K ( t )  i s  r e p r e s e n t e d  in  F i g .  1, where  t h e  q u a n t i t i e s  t h a t  do n o t  depend on t h e  Rey-  
n o l d s  number Re a r e  assumed t o  be q u a n t i t i e s  o f  t h e  o r d e r  o f  u n i t y .  

For  f a i r l y  h i g h  R e y n o l d s  numbers  t h e  t u r b u l e n t  f i e l d  h a s  a " s p o n g y "  s t r u c t u r e  con-  
s i s t i n g  o f  zones  w i t h  h i g h  s c a l a r  d i s s i p a t i o n  (where  Y2z i s  l a r g e )  and zones  w i t h  weak 
d i s s i p a t i o n  h a v i n g  a c h a r a c t e r i s t i c  d i m e n s i o n  o f  t h e  o r d e r  o f  t h e  K o l m o g o r o f f  s c a l e  (where  
~2z  i s  s m a l l )  [6 ,  7 ] .  The c o o r d i n a t e  z z ( t )  changes  in  jumps o f  t h e  o r d e r  o f  t h e  c o r r e s p o n d -  
ing  K o l m o g o r o f f  s c a l e  z~.  S t r e n g t h e n i n g  t h e  p r o p e r t y  ( 3 . 2 )  somewhat ,  we w i l l  assume 
t h e s e  jumps t o  be n o t  o n l y  u n c o r r e l a t e d  b u t  a l s o  s t a t i s t i c a l l y  i n d e p e n d e n t .  Then,  i n  
a c c o r d a n c e  w i t h  t h e  c e n t r a l  l i m i t  t h e o r e m  o f  t h e  t h e o r y  o f  p r o b a b i l i t y  t h e  p r o b a b i l i t y  
d e n s i t y  o f  t h e  sum z 1 o f  a l a r g e  number  o f  jumps z~ w i l l  be d i s t r i b u t e d  in  a c c o r d a n c e  
w i t h  a G a u s s i a n  law,  and t h e  m o t i o n  o f  t h e  p a r t i c l e  in  z - s p a c e  w i l l  be an a n a l o g  o f  
Brownian  m o t i o n .  

4. Closure of the Equations for the Conditional Mean Concentration c z 

We now turn to the construction of the relations for the flux $ entering into Eq. 
(2.5). We will formally consider the active admixture to consist of small inertialess 
noninteracting particles. This assumption will facilitate the discussion and does not 
impose any limitations on the possibility of particles appearing or disappearing (i.e., 
on participation in chemical reactions). If the motion of each of these particles in 
z-space is similar to Brownian motion, then the mean flux $ must be determined by the 
following first-order diffusion relation: 

Ocz 
~=A,-~z + A~c= (4.1) 
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The coefficients A l and A 2 are not known in advance and depend on the coordinates, 
time, and various turbulence parameters (and their derivatives), but do not depend on 
the c concentration field. 

We will determine the coefficients A I and A 2. We substitute in Eqs. (2.5) and (4.1) 
the equilibrium solution c(z) = a 2 (when W = 0), for which 3c(z)/~t = 0, Vc(z) = 0, 
<vc>:=vzc(z) Taking Eq. (1.4) into account, we have A 2 = --8(N2P(z)p)/Sz + ~. where 
is a constant of integration that does not depend on z. Nonzero values of ~ are phys- 
ically meaningless, since as z varies and the probability density P(z) rapidly falls 
the mean flux g(z) of active admixture across the isoscalar surface, on which the con- 
centration z = const, remains constant. Proceeding in the same way with respect to the 
equilibrium solution c(z) = alz, we obtain an expression for the other coefficient which 

gives OP(z)PN, 
Oc~ (4.2) 

~ = P ( z ) p N ~ - - ~ -  c, Oz 

For a certain field B we will determine the fluctuating component by means of the 
relation B'(x,t)=B(x,t)-<B>~=~(x,t), where <B'> z = 0. This quantity characterizes the in- 
stantaneous deviation of the value of B at a certain point in space from the conditional 
mean for a fixed joint realization of the fields B(x,t) and z(x,t). As a result of Eqs. 
(1.4), (2.5), and (4.2) we have two equivalent ways of writing the equation for the con- 
ditional mean concentration: 

_ _  0 z c ,  
0 (c'P(z)o)+div(<vc>'P(z)P)=W'P(z)o+P(z)oN~--~z2- cz 
Ot 

02P(z)oN, 
(4.3) 

Ocz + (vV)c~-~ div( <v'c')zP(z)p) = Wz+N~ 02c----L (4.4) 
Ot P(z)9 Oz z 

It is possible to run a simple check on the equations obtained, since averaging 
them with respect to the z coordinate should yield the well-known completely averaged 
equations of turbulent admixture transport. Since Eq. (4.3) was derived in order to 
describe the diffusion processes within the turbulent fluid 0 < z < i, we will consider 
the case in which there is no active admixture in the potential flow: c = 0 when z = 0 
and z = i. Then the conditional averaging of the characteristics of the active admixture 
within the turbulent field will coincide with the complete averaging of these character- 
istics. Since fluid can only flow into the eddying turbulent zone, the admixture flux 
g(z) across the boundaries of the turbulent flow z = +0 and z = 1 -- 0 will be equal 
to zero. Hence, taking into account the relation P(z) ~ 0 as z + 0, z + 1 obtained in 
[i] and expression (4.2), we have c(z) = 0 when z = +0, z = I -- 0. This equation is 
a boundary condition for the solution of Eqs. (4.3) and (4.4). It signifies that on 
transition from the potential to the turbulent zone the concentration c does not suffer 
discontinuities. Integrating Eq. (4.3) with respect to the variable z, we obtain the 
well-known average transport equations for a chemically active admixture. The last two 
terms on the right can be integrated by parts. 

In deriving Eqs. (4.3) and (4.4) with the aid of relation (4.4) [sic] we used the 
fact that the linear equilibrium dependence c(z) = alz + a 2 should turn these equations 
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identities. We will check whether Eqs. (4.3) and (4.4) are satisfied by the equi- 
librium dependence (1.3), for which Oc(z)/Ot=O, Vc(z)=0, <vc(z)>z=vzc(z), c'=0, W~=W(z, c(z)). 
Substituting these relations in Eq. (4.4), we obtain 

N:  ....-'-c,~ (;) = _ w (~, c (~ ) )  ( 4 . 5  ) 
d z  2 

The solution (1.3) satisfies Eq. (4.5) when in (1.3) the conditional mean value 
of the scalar dissipation <N> z is used. The reason for the differences between approaches 
(1.3) and (4.5) consists in th$ following: the need to take into account the fluctuations 
of N arises in considering reaction zones with a characteristic scale of the order of 
the Koimogoroff scale, and on such small scales the diffusion approximation (4.1) is 

not applicable. 

Another method of deriving a relation for the flux $ is based on the use of the 
assumption that the dependence c(z) is close to the equilibrium linear dependence, i.e., 
that the small-scale structures of the c and z concentration fields differ only slightly. 
Locally (with respect to small fluctuations) this dependence may be assumed to be equi- 

librium c = al(z -- z 0) + a~ (a 2 = c(z0), a I = ~c(z)/Sc when z : z0). We will use this 
relation and the hypothesis of statistical independence of the large-scale and small-scale 
fluctuations in order to decouple the correlations entering into expression (2.6): 

<Nc>~= ~c~ (4.6) 

oz = N ~ . - -  (4 .7 )  
, Oz  

It can be seen that these relations lead to the previously obtained equation (4.2). 
This conclusion may seem unexpected: in Sec. 3, on the basis of which the closure (4.2) 
was constructed, we considered essentially strongly nonequilibrium distributions -- the 
particles of active admixture are concentrated in the neighborhood of z = z 0 . On the 
other hand, the condition of applicability of Eqs. (4.6) and (4.7) is that the admixture 
concentration c be close to the equilibrium value. The explanation of the universality 
of relation (4.2) may be that local equilibrium (local similarity of the admixture con- 
centrations c and z) also exists for c fields that are nonequilibrium as a whole. This 
assumption is consistent with the approach of [7], in which it is assumed that in the 
region of large gradients the admixtures are the result of the convergence of the tra- 
jectories of different fluid particles (carrying different values of c and z) in a certain 
direction. Of course, in this case Vz and Vc both have the same direction. 

Approximations of the various terms entering into (4.3) and (4.4) -- v~, N', P(z) -- 
were proposed in [i]. For example, we will use N z = N t (0 < z < I), N z = 0 (z = 0, 
z = i). In order to close relations (4.3) and (4.4) completely it is necessary to find 
the conditional mean turbulent transfer term for the active admixture <v'c'>z and to 
average the source term W z = <W> z. We note that the <c> z dependence gives much more in- 
formation for averaging the source than that for <c>. Equations (4.3) and (4.4) contain 
the additional independent variable z, whichmakes them much more difficult to use in 
practice. Below we examine some specific turbulent flows in which these difficulties 
can be overcome. 

5. Equation for the Conditional Mean Concentration c z 

in the Homogeneous Case in the Absence of a Source Term 

It is easy to see that in the homogeneous case when W = 0 and 0 = const Eqs. (4.4) 
and (1.4) yield the relation~ 

acz a2Cz 
-=N, (5 .1 )  

Ot Oz ~ 

OP (z) 02p (z) 
U~ - -  ( 5 . 2 )  

Ot Oz ~ 

Equation (5.2)was obtained in [i]. It is also possible to arrive at Eq. (5.1) 
for the integral of c z over the physical volume in the case of a homogeneous passive 
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admixture field and a localized active admixture field. Yor the purpose of analyzing 
relations (5.1) and (5.2) we also introduce the following notation: 

1--0 tl 

0 t 

The fact that Eqs. (5.1) and (5.2) have a similar structure is not accidental. In 
fact, we specify as boundary conditions the absence of active admixture particles in 
the potential flow when z = 0, z = i; consequently, c = O when z = +0, z = I -- 0. 

Multiplying Eq. (5.1) by P(z) and Eq. (5.2) by c z and integrating their sum with respect 
to z, we see that the average number of active admixture particles in the turbulent 

fluid remains unchanged: 8m/St = 0. In general, however, the admixture concentration 
c decreases with time. This is associated with the increase in the volume occupied by 
the turbulent fluid, i.e., with the presence of intermittency. 

Going over in relations (5.1) and (5.27 from the variable t to the variable T, we 
obtain an equation with constant coefficients. In many turbulent flows as t ~ ~ the 
integral of N t remains finite, which makes it possible to formulate initial conditions 
for the inverse parabolic equation (5.2): P(z) = 6(z - z~) when t = ~ [i]. 

For convenience we will assume that t~ = ~. If N t < = at the initial instant of 
time to~ then Eq. (5.1) will have a finite diffusion time ~(~(t0) < ~ < 0). Therefore 
as t ~ ~ the solution of Eq. (5.1) Cz(t , z) will tend to a certain, generally speak- 
ing nonequilibrium distribution. However, Eq. (5.1) has real physical significance only 
when P(z) is considerably greater than zero (despite the fact that Eq. (5.1) can be solved 
independently of (5.2)7. The probability of deviations from equilibrium c z = a1(z -- 

z~) + a 2 (where a I = 8cz/dz , a 2 = c z when t = =, z = Z=7 tends to zero as t + ~. 

6. Multicomponent Diffusion of Admixtures in Turbulent 

Jets and a Turbulent Wake 

A characteristic feature of these flows is the presence of a direction x 2 (x 2 and 
x~ in the three-dimensional case) in which the turbulence characteristics vary much more 
rapidly than in the direction x I. The probability density P(z) also varies rapidly with 
increase in the x 2 coordinate. We will assume that the dependence P(z) is a stronger 
function of the transverse coordinate than the conditional mean concentration c z. We 
note that this assumption does not imply a weak dependence of all the characteristics 
of the c field on x 2. For example, the fully averaged concentration <c> may depend sig- 
nificantly on x 2. As a rule, the source term in the physical kinetics equations is a 
function of the concentrations c and z and does not depend on the physical coordinates: 
w = W(z, c(z, xl)) = W(z, xl). 

The rapid variation of the average characteristics of the turbulent field on the 
periphery of the jet or wake is primarily associated with the change in intermittency. 
On the other hand, the turbulence characteristics averaged on condition that the observa- 
tion point lies within the turbulent field vary only weakly [i]. The assumption made 
above is also consistent with this approach. 

Depending on the dimensionality of the problem for the arbitrary quantity B we in- 
troduce the following notation: 

We integrate Eqs. (4.3) and (1.4) with respect to the coordinate x~ (x 2 and x 3 in 
the three-dimensional case), assuming that 0 < z < i. In integrating we take into account 
the fact that P(z) § 0 as x 2 + • z ~ 0, z ~ i. As a result of the weak dependence 
of c z on x 2 for the arbitrary quantity B we assume that {czBP(z) } = cz{BP(z)}, {WzBP(z)} 
= Wz{BP(z)}, {~BP(z)} = p{BP(z)}. Here, the c z removed from the braces is the effective 
(independent of x 2) value of the conditional mean concentration. We also neglect the 
fluctuations of the longitudinal velocity component: <v1> ~ = <vl>. We assume the flow 
to be steady. After integration we obtain 
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0 02Cz 02 
oz, (c~{<v,>p(z)}o)=wziP(z)}o+{NtP(z)}~-[S- c~ ~({N~P(z)}O) ( 6 . 1 )  

0 o ~ 
0z, ( {< ~' >P (z) } O) = - ~ ({NtP (z) } O) ( 6 . 2  ) 

6cz O~-c~ 
{ ( v ~ ) P ( z ) } ~ - { N , P ( z ) } ~ = { P ( z ) } W ~ ,  O<z<l  ( 6 . 3 )  

Oxi 

E q u a t i o n  ( 6 . 3 )  was o b t a i n e d  by d e d u c t i n g  f r o m  ( 6 . 1 )  t h e  e q u a t i o n  ( 6 . 2 )  m u l t i p l i e d  
by c z . 

F o r  t h e  s o u r c e  W z t h e  f o l l o w i n g  e x p r e s s i o n  i s  p r o p o s e d :  W z = W(z,  Cz(Z , x l ) ) .  We 
note that this equation takes into account the fluctuations of the passive admixture, 
since for the total mean <W> we have 

i 

<W>= f W(z, c~(:,x,))P(zlx~,x2)dz (6.4) 
o 

Relation (6.4) is an expression for averaging the source term in calculations in 
physical space that includes the dependence on x 2. A similar relation can be used for 
calculating <c>. 

As a result of the sharp variation of the characteristics of the z field with the 
x 2 coordinate the surface z = const is, on average, "similar" to the surface x 2 = const. 
Essentially, Eq. (6.3) represents the transition in the averaged transport equations 
to the new moving coordinates xl, z. Information about the large, nonuniversal fluctua- 
tions will be unnecessary, since the isoscalar surfaces z = const move together with 
these fluctuations. In accordance with the analysis in Sec. 3 Eq. (6.3) is the dif- 
fusion relation even at times on the inertial interval. The equations in z-space have 
the further advantage that the averaging of the source term (6.4) is more correct. 

Equation (6.3) is the equation for the unknown dependence Cz(Z , xl); the procedure 
for determining all the coefficients in the braces is known [1]. The difficulties asso- 
ciated with taking into account the reaction of the kinetic processes on the turbulence 
dynamics can be overcome by using various combined methods of calculation in both z- 
space and physical space. 

The author is grateful to A. B. Vatazhin and V. R. Kuznetsov for useful discussions. 
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