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1. I N T R O D U C T I O N  

If one can turn  a non l inea r  differential equa t ion  into a l inear one by means 

of a wel l -unders tood t ransformat ion,  one can usually say much abou t  the 

solutions of the original equation.  Such is the case with the Korteweg- 
de Vries equat ion,  which, for initial data  that  vanish sufficiently fast at 

infinity, can be linearized by inverse scattering techniques. In  this paper  we 

give a procedure for l inearizing polynomia l  flows. We then investigate some 
of the facts that  follow from this l inearization. We also show how the point  
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degree of 
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real time. 

spectra of certain derivat ions can be used to determine whether  a given 
po lynomia l  vector  field has a po lynomia l  flow. 

Consider  the initial value p rob lem 

(+) ~ - - ~ - - V ( y ) ,  y ( 0 ) = x ~  ~ (1.1) 

where V is a cont inuously  differentiable vector  field on ~:n (I: is ~ or C). Let 
~: f 2 ~ D  :n be the (local) flow associated with (1.1), where f2, an open 
subset of R x I :n, is the maximal  domain  of q~. For  each t in R let U t be the 
set of all x in D :~ such that  (t, x)  is in D. The flow ~ is said to be a polyno- 
mial flow and V is said to be a p-f vector field if for each t in ~ the 
t -advance m a p  ~b~: U ~  D :~ is polynomial .  Tha t  is, if ~i: Nn_~ R is the pro-  
jection m a p  onto  the i th coordinate,  rcio~b ~ is po lynomia l  for i--1,. . . ,  n. 
Take  the degree of a po lynomia l  m a p  P:  I :~ --, D :n to be the m a x i m u m  of the 
degrees of ~i o P for i = 1,..., n. 

If  V is a linear vector  field, say V(y )  = Ay, where A is an n x n matr ix,  
we have ~)(t, x)=e~Ax. Hence linear vector  fields are p-f vector  fields. 
However ,  p-f  vector  fields are not  restricted to linear ones. Fo r  example,  
even on N2 (henced also on ~ for any n ~> 2) there are p-f  vector  fields of 
all degrees (see Bass and  Meisters, 1985, theorem 11.8; or  Coomes ,  1990a, 
Table  I). 

Po lynomia l  flows were first discussed by Meisters (1982). A more  
thorough  investigation is given by Bass and Meisters (1985). They show 
that  

if ~ is a po lynomia l  flow, there is a bound,  valid for all t, on the 

p-f  vector  fields are polynomial :  

p-f  vector  fields have constant  divergence; and 

p-f  vector  fields are complete--all solutions to (1.1) exist for all 

Coomes  (1988, 1990b) investigates po lynomia l  flows with complex initial 
condit ions and time. First, he shows that  a po lynomia l  flow on R n or C n 
extends to a ho lomorph ic  function on C x C n which satisfies the group  
proper ty  for complex time. Tha t  is, a po lynomia l  flow ~b extends to a 
ho lomorph ic  function ~ :  C x C n ~  C n such that  

~( t ,  ~(s ,  x))  = ~ ( t  + s, x), t, s e C, x ~ C" 

Second, he investigates power  series forms of po lynomia l  flows. Coomes  
(1988, 1990a) shows how one can use certain symmetr ies  to show that  the 
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Lorentz system does not have a polynomial flow. Meisters and Olech 
(1986) give a connection between polynomial flows and the Jacobian 
conjecture of algebraic geometry. See Bass et al. (1982) for an introduction 
to the Jacobian conjecture. 

Our main result is that if qt is a polynomial flow, there is a linear Nth- 
order ordinary differential equation with constant coefficients 

N--1 

y(N)_ ~ d y(J)=O (1.2) 
j = o  

such that for each x the solution ~b x of (1.1) satisfies (1.2). We also present 
an algebraic version of this result in theorem 3.1. 

In Section 2 we recall a basic concept from commutative algebra, that 
of a derivation. We also discuss the connections among derivations, vector 
fields, and differentiation with respect to time. Next, in Section 3, we intro- 
duce some terminology from commutative algebra, examine the properties 
of derivations defined by p-f vector fields, and discuss spectra of polyno- 
mials with respect to a given derivation. Then, in Section 4, we discuss 
spectra of derivations, in particular, spectra of derivations defined by p-f 
vector fields. Next, in Section 5, we prove our main result, given general 
formulas for polynomial flows, and discuss the relationship between spectra 
and our formulas. Then, in Section 6, we discuss what our results imply 
about the possible dynamics of polynomial flows, addressing some of the 
questions asked by Meisters (1989). Next, in Section 7, we describe, in 
algebraic terms, the structure of invariant manifolds of p- f  vector fields. 
Then, in Section 8, we show how to use our techniques to determine 
whether a given vector field has a polynomial flow. One of our examples 
in Section 8 answers a question posed by Coomes (1990a, question4.1). 
Finally, in Section 9, we examine some similarities between our results and 
a result due to Weierstrass. 

2. P O L Y N O M I A L  VECTOR FIELDS AND DERIVATIONS 

In this section we establish some notation and discuss the main tool 
of our paper, the concept of a derivation associated with a vector field. As 
the material we discuss here is basic, those familiar with the relationship 
between derivations and differentiation with respect to time may wish to 
skim this section. 

Let C [ X  1,..., Xn] denote the algebra over C (with respect to the usual 
addition, multiplication, and scalar multiplication) of polynomials over C 
in the n indeterminates X1 ..... Xn. Let C[  Y] denote the algebra over C 
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(again with respect to the usual addition, multiplication, and scalar 
multiplication) of polynomials over C in the indeterminate Y. 

Let V be a polynomial vector field on C ~. That is, V=  (v~,..., vn) T, 
where each vj is in C[X~ ..... X~]. Associated with V we have the initial 
value problem 

3~= V(y), y (0 )=x  (2.1) 

the flow ~ : s  ~ defined by (2.1), and the map~:C[X1 ..... X n ] ~  
C[J(1,..., X,] given by 

a~--,V~x~a+ . . .  +V,Oxoa 

where Oxg denotes partial differentiation with respect to X i. 

We have the following. 

Definit ion 2.1. Let N be an algebra. A linear map D: N --. ~ is called 
a derivation of N if for each pair a, b of elements of M, we have 

D(ab ) = (Da)b + a(Db ) 

It follows, by induction, that for any derivation D of an algebra ~,  for any 
integer k >/0, and for any pair a, b of elements of ~,  we have 

Dk(ab)= ~ (~)Dia.Dk-ib 
i = 0  

Notice that ~ is a derivation of C[X1,..., X,]. 
Let V: C[X1 ..... X~] --, C[X1 ..... X,]" be given by 

a~---~ (C~x~a ..... 3x a) 

Denote the derivation ~ by V .V. This is natural since, for each a in 
C[X1 ..... X,] we have @a= (Va)V, where the multiplication is the usual 
matrix multiplication. 

Let D be any derivation of C[X1,..., X~] and let F = (fl,..., f~)r, where 
f i  = DXi. Notice that D is the derivation associated with the polynomial 
vector F. That is, 

D =  fl~x~ + "'" + fn~?x.. 

Thus the map from polynomial vector fields on C" to derivations of 
C[Xt, . . . ,  Xn] given by V ~-* V. V is a one-to-one correspondence. 

We distinguish between polynomials and polynomial functions. The 
connection between the two is provided by the evaluation maly--for each 
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x =  (x~,..., xn) r in C n define the map Ex: C[X~ ..... Xn]--, C, which we call 
evaluation at x, by a~-~ a(xl,..., xn). 

We next need a class of functions for the components of solutions of 
(2.1) to live in. Let C~(Y2, C) denote the algebra over C (with respect to 
point-wise addition, multiplication, and scalar multiplication) of infinitely 
differentiable functions from f2 to C. If the map 0,: C~(f2, C) ~ C~ C) 
is given by differentiation with respect to the first component, ~, is a 
derivation of C~(f2, C). 

Since ~ maps C[XI,..., Xn] to C[X1,..., Zn] and since C[X~,..., Xn] is 
a vector space, given any polynomial p in C[ Y], we may define the map 
p(~):  C[X~ ..... X, - I~C[Xa , . . . ,X , , ]  in the following way: If p (Y)=  
X) :o  cqY ~, for each a in C[X1 ..... Xn] we have 

k 

p ( ~ ) a =  ~, cq~ia. 
i = 0  

In a similar fashion we can define polynomials in c?,. We now give the 
connection between the derivations ~ and 0 F. 

Theorem 2.1. Let V be a polynomial vector field, let ~: Q --* C n be the 
associated flow, let ~ be the associated derivation of  C[X1,..., X,,], and let 
p be in C[ Y]. Then the following diagram commutes. 

C[X1 ..... X,]  p(~> > C[X1 ..... X,,] 

E+ 1 1 E+ 

C~(~?, C) vr C~(f2, C) 

Proof. By the chain rule the diagram 

C[zl~l,..., Xn] @"~ C[Xl,... , zt~n] 

~+I 1 ~+ 
c + ( & c )  o, , c ~ ( & c )  

commutes. Theorem 2.1 follows from this fact and the fact that E~ is 
linear, l 

3. PRELIMINARIES FROM COMMUTATIVE ALGEBRA 

Many of the results in this section are well known but scattered in the 
literature. For the sake of completeness, we present all but the most basic 

865/3/1-3 
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facts. For  the sake of brevity, we adopt the following conventions unless 
otherwise stated: 

(1) rings are commutative with identity and modules are unitary, 
and 

(2) vector spaces are vector spaces over C and algebras are algebras 
over C. 

Throughout  this section N is a derivation of C[X1,..., X,] .  In the previous 
section we showed how to define the action of a polynomial in ~ on an 
element of C[X1, . . . ,X,] .  Notice that with this action, C[X1,...,Xn] 
becomes a C[9 ] -modu le .  In a similar fashion, under the action of a poly- 
nomial in 0t on an element of the algebra C~(N x C n, C) of infinitely dif- 
ferentiable functions from ~ x C n to C, the set C~(N x C n, C) becomes a 
C [~t]-module. 

At this point it seems that we have two modules over different rings. 
This is not the case. In C [ ~ ]  we think of ~ as a indeterminate and in 
C[~,]  we think of ~?t as an indeterminate. It is only because of the natural- 
ness of applying ~ to C[XI,..., Xn] and 9, to C~ x C", C) that we 
choose not to think of them both as C[-Y]-modules. In this section we 
examine the algebraic structure of these modules with particular interest in 
the case where N is defined by a p-f vector field. 

Recall (see, for example, Hungerford, 1974; Atiyah and Macdonald, 
1969) the following facts and definitions. Let R be a ring and let d be an 
R-module. For  each a in d let Ann(a )=  { p ~ R :  p a = 0 } .  The set Ann(a) 
is called the annihilator of a in R. Notice that Ann(a) is an ideal of R. If 
Ann(a) is not the zero ideal, a is called a torsion element. Let T ( d )  be the 
set of all torsion elements of d .  The set T ( d )  is a submodule of d .  The 
submodule T ( d )  is called the torsion submodule of d .  

If ~ is a derivation of C[X1 ..... X,] ,  we take C [ - X  1 ..... Xn] to be a 
C [ ~ ] - m o d u l e  in the sense described above unless otherwise stated. In this 
case we denote the torsion submodule of C[X~ ..... Am] by T(N). 

Proposition 3.1. Let ~ be derivation of  C[X1 ..... X,]  and let a be in 
C[X1 ..... Xn]. Then the following are equivalent. 

(1) The element a is a torsion element. 

(2) The submodule C[-~] a is a finite dimensional vector space (with 
respect to the usual addition and scalar multiplication). 

(3) The submodule C [ ~ ] a  is contained in a W =  C[X1 ..... X ,] ,  that 
is a finite dimensional vector space. 

Proof. ( 1 ) ~ ( 2 ) .  Let p = Y ~ = o ~  i be a nonzero element of 
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Ann(a). Let U be the set of linear combinations over C of a, 9 a  ..... 9 k -  ta. 
Then U is a finite-dimensional vector space. Notice that U c C [ 9 ]  a. 

Let f be in C [ 9 ] .  Then, by the division algorithm, there exist polyno- 
mials q and r in C [ 9 3  with deg r <  k such that f =  pq+ r. Thus 

fa  = (pq + r)a 

= q(pa) + ra 

= r a  

Notice that ra is in U. Hence C [ 9 ] a c  U and thus C [ 9 ] a =  U. 

( 2 ) ~ ( 3 ) .  Take W = C [ 9 ] a .  

( 3 ) ~ ( 1 ) .  There exists an integer k such that a, g a  ..... 9ka  are 
linearly dependent over C. Thus there exist scalars Co,..., ek in C, not all 
zero, such that 

C X o a + ~ l g a +  . . .  + ~ k 9 1 : a = 0  

- 52 ~ a i Y  is a nonzero element of Ann(a). I Notice that p -  i=o 

Corollary 3.1. Let 9 be a derivation of  C[X1 ..... Xn]. Then the torsion 
submodule T( 9 ) is subalgebra of  C [ X  1 ,..., Xn]. Furthermore, T( 9 ) contains 
the constant polynomials. 

Proof. Notice that 

91  = 9(12)  = 1(91)  + (,~1) 1 = 91  + 91  

Thus 91  = O. Hence for any constant a we have 

9 a  = 9 ( a l )  = a g l  = 0 

Thus T ( 9 )  contains all the constant polynomials. 
Since T ( 9 )  is a submodule of C[-X1 ..... Xn], it is a vector space. It  

remains to show that T ( 9 )  is closed under multiplication. Let a and b be 
in T(9) .  By proposition 3.1 we have that C [ 9 ] a  and C [ 9 ] b  are finite- 
dimensional vector spaces. Suppose they are spanned by al ..... am1 and 
bl ..... bin2, respectively. Let W be the vector space spanned by {a~bj: 
1 ~<i~< m~, 1 ~< j ~< m 2 }. For  any nonnegative integer k we have 

9 k ( a b ) =  ~ ( ~ ) g i a . g k - i b  
i = 0  

Thus 9k(ab)  is in W for each k. It follows that given any polynomial f in 
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C [ ~ ]  we have that fab is in W. Hence C [ ~ ] a b c  W .  Notice that W is 
a finite-dimensional vector space. Thus, by proposition3.1, ab is in 
T(~).  I 

We allow operators such as V, 0r 9 ,  and Ex to act component-wise 
on vector-valued objects. Define the vector of indeterminates X =  
(X 1 ,..., X,). Then, for example, ~ X =  (~Y~,..., ~Xn). 

We now discuss a connection between our development and polyno- 
mial flows. Let V be a polynomial vector field on C ~. Define the Maclaurin 
coefficients 6~ of V by 

(~0 = X T  

6k+1 = (V.V)6~,  k = 0 ,  1,2 .... 

Notice that each c5 k is polynomial. Coomes (1990b, theorem 3.1) shows 
that the flow ~b associated with V is given by 

x ) =  t k, 
k'2'= 0 k! 

on some neighborhood of {0} x C n in C x C ". Coomes also shows (1990b, 
theorem 4.1) that a polynomial vector field on ~ has a polynomial flow if 
and only if there is a bound on the degree of the Maclaurin coefficients. 
That  is, V is a p-f vector field if and only if there exists an integer d such 
that deg 6k ~< d for all k ~> 0 and all i = 1 ..... n. The assumption that the 
vector field be on R n is not used in the proof of Coomes (l190b, 
theorem 4.1). The proof  works equally well for polynomial vector fields on 
C n. In the sequel, we take Coomes'  (1990b) theorem 4.1 to be valid for 
polynomial vector fields on C ". Notice that if @ is the operator V-V, the 
Maclaurin coefficients are given by 6k = ~ k x r  for all k ~> 0. 

The following theorem is a cornerstone in our development. 

Theorem 3.1. Let V be a polynomial vector field on C n and let ~ be 
the associated derivation of  C EX1 ..... X n 3. Then the following are equivalent. 

(1) The vector field V is a p - f  vector field. 

(2) The torsion submodule T (~ )  is C[X1 ..... X~]. 

(3) There exists a nonzero polynomial p in C[@) such that pXi=O 
for i = 1  ..... n. 

Proofi (1) ~ (2). By Coomes'  (1990b) theorem 4.1, there is a bound 
d on the degrees of ~JXi valid for j~>0 and for i =  1 ..... n. The set W =  
{w ~ C[X1 ..... Xn]: deg w ~< d} is a finite-dimensional vector space. We have 
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~ J X =  (~JX1,..., ~ J X , ) e  W ~ for all j>~0. Since W ~ is a finite-dimensional 
vector space, there exists an integer k and scalars ~0 ..... ~k, not all zero, 
such that 

~ o X + c q ~ X +  --. +C~k~kX=0 

W k e ~ then p is nonzero and pX~=O for I f p i n C [ ~ ] i s g i v e n b y p = z . . . i = o  i , 
i =  1 ..... n. Thus X1 ..... X,, are all in T(~).  Since T(@) is a subalgebra of 
C[X1,..., X.]  that contains the constants, we have T (~ )  = C[X1 ..... X,] .  

(2) ~ (3). For  each i, let Pi be a nonzero element of Ann(Xi). Notice 
that p = p l . . . p ,  is a nonzero element of 07= 1 Abb(X~). Hence pXi= 0 for 
i = 1,..., n. 

(3)=~(1). Without loss of generality, p is monic of degree k, say 
p = ~ k - - Z k - ~ c i ~ i .  Let UcC[X1, . . . ,X , ]  ~ be the finite-dimensional i=0 
subspace spanned b y  {X, ~X,. . . ,~ k 1X}. Notice that if u e U, then ~ u  e U. 

For i f u = f i o X + f l ~ X + . . . + f l k _ l  @k ~X, then 

k--1 

= / l o 2 X + f l l ~ 2 X +  " +ilk ~ ~ c~2 ix  
i - -O 

e U  

It follows that if u e U, then ~Ju  e U for all j ~> O. 
Notice that there is a bound on the degrees of components of elements 

of U; the bound is the largest of the degrees of the components of 
X~ ~ X ,  .... ~ k -  IX. Hence the Maclaurin coefficients 6j = ~JX r of V are of 
bounded degree. By Coomes'  (1990b), V is a p-f vector field. ] 

Let R be a ring and let Spec(R) denote the set of prime ideals of R. 
Let ~ '  be an R-module and let a be in the torsion submodule T(~r Define 

Spec(a) = {P e Spec(R): P ~ Ann(a) }. 

We call Spec(R) the spectrum of R and Spec(a) the spectrum of a. 
The set Spec(C[Y])  can be identified with C ini the following way: 

identify 2 with the prime ideal Pz generated by Y - 2 .  Thus we identify the 
spectra of torsion elements with subsets of C. If d us a C [ Y]-module and 
a is a torsion element of d ,  the ideal Ann(a) is generated by a single non- 
zero monic polynomial p. Let 

p = f i  (Y--2 i )  t' 
i=1 
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where each li is a positive integer. Then the prime ideal P2. contains Ann(a) 
if and only if Y - 2  divides p if and only if 2 is one of 5~1,.--, ~'m' That is, 
2 is in the spectrum of a if and only if 2 is a root of the monic generator 
of Ann(a). Since any two generators of Ann(a) differ only by a factor of a 
constant, any two generators of Ann(a) have the same set of root. Thus the 
spectrum of a is the set of roots of any generator of Ann(a). 

The following theorem gives a spectral decomposition for torsion 
elements. 

Theorem 3.2. Let  ag be a C [ Y ] - m o d u l e  and let a torsion element o f  
d .  Then a decomposes uniquely as a sum (the spectral decomposition) 

a = ~ a 2 
2 ~ s p e c ( a )  

o f  torsion elements satisfying Spec(aa)= {2}. Furthermore, there exist 
polynomials pa in C[Y]  such that p a a = a a .  

Proof. Let p = H m ( Y - 2 i )  lI be the monic generator of Ann(a). If i = l  

a = 0, then p = 1, Spec(a) = ~5, and the result follows vacuously. 
Assume that a ~ 0. We first prove the existence of the spectral decom- 

position. We have m >/1. Without loss of generality, we may assume that 
each lj is positive and that )v are distinct. By the argument above, 
Spec(a) = {5~1,..., "~m}" Let 

qj = [ I  ( Y -  )~ t* 
i = 1  
i ~ j  

The polynomials ql,--., qm are relatively prime. Hence there exist polyno- 
mials rl , . . . ,r  m in C[Y]  such that r l q l +  . . .  + r m q m = l .  Let a # = r j q j a .  
Notice that a< + .. .  + a~m = a. Also notice that 2j is not a root of rj (else 
21- would be a root of each of r lq l  ..... r,,qm and hence a root of 1). Thus 
p does not divide rjqj, which implies that a# r 0. Further, 

( r -  ,~j),,a~, = ( Y -  ;~j)"rjqja 

= rjpa 

= 0  

Hence ( Y - - 2 y ,  is in Ann(a#). Thus the monic generator of Ann(a#) is 
a nonunit that divides ( Y - 2 j )  lj. Hence Spec(a#)={2j}.  This proves 
existence of the spectral decomposition. 
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We now prove uniqueness of the decomposition. Let 

a =  a;, 
i - - 1  

be any spectral decomposition of a. We have 

a - - a = O  

= a2i  - -  a2i  
i = 1  

Fix j between 1 and m. For  i• j we have that 2 i is a root of qj. Thus for 
each i~- j  between 1 and m there exists a positive integer n~ such that 

q~i(a; i + a~.) = 0 

Letting n = max~j{n~}, we have 

q~O=O 

i ' = qja~.,- %) 
i ~ l  

= q~(a~j- a~j) 

This implies that the spectrum of a # - a ; j  is contained i n  the roots 
{2~ ..... 2,,,}\{2j} of qj. Notice that there exists a positive integer k such that 

( Y -  2 j )k (a#-  a;.) = O 

Thus the spectrum of a # - a ;  is contained in {2j}. Therefore S p e c ( a # - a ~ )  
= ~ .  Notice that the only torsion element with empty spectrum is zero 
(see proposition 3.2 for a proof). Thus a# = a;~; Since j was arbitrary, we 
have uniqueness of the spectral decomposition. 

To prove the second part of the theorem, take p # < r i q  j for 
j = l  ..... m. I 

The following is a technical lemma needed in the sequel. 

Lemma 3.1. Let ~ be a derivation of  C[X1 ..... Xn] and let a and b be 
in C[X1,..., X,] .  Suppose that ( @ - 2 ) i + l a = ( ~ - # ) i + l b = O  for some pair 
i, j of  nonnegative integers and some pair 2, # of  scalars. Then 

(1) ( ~ - ( 2 + # ) ) i + i a b =  ( i+j ) !  ( @ - 2 ) i a . ( ~ - # ) i b ,  
i ! j !  

(2) ( ~ -  (2 +#))e+i+lab  = 0 
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Proof. (1) We induct on m = i + j .  If m = 0 ,  then i = j = O  and the 
result follows. Suppose that the result holds for some m~>0. Let 
i + j = m + 1. We calculate 

( ~  - -  ( 2  Ai- 12) )  m +  lab 

= ( ~ - ( 2 + # ) ) m ( ( ~ - 2 ) a . b ) + ( ~ - ( 2 + # ) ) m ( a . ( ~ - # ) b )  (31) 

If i = 0 ,  then j~> 1. By (3.1) and 
and ( ~ - # ) b ,  we have 

( ~  -- (1~ + #))m+ tab = 

by our induction hypothesis applied to a 

( ~  - (,z + u ) ) " ( a  �9 ( ~ -  u ) b )  

( i + j -  1)! ( ~ - - 2 ) i a - ( ~ -  #)Jb 
i ! ( j -  1)! 

( j - -  1)! 
- - a . ( ~ - y ) b  
( j -  1)! 

(i + j).v (@ _ 2) ia" ( 9  -- #)Jb 
i!j! 

and the induction step follows. A similar argument proves the induction 
step when j =  0. If both i and j are positive, our induction hypothesis 
together with (3.1) implies that 

( ~ -  (2+#))re+lab ( i -  1 + j ) !  

( i -  1)!j!  
(~  -- 2)ia �9 (~  -- y)Jb 

+ 
( / + j - -  1)! 

/ ! ( j - -  1)! 
(@ - 2)ia �9 (~  - #)Jb 

( i+j)!  

i!j! 
- -  (~  - 2)ia . ( ~  - #)Jb 

By induction, the result follows. 

(2) This follows directly from (1). | 

Let @ be a derivation on C[X1 ..... Xn] and let 

5'~(~) = U Spec(a) 
a e  T( .~)  

We call the set 6e(~)  the spectrum of ~.  This name is just since 5 f (~)  is 
the point spectrum of the linear map ~.  

A subset M of an abelian group ~ is'called a lattice if, whenever 2 and 
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p are in M, we have )~ + # is in M. If N is any subset of fr we can form 
the set Lat(N) of all finite sums of elements of N. Notice that the set Let(N) 
is a lattice. We call the set Lat(N) the lattice generated by the set N. 

Let M and N be two subsets of C. Define the set M + N in the usual 
way. An element ~ in the sum M +  N is called an extremal point (with 
respect to M and N) if ~ can be written uniquely as ~ = 2 + ~ with )~ ~ M 
and # s N .  

Example3.1.  Let M = { - 1 , 1 , 2 }  and let N = { 0 , 2 , 5 } .  Then 
M + N =  { - 1 ,  1, 2, 3, 4, 6, 7} and the set of extremal points of M + N i s  
{ - 1, 2, 3, 6, 7 }. The element 1 is not an extremal point since 2 = - 1 + 2 = 
1 + 0 .  

The following proposition summarizes the basic properties of spectra. 
As always, if a is a torsion element of a module, Spec(a) denotes the 
spectrum of a. 

Proposition 3.2. Let ~ be a derivation of  C[X1 ,..., Xn], let a and b be 
torsion elements of  CEX1,..., Xn], and let p be in C [ ~ ] .  Then the following 
hold. 

(1) The spectrum of  a is the set of  roots of  any generator of  the 
annihilator of  a. 

(2) A torsion element is zero if  and only if  it has an empty spectrum. 

(3) I f  2 is in the spectrum of ~ ,  there exists a nonzero elements a of  
C[-X1 ..... X , ]  such that ( ~ - 2 ) a =  0. 

(4) The spectrum of  ~ is a lattice. 

(5) I f  pa = O, the spectrum of a contained in the roots of  p. 

(6) The spectrum of  pa is contained in the spectrum of  a. 

(7) I f  p does not vanish on the spectrum of a, the spectrum of  pa is 
equal to the spectrum of a. 

(8) The spectrum of  a + b is contained in Spec(a) ,• Spec(b). 

(9) The spectrum of  ab is contained in Spec(a )+  Spec(b). 

(10) I f  ~ is an extremal point of  Spec(a )+  Spec(b), then ~ is in the 
spectrum of ab. 

Proof. (1) The proof of this precedes theorem 3.2. 

(2) Let a be a torsion element and let q be the monic generator of 
Ann(a). The torsion element a has an empty spectrum if and only if q has 
no roots if and only if q is 1 if and only if a = la  -- 0. 

(3) There exists a torsion element b with )~ in its spectrum and thus, 
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by theorem 3.2, there exists a torsion element b;~ with Spec(b)3 = {2}. The 
monic generator of Ann(b)) must be (~  - 2 )  k for some positive integer k. 
Let a = (9  - 2) ~- ~b. 

(4) Let 2 and y be in 5P(~). Then, by (3), there exist nonzero torsion 
elements a and b such that ( ~ - 2 ) a = ( ~ - y ) b = 0 .  Notice that ab~O 
and, by lemma 3.1, ( 9 -  (2 + lz))ab = 0. Thus 2 + # is in 5e(@). 

(5) The polynomial p is in Ann(a). Thus, if q is a generator of 
Ann(a), then q divides p. Hence the spectrum of a, which by (1) is the set 
of roots of q, is contained in the set of roots of p. 

(6) Let q be a generator of Ann(a). Then qpa = 0. Hence, by (5), the 
spectrum of pa is contained in the set of roots of q. That is, Spec(pa) 
Spec(a). 

(7) Let r be a generator of Ann(pa). Then rp is in Ann(a). Thus if 
)~ is in Spec(a), then 2 is a root of rp. Since 2 is not a root of p, ikt must 
be a root of r. Therefore/t is in Spec(pa). That is, Spec(a) c Spec(pa). By 
(6), we have Spec(a)= Spec(pa). 

(8) Let q generate Ann(a) and let r generate Ann(b). Notice that 
pq(a+ b)=  0. Thus, by (5), the spectrum of a +  b is contained in the set of 
roots of pq. Notice that the set of roots of pq is Spec(a) u Spec(b). 

(9) Let a =  ~.2ESpec(a)a~ and b = ~ , # ~ S p e c ( b ) b ~  be spectral decomposi- 
tions for a and b. Then 

ab = ~ ~ a;b~,. 
2 e Spec(a) ,u e Spec(b) 

For each 2 in Spec(a), let ( 9 -  2) n~+ 1 generate Ann(a;.). Similarly, for each 
in Spec(b), let ( 9 -  y)m,,+l generate Ann(b~). Then the n~'s are all non- 

negative by lemma 3.1, 

( 9  --  (2  + ~))n> + m~+ la~b~ = 0 

Since a;b~ ~ 0, we have that Spec(a;b,) = {2 +/~} by (8), we have 

Spec(ab) c U ~J {2 + y} = Spec(a) + Spec(b) 
)~E Spec(a) /z ~ Spec(b) 

(10) In the proof of (9) we showed that we may write ab as the 
double sum 

ab: Z 
3_ ~ Spec(a) # ~ Spec(b) 
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where S p e c ( a ; b u ) = { # + # } .  Let 2 + #  be an extremal point of 
Spec(a) + Spec(b). Then, by (8), we have 

Spec(ab - azb~) ~ (Spec(a) + Spec(b))\ {2 + #} 

Let p be a generator of Ann(ab -a ; . b , ) .  Then p does not vanish at 2 + #. 
Notice that pab = pa;b~,. Thus 

{2 + #} = Spec(a;bu) 

= Spec(pa~b, )  

= Spec(pab)  

cSpec(ab)  I 

The following example shows that if 2 + # is not an extremal point of 
Spec(a) + Spec(b), then 2 + # need not be in the spectrum of ab. That is, 
the containment in part 9 of proposition 3.2 may be strict. 

Example 3.2. Let ~ be the derivation of C[XI,  X2] associated with 
the vector field V = ( 1 ,  X2) T. Let a = X 1 - X 2  and b = X ~ + X z .  Then 
Spec(a) = Spec(b) = {0, 1 }. We have ab = J(f  - X~. Notice that Spec(ab) = 
{0, 2}. Hence 1 is an element of Spec(a) + Spec(b) but not of Spec(ab). 

We now discuss the relationship between algebraic operations in T(~)  
and multiplicities of roots of generators of annihilators. Let a t  T(@) and 
let p generate Ann(a). Define ordx(a) to be one less than the multiplicity 
of 2 as a root of p. That  is, 

ord).(a) = sup{m ~ 7/: m ~> - 1  and (~  - 2) m+ 1 divides p} 

We call ordz(a) the order op f  2 with respect to a. 
If Z~.~Speo(a) a~ is a spectral decomposition for a, then 

order(a jr) for each 2 ~ Spec(a). To see this, notice that since 
ord2(a)= 

0 pa = 2., pa ~ 
2 ~ Spec (a )  

we must have pa)~ = 0 for each 2. Furthermore, for a particular 2 ~ Spec(a) 
and with q)~ = p / ( ~ -  2), we have 

q ~ a = q z a ~ r  

That is, each generator of Ann(aD divides p but not q~. Thus ord~.(a)= 
ord;~(a~). 
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Proposition 3.3. Let 9 be a derivation of C [ - X 1 , . . .  , J ( n ] ,  let a and b be 
torsion elements of C[XI ..... X~], and let 2 be a complex number. Then 

(1) ord)~(a + b) ~< max{ord~(a), ordz(b)}, 

(2) tf ord).(a) < ord)~(b), then ord~(a + b) = orda(b), and 

(3) /f 2~Spec(a), #~Spec(b), and 2 + #  is an extremal point of 
Spec(a) + Spec(b), then ordx+u(ab ) = ord~(a) + ord~(b). 

Proof. Let 

q = H (9  - -  y )max{ordv(a) ,ordv(b)}  + 1 
v ~ Spec(a) ~ Spec(b) 

and let Zv~ Spec(a)a~ and ~ v ~ S p e c ( b ) b ~  be spectral decompositions for a and 
b, respectively. 

(1) We have qa=qb=O. Hence q(a+b)=O and therefore any 
generator of Ann(a+b )  divides q. This proves (1). 

(2) By (1), we have ord~(a+b)<~ordz(b) and 

ord~(b) = ord~(a + b + ( - a ) )  ~< max{orda(a + b), ord~(a)} 

Hence we must have ord).(b)~ ordx(a + b) and (2) follows. 

(3) Let Z~Sp~o(~b)C~ be a spectral decomposition for ab. Since 2 + p 
is an extremal point of Spec(a)+ Spec(b), by proposition 3.2 we have 
2 + p ~ Spec(ab). Notice that c~+, = a;b~. By lemma 3.1, 

( 9  - -  ( 2  "+- # ) )  ord2(a) + ordu(b)c 2 + ,u :~ 0 

( 9  - -  (2  @ #))ord2(a)  + ordu(b) + l c 2 + ,  u = 0 

That is, 

ordx+,(ab) = ord~+~(cx+,) = ord;~(a) + ord,(b) | 

4. T H E  S P E C T R U M  O F  A D E R I V A T I O N  

Let 9 be a derivation of C[X1 ..... Xn]. In this section we show that the 
spectrum of 9 is contained in the spectrum of another, in some cases, 
simpler derivation. In the case where 9 is defined by a p-f vector field with 
a fixed point, we show that the spectrum of ~ can be expressed in terms 
of the eigenvalues of the linearization of the vector field about the fixed 
point. 

We first construct a generalization of degree. Let N denote the non- 
negative integers and let X denote (X 1,..., Am). For each r = (rl,..., rn) in ~ n 
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we define the monomial U =  X'~ 1 ' ' '  X, rn. Notice that we may write any 
polynomial a in C[X1,..., An] as 

a= ~ c~(a)X ~ 
rc~ n 

where each Cr(a) is a scalar uniquely defined by a. For  each polynomial a, 
only finitely many of the cr(a)'s are nonzero. 

Let co= (col ..... con) be a vector with nonnegative real entries. For a 
nonzero monomial cX r, define 

wght~(cX ~) = <r, co> 

where ( . , .  > denotes the usual inner product. Also, define 

wghto~(O) = - o o  

For  any polynomial a in C[XI ..... An] define 

wght~(a) = max{wghto(c~(a)XO: r e N ~ } 

(notice that this maximum is taken over a finite set). 
We call wghto~(a) the weight of the polynomial a with respect to co. 

Notice that if a and b are in C[X1,..., X,] ,  then 

(1) wghLj(ab ) = wght~(a) + wght~(b); 

(2) wght~(a + b) ~< max{wght~(a), wghto~(b)}; 

(3) if wghto)(a)#wght~(b), then wght~o(a+b)=max{wght~)(a), 
wght~(b)}; and 

(4) if co = (1 ..... 1), then wght~(a) os the degree of a. 

Let h be in N. The polynomial a in C[X1,. . . ,X,]  is said to be 
co-homogeneous of weight h if a is a sum of monomials, each of weight h. 
Take zero to be co-homogeneous of all weights. Let ~ be the set of all 
polynomials that are co-homogeneous of weight h. Notice that ~h is a 
vector space and that only countably many o~fh's are nonzero. Furthermore, 
notice that 

C[Xl,..., xo]  = (9 
h e n  

as a vector space. For  each pair h,h' in ~ let ~ , = { a a ' :  a E ~ ,  
a' e ~ , ,  }. Then 
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Let L: C[X1,. . . ,Xn] ~C[-X1, . . . ,Xn] be a linear map. Suppose that 
there exists a real number # such that for each h in ~ we have 

L ( ~ )  = ~ + 

Then L is said to be co-homogeneous o f  weight #. Notice the following facts 
about  co-homogeneous linear maps from C[X1 ..... Xn] to C[-X1 ..... X,] .  

(1) If L # 0 is an co-homogeneous linear map, its weight is unique. 

(2) If L 1 and L2 are co-homogeneous linear maps of weight #, so is 
L1 + L 2. 

(3) If L 1 and L2 are co-homogeneous linear maps of weights #1 and 
#2, respectively, L 1 o L 2 is co-homogeneous of weight #1 + #2. 

If a e C[X~,..., X~I is co-homogeneous of weight h, the operator a~xi is 
co-homogeneous of weight h-co~.  Thus any derivation ~ of C[X1 ..... X~] 
can be written 

~ = ~ 1 +  .-- + ~ k  

where ~, is co-homogeneous of weight he and hi < h2 < ... < hk. 

Theorem 4.1. Let ~ be a derivation of  C ~ - X  1 ..... Xn] and let co be an 
n-vector with nonnegative real entries. Suppose ~ = ~o + "'" + ~k, where ~i 
is co-homogeneous of  weight h i ,  0 = h o < hi < "'" < hk. Then the spectrum o f  

is contained in the spectrum of  ~o. 

Proof. Let 2eSe(@). Choose a nonzero element a e C [ X 1 , . . . , X , ]  
such that ( 9 -  2)a = 0. Write a as the sum 

a = a o +  - . .  + a  m 

where ae is a nonzero polynomial co-homogeneous of weight ~ e and 
~ o < ~ l < < a m .  W e h a v e  

( ~ -  2 ) a  = ( 9 0  + -- .  + ~ k -  2 ) (ao  + . . .  + am) 

= @oao - )~a o + b 

where b is a sum of monomials  each of weight greater than ~o. Notice 
that both ~ao  and 2ao are co-homogeneous of weight ~o. Thus, since 
( ~  -- 2)a = 0, we have ~oao - 2ao = 0 and b = 0. Thus 2 ~ 5e(~o). 

We need the following technical lemma in the sequel. 

Lemma 4.1. Let ~ ,  co, ~e, and hi be as in theorem 4.1. Let 
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X =  (X1,..., X~) and let p be a polynomial in C[Y] .  Then the operator p ( ~ )  
decomposes as 

p ( # ) = & +  . - .  + z m  

with each Z i co-homogeneous of  weight I~i, 0 = t~o < I~ < "'" < #m" Further- 
more, Zo = p(~0) and t f p ( ~ ) X = 0 ,  then Z i X = 0  for  i=  1,..., m. 

Proof. Recall that the composition of two co-homogeneous linear 
maps is an co-homogeneous linear map. Recall, also, that the weight of the 
composition is the sum of the weights of the factors. Repeated application 
of this fact shows that for each nonnegative integer k, the map ~k can be 
written as a sum of co-homogeneous linear maps each of weight at least 
zero. Furthermore, the term in the sum with weight zero must be ~o  k. The 
decomposition for p follows, as does the fact that ~=0 = P(~o)- 

If p ( ~ ) X = 0 ,  then p ( ~ ) X j = ~ o X j +  . . .  " ~ - , - , ~ m X j = O .  But ZiXj is 
co-homogeneous of weight #i+coj- Since the /h's are all distinct, each 
SiXj  = 0. That is, ~ iX = 0 for i = 1 ..... m. I 

For  the remainder of this section we consider the case of co = (1,..., 1 ). 
That is, we consider the case where wght~ is degree. For  this choice of co, 
we drop the co-prefix from co-homogeneous. We say a polynomial mapping 
P: C n --, C n is homogeneous of degree k if each component of P is poly- 
nomial and homogeneous of degree k. 

Theorem 4.2. Let V be a polynomial vector f ield on C ~ and let 
= V . V .  Suppose V(0) = 0. Then let 

V = H I +  -.. + H n  

where H i is homogeneous o f  degree i and let M be the set o f  eigenvalues of  
the linear map x ~ Exi le .  Then the spectrum o f  ~ is contained in the lattice 
generated by M u  {0}. 

Remark. It is sometimes useful to not that L a t ( M ~ { 0 } ) =  
Lat(M) u {0}. 

Proof. We have @ = H I . V +  - - . + H  n.V. Notice that H i . V  is 
a homogeneous derivation of weight i - 1 .  Thus, by theorem 4.1, the 
spectrum of ~ is contained in the spectrum of 9o = H1 �9 V. 

If c is any constant, ~oC = 0. Hence zero is in the spectrum of ~o. We 
identify H1 with the matrix of the linear transformation x F-~ E x H  1. That is, 
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~o = (HI X) V. A calculation shows that k k �9 ~ o X =  H~ for each nonnegative 
integer k. Hence, if p in C [ Y] is the minimal polynomial of H~, then 

p(~0)X= p(H 1)X= 0 

Thus the spectrum of each XA,..., Xn with respect to the derivation ~o is 
contained in M. Since every element of C[X1,..., X,]  is a finite sum of 
products of constants and XI ..... Xn, repeated application of parts (8) and 
(9) of proposition 3.2 proves that 5~(~o) is contained in L a t ( M u  {0}). By 
theorem 4.1, we have 5P(~) c 5P(~0). ] 

In the case where V is a p-f vector field, we can prove a stronger 
version of theorem 4.2. 

Theorem 4.3. Let  V be a p- f  vector field on C n and let ~ = V .  V. 

Suppose V(0)= 0. Then let 

V = H I +  .-- + H ,  

where Hi is homogeneous of  degree i and let M be the set of  eigenvalues of  
the linear map x ~ ExHI.  Then the spectrum of @ is the lattice generated 
by M u  {O}. 

Proof. By theorem4.2, we have 5 ~ ( ~ ) = L a t ( M u  {0}). Let p be a 
generator of 07-1 Ann()(,.). Recall, by theorem 3.1, that p #0.  Notice that 
each root of p is in 5e(~). As in the proof of theorem 4.2, we identify H1 
with its matrix. By lemma 4.1 we have 

p(H1)X= p(H1 .V)X= 0 

Thus p (H  1) = 0 and hence each eigenvalue of H 1 must be a root of p. That 
is, M c S P ( ~ ) .  Since ~ 1 = 0 ,  zero is in 5~(~). Since 5P(~) is a lattice, 
L a t ( M ~  {0})cSP(~) .  Hence L a t ( M u  {0})=5~(~).  I 

Corollary 4.1. Let V be a p- f  vector field on C n and let ~ = V .  V. 
Suppose that V(xo) = 0 for some Xo ~ C ~. Let M be the set of  eigenvalues of  
VV(xo). Then the spectrum of  ~ is the lattice generated by M u  {0}. 

Proof. The map Ex+xo is an algebra automorphism of C[X1,..., Xn]. 
Let V '=Ex+x0V and let ~ ' = V ' . V .  Then for each a~C[X1  ..... X,]  and 
each polynomial p E C [- Y1 we have 

p ( ~ ' ) ( E x  + xo a) = Ex  + xo P( ~ ) a (4.1) 

Since T(~) = C[X1,..., X,] ,  we have T(~')  = C[X1 ..... X~] and thus, by 
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theorem 3.1, the vector field V' is a p-f vector field. Furthermore, it follows 
from (4.1) that 5e(@')=Se(~).  The set M is the set of eigenvalues of' 
W ' (0 ) .  By theorem 4.3, the result follows. | 

5. A P O L Y N O M I A L  FLOW AS A SUBSYSTEM OF A 
LINEAR FLOW 

Throughout this section, let V be a p-f vector field, ~ = V .V  be the 
associated derivation of C[X1,..., Xn], and ~b he the associated flow. In this 
section we show that ~b satisfies a linear homogeneous ordinary differential 
equation with constant coefficients. We also derive a formula for ~b. 

In Sections 2, 3, and 4 we approached the subject from an algebraic 
viewpoint. In this section we begin our departure from that approach and 
instead concentrate on the initial value problem 

~ = V ( y ) ,  y ( 0 ) = x ~ C  n (5.1) 

and its solutions. This is not to say that our previous work is superfluous. 
The tools developed in the previous sections provide natural and elegant 
proofs for the results throughout the remainder of the paper. 

Theorem 3.1 provides us with the foundations for our development in 
this section. This theorem states that there is a nonzero polynomial in 
C[-~] that annihilates each of X1,..., Xn. Let p (~)  be the monic generator 
of (']7= 1 Ann(Xi). We write 

N--1 

p(~) = ~ N _  y~ cj~; 
j = o  

for some set of scalars Co,..., CN_ 1" Notice that we must have N/> 1. We 
now have the following. 

Theorem 5.1. 
the linear homogeneous Nth-order ordinary differential equation 

N--1 
y(N) 2 cjY (j)=O 

j = O  

That is, for  each x E C", the solution Cx o f  (5.1) satisfies (5.2). 

Proof. By theorems 2.-1 and 3.1 we have 

p(~t)r = p(~,) E~X T 

= E ~ p ( ~ ) X  v 

= 0  | 

Let  v, ~b, p, and Co,..., C N_ 1 be as above. Then q) satisfies 

(5.2) 

865'3/1-4 
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The remainder of this section is devoted to describing the flow ~b. Let 
A be the matrix 

o... Oo - o ' o o )  

col ClI c2I CN--1I 

where I denotes the n x n identity matrix. Let F: C n ~ C nN be the injective 
polynomial map given by 

x~-+ (c r, Ex~X,..., Ex ~ N  Ix)T 

Let ~z: C "u ~ C" be given by 

( X l , . . . , X , N ) T ~ ( X ~  ..... X , )  T 

We have the following. 

Theorem 5.2. Let V. r A, F, and ~ be as above. Then for each x E C ~, 
the map F sends the solution of (5.1) to the solution of 

= Az, z(O) = F(x) (5.3) 

That is, for each x E C', the function Fo q)x satisfies (5.3). Furthermore, 
is a left inverse of F. 

Proof. For  j = 0, 1 ..... N -  1, let Os = 63Jr Then 

F(r = ((r E+~X, .... Er N -  1X)r 
= 63 T ((r (~ r  ,..., (63~)T)~ 

--~ ((~r T, ( ( / /1)T. . . ,  (ON_I)T) T 

Notice that 

and that 

That  is, 

OtC/= ~ /+i ,  j = 0 ,  1 , . . . , N - 2  

N--1 N--1 
63t~lN 1 =63NtO= E CJ 63j~)~" E Cj@j 

j = O  j = O  

O,(Fo r = AFo r 
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Furthermore, F((~(O,x))=F(x) .  Thus F sends solutions of (5.1) to 
solutions of (5.3). Notice that ~z is a left inverse of F. I 

Corollary 5.1. Let V, (~, A, F, and n be as above. Then 

~b(t, x)  = nemF(x)  

Proof. This theorem follows from theorem 5.1 and the theory of 
linear ordinary differential equations. | 

Corollary 5.2. Let  V and q) be as above. Then there exists a positive 
integer m, nonnegative integers li for i = 1,..., m, distinct complex numbers 2~ 
for i = 1,..., m, and polynomial functions a~j: C ~ -~ C ~ for i = 1 ..... m and 
j = 0,..., li with a~, r 0 such that 

li 

(~(t, x ) =  ~ ~ aij(x) tJe~'t/j! (5.4) 
i = 1  j - 0  

Furthermore, /f ~ = V . V ,  the monic generator o f  (-]7_lAnn(Xi) is 
H,% 1 ( 9  - ; t s  

Proof. Equation (5.4) follows from corollary 5.1. It remains to show 
that p(~)=FI~m~ (~--)~y~ is the monic generator of (-]7=~ Ann(X~). 
Notice that E r  Hence p ( ~ ) X = 0  and thus 
P(~)  ~ NT= 1 Ann(Xz). If q(~) is a factor of p(@) and deg q(~) < deg p(~),  
then q(0~)~br Thus E~q(~)X=/=O. Since E~ is linear, q ( ~ ) X # O .  Thus 
q(~) is not in (~7=~Ann(X~). Hence p(~)  must be a generator of 
~7=~ Ann(X~). Notice that p(~)  is monic. | 

The following is a technical lemma which will be used in the sequel. 

Lemma 5.1. Let  V, 9,  ~b be as above. Let  m, li, and a U be as in 
corollary 5.2. Then there exist polynomials pi( Y) ~ C[Y] for i= 1 ..... m and 
q i ~ ( Y ) E C [ Y ]  for i=  1,..., m and for k = 0  ..... le such that 

(1) p,(~t)qk = E ~ p ~ ( ~ ) x r =  ~,~i= o aU(x ) #e~il/]!, 

(2) q ik (Ot )~b=Eoqik (~)xT=~t i -k  a tx~ tJe~'l/j!, and / .~ j  = 0 ~+k~,  ! 

(3) (q~k(Ot)~b)l,=0 = Exqik(~)  X T =  ai~(x). 

Proof. Notice that Eq. (5.4) gives a spectral decomposition for ~b as 
an element of the C[0t]-module C~(C x C", C"). Hence, by theorem 3.2, 
there exist polynomials p;(Ot) in C[8l] such that 

6 

pi(~3t)~ = ~ ar tJe~1/j!, i=  1 ..... m 
j = o  
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But we also have 

p,(dt)qb = p,(c~,) E~X r = E~ p , ( ~ ) X  r 

Next, notice that for i = 1 ..... m and for k = 0 ..... I i we have 

h 

(c~t-- 2i)k pi(c~t)~ = ~. aij(x) #-ke~t / ( j - -k ) !  
j = k  

h - k  
= ~ ao+k(x)tJeZ't/j! (5.5) 

j = 0  

Let qik(~,) = ( ~ t -  21)kPi(~t) - Then (2) follows from the fact that 

q,k(Ot)(~ = Aqe~(3t) E~X r= E~qik(~)X T (5.6) 

Part  (3) follows from setting t = 0  in Eqs. (5.5) and (5.6). | 

Using the notation of corollary 5.2, let 
li 

O~i(t, x) = ~ aij(x) tJe~t~]!, i= 1,..., m 
j = o  

Lemma 5.1 shows that we may "isolate" q~z, in ~b by either 

(1) applying a polynomial pc(dr) in the different operator Ot to the 
flow ~ or 

(2) evaluating the polynomial function pi(@)X r at ~. 

Part (1) is not surprising. Part (2) allows us to isolate q~)., without 
differentiating. 

We now present some examples to illustrate the results in this section. 

Example 5.1. 

where q(Y) e C [ Y] 

Consider the initial value problem 

Pl -- 0 yl(0) = xl 

~e= q(yl)  ya(0) = x2 

associated derivation ~=ql(X1)Ox2. 
Ann(X1) n Ann(X=). We have 

is monic of degree greater than one. In this case the 
Hence N 2 X = 0  and N= generates 

A = (i ~ oO~ oO~ i) 
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Thus, s i n c e  A 2 = 0, 

O( t, x)  = rwA'F(x) 

l 0 t l | x 2 l  

o ,  o)to ) , , ,  
0 0 1 q(x~) 

--~ (X1, X2 -}- tq(xl))  r 

In general, the matrix A is similar ini appearance to the matrix 

B =  

(~0 1 0 -.- 0 0 1 . . .  0 
�9 . �9 �9 ' 

0 0 ..- 1 

CO Cl  C2 " " " C N - -  lJ 

which is the matrix one obtains when converting a linear Nth-order  
ordinary differential equation into a first-order system. We wish to make 
precise the connection between A and B. Let Matin(C) denote the set of all 
m x m matrices with complex entries. We take Matm(C) to be an algebra 
(over C) in the usual sense. Define the map A: Mat , (C)  ~ Ma t ,x (C  ) via 

(a11 .hi / 
\ O ~ n l  " ' "  O~ n \ O ~ n l I  ~ . , I /  

where I is the n x n identity matrix. Notice that A is a linear map and a 
monomorphism of rings. Since Mat , (C)  and Mat,N(C ) are finite dimen- 
sional as vector spaces over C, the map A is continuous with respect to any 
pair of norm-induced topologies on Mat , (C)  and Mat,N(C). We have 
A = A(B).  From the facts outlined above, we have eA'=  A(e~'). 

Example 5.2. Consider the initial value problem 

Pl = ~xmYl + Y'~ yl(0) = xl 

.02 = ~u2 ydO) = x2 

where r n = 2 ,  3,4 ..... In this case the associated derivation 
(o~mX1 + X'~)Oxl + ~ zlf'a3x2. Hence 

~3X= or or -+- 2) ~ X  + (2m + 1) ~ 2 X  

9 =  
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and 9 3 - (2m + 1 )~2 + ~2m( m + 2 ) 9  - 0 r  2 generates Ann(X1) n Ann(X2). 
We have 

B =  0 1 

e3m2 --odin(m+2) cff2m+l)  

Thus if 

then 

We have 

m - -2m/e  1/~2~ 

B I =  ~zm 2 - 2 m  i / a ]  
\~2m2 - 2~rn l /  

1 - 2m 2m/e - 1/cz 2 ) 

B2= - e m  2 m z + l  - 1 / a  
- ~2m2 2em m 2 - -  2m 

/ e m ( m - 1 )  1 - m  2 

B3 = 1a2m2(m - 1) em(1 - m  2) 
\~z3m3(m - 1) ~2m2(1-m 2) 

( m -  1)/~ '~ 

re (m--  1) 
~m2(m - 1) /  

1 
co B t  - -  _ _  e C ~ m t B 2  (m - 1) 2 (e~tB1 + + te~m~B3) 

F ( X l ,  x2) = (Xl,  x2,  o~mx 1 -b x~,  O~x2, ~2m2xl -]- 2~mx'~, ~2x2)r 

and therefore 

~b(t, x )  = ~A(e Bt) F (x l ,  x2) 

xm t ~ e rzrnt = ( ( x l  + 2 , ,x2e~')  T 

6. DYNAMICS OF POLYNOMIAL FLOWS 

Bass and Meisters (1985) show that on ~2 (and on C 2) any polyno- 
mial flow can, via a polyomorphic change of coordinates, be put into one 
of a list of well-understood "normal forms." This normal forms theorem is 
one of the most beautiful parts of the theory of polynomial flows. The 
global dynamics of the normal forms are easily understood, hence the 
possible global phase portraits of polynomial flows in two dimensions are 
well understood. 

On ~n for n ~> 3, however, there is no known normal forms theorem. 
Up to now little has been proven about the dynamics of polynomial flows 
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in more than two dimensions. Three facts that are well established are as 
follows: 

(1) 
(2) 
(3) 

polynomial flows are complete; 

the divergence of a p-f vector field is constant; and 

if a p-f vector field has an attracting fixed point, it is a global 
attractor. 

See Bass and Meisters (1985) for proofs of (1) and (2). See Meisters and 
Olech (1986) for a proof of (3). Meisters and Olech (1988) also contains 
results relevant to global asymptotic stability of polynomial vector fields on 
the plane. 

Meisters (1989) and Coomes (1988) have asked questions about the 
dynamics of polynomial flows. We can now draw a clearer, albeit, not 
complete, picture of the dynamics of polynomial flows in dimensions 
greater than two. 

Time t is usually taken to be a real parameter when one considers 
dynamics. Hence in this section t is real. Recall that since a p-f vector field 
V on ~n is polynomial, it extends to a vector field on C n. Furthermore, the 
flow associated with V extends to the flow of the extension of V to C n [see 
Coomes (1990b) for a proof].  Thus we consider only p-f vector fields on 
C n" 

Let V be a p-f vector field on C" and let F be as in Section 5. Notice 
that F is a polynomial embedding of C n into a higher dimensional space. 
Recall that F sends solutions of 

3~= V(y) (6.1) 

to solutions of a linear first-order system. It follows immediately that the 
orbits of (6.1) have to behave like orbits of linear systems. A few special 
specific instances are treated in the theorem below. 

Theorem 6.1. Le t  V be a p - f  vector f ie ld  on C n and let 0 be the 
associated f low. Then the following apply. 

(1) The vector f i e ld  V has no homoclinic orbits and 

(2) no heteroclinic orbits. 

(3) Given x �9 C", i f  (kx is bounded fo r  all t, there exist  a positive 
integer m, real numbers o~ i and Oi f o r  i =  1 ..... m, and vectors 
a i 6 C  n fo r  i=0,..., m, such that 

O x ( t ) : a o + a l s i n ( c o l t + 0 1 ) +  . . .  +amSin(OJmt+Om) (6.2) 

Proof. Let F and n be as Section 5. As mentioned above, for each 
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x ~ C ", the function Fo ~x is a solution of a linear first-order system. Hence 
Fo ~bx cannot  be a homoclinic  [hererocl inic]  solution. Notice that  if ~bx is 
a homoctinic  [heteroclinic] solution, so is Fo ~b x. Thus ~bx can be neither a 
homocl inic  nor  a heteroclinic solution. This proves (1) and (2). 

To  prove  (3), notice that  if ~bx is bounded  for all t, so is Fo(G.  Thus, 
s'mce Fo ~b~ is a solution of a linear first-order system, there exists an integer 
m, real numbers  coi and 0i for i = 1 ..... m, and vectors a~ ~ C nN for i = 0 ..... m, 
such that  

F((G(t))  = a'o + a'l sin(col t + 01) - [ -  " ' '  "[- a~ sin(co,, t + Om) 

Thus  ~b z = n o Fo ~b x is of the form 6.2. | 

H o w  m a n y  isolated fixed points  ( that  is, isolated f rom other  fixed 
points)  can a p-f vector  field have? This quest ion is unanswered.  Here  are 
the cases where the answer  is known:  in one dimension the answer is at 
most  one. (Recall that  all one-dimensional  p-f vector  fields are of the form 
~y +/~, where ~ and/~ are scalars.) F r o m  the no rma l  forms theorem of Bass 
and Meisters, it follows that  in two dimensions the answer is at mos t  one. 
If  Xo is an at t ract ing fixed point  of a p-f  vector  field on ~n or C n, then Xo 
is a global  at tractor .  Hence  a p-f  vector  field with an at t ract ing fixed point  
has only one fixed point.  It  also follows, by reversing time, that  a p-f  vector  
field with a repelling fixed point  has only one fixed point. 

Theorem 6.2. Let  V be a p - f  vector f ie ld  on C n, let ~ = V-  V, and let 
p ( ~ )  be a generator of NT= ~ Ann(Xi).  Suppose that zero is not a root o f  
p( @ ). Then u has at most one f i x e d  point. 

Proof.  Wi thout  loss of  generali ty we may  take p(~)=~u 
zN=0 ~ CjN j, where N~> 1. Recall ( theorem 5.2) that  the m a p  F as defined in 
Section 5 sends solutions of (6.1) to solutions of 

= Az  (6.3) 

where 

A =  

(i/0 
0 I . . .  

�9 , . . " 

0 0 --. 

Co I c l i  c2L " ' "  C N _ I I  

If  zero is not  a root  of p ( ~ ) ,  then Co ~ 0. In this case A is nonsingular  and 
hence (6.3) has a unique fixed point�9 Since F is injective and sends fixed 
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points of V to fixed points of (6.3), the vector field V has at most one fixed 
point. | 

Let M be an open subset of C n, let F be a vector field on M, and let 
~9 be its local flow. We say that a nonconstant differentiable function 
f :  M ~ C is an integral of F if 0 , ( fo  ~,) vanishes on the natural domain of 

0.  

Corollary 6.1. Let V be a p - f  vector f ield on C ~ with a f i xed  point at 
zero. Suppose that V has no polynomial integrals. Then zero is the only f i xed  
point o f  V. 

Proof. Suppose that V has more than one fixed point. Let ~ = V.V.  
By theorem6.2, zero is a root of the monic generator p ( ~ )  of 
07= 1 Ann(Xi) �9 Thus for some nonzero polynomial p ' ( ~ )  we have 

o 

Notice that for some i, the polynomial p '(@) is not in Ann(Xe). That is, 
p ' ( ~ ) X i r  Since V has a fixed point at zero, Eop ' (@)X~=0.  Thus 
p ' ( ~ ) X i  is not constant. However, 

O,(E~ p ' (~)X~)  = E 4 ~ p ' ( ~ ) X ,  = 0 

so p ' (~)X~ is a polynomial integral of V. By the contrapositive, the 
theorem holds. I 

The converse of theorem 6.2 is not true as the following example 
shows. 

Example 6.1. Consider the initial value problem 

)) = Yl + 7Y 2 + 12y2 Y~ + 36y~ yl  2 + 36yl y5 + 12y7, yl(0)  = xl 

3~2 = -6y~  - lSy~ y~ -- 18y 1 y 2  4 - -  6y26 -- 3ye y2(0) = x2 

with polynomial flow 

yl( t )  = ( 6 3 2 __xl__6x2x1__6x~x1__2x2x ~ 3 6 2 8 5 2 -- 20XlX 2 - -  1 5 X l X  2 - -  6X~X 2 
4 4 ~ 7 22 1 5 X 1 X 2  6 X 1 X l 0  2~ 6t - -  _ Z X  2 - -  X 2 - -  __  x 2 ) e  

+2x +30x x +12xlx o+2x + 12 3 3 2 5 2x2 + 2 x 2 x ~ + 6 x 2 x  1 + 6 x 2 x  ~ 

+ 12x~x 2 4 4 + 3 0 x l x  2 + 40x~x 6 + (X 1 + x2)e  ̀  

4 4 . . ~ _ ( _ _ 1 5 X l X 2  12 t - 5  2 3 6 6 _ x 2  _ O X l X 2 _ 2 O x l x 2 _ x l _ 6 x ~ x l O _  15x~x2)e2 8 6t 

y 2 ( t ) = ( x l + x ~  2 2 + 3 x l x 2 + 3 X l X ~ + x 6 ) e  3t_l_(  6 3 2 2 - -  X 2 - - X  I -  3 x l  x 2 -  3 x l x 4 ) e  3t  
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The vector field has a hyperbolic, hence isolated fixed point at the origin. 
It follows from the normal forms theorem of Bass and Meisters that 
the origin is the only fixed point of the vector field. Notice that if ~ is 
the derivation associated with this vector field, the monic generator of 
Ann(X1) n Ann(X2) is 

p ( ~ )  = (~  + 6) (~  + 3) @(~ - 1)(~ - 3) (~  - 6) 

which has zero as a root. 

7. STABLE AND UNSTABLE M A N I F O L D S  

In this section we show that the stable and unstable manifolds of fixed 
points of p-f vector fields are algebraic varieties. We also show that 
attracting and repelling fixed points of p-f vector fields are hyperbolic. 

Let V be a p-f vector field on C" and let 06 be the associated flow. We 
take 

06(t,x)= ~ i ao(x)#eX~t/J ! 
i - - i  j = O  

as in corollary 5.2. Recall that each a~1, is nonzero. 
For  each x e C ~ define 

and 

WS(x) = {yeC~: [106y(t)-06x(t)ll ~ 0  as t ~  or} 

W~(x) = {yeC":  JlCy(t)-06x(t)H ~ 0  as t-~ -oo} 

where II-II denotes the usual Euclidean norm. We call WS(x) [respectively, 
W~'(x)] the stable [respectively, unstable] manifold of x. We do not 
concern ourselves with the question of whether the sets WS(x) and W"(x) 
are submanifolds of C n. 

For  each set S c C [ X 1  ..... Xn], let V(S)= {xeCn:  E x f = O  for every 
f e  S}. We call V(S) ther affine variety defined by S or simply an affine 
variety. Let ~ ( # )  denote the real part of the complex number #. 

Theorem 7.1. Let V, 06, m, li, ~i, and aij be as above. Let Xo ~ C ~ be 
a f ixed point of  V. Define sets U, S, and C(xo) of polynomials as follows: 

U = {components of ao: ~(2i)  > O, 0 <. j <. li} 

S=  {components of  ai/: ~(2i)  < O, 0 <~ j <~ li} 

C(xo) = {components of  aij - au(x0): ~(2i)  = O, 0 <~ j <~ li} 
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Then the stable manifold of x o is the affine variety defined by U w C(xo) and 
the unstable manifold of x o is the affine variety defined by S u  C(xo). That 
is, 

WS(xo) = v(  u ~ C(xo) ) 

W~(xo) = v(  s u C(xo) ) 

Remark. Let ~ = V  .V and let qik(~) be as lemma 5.1. Since x o is a 
fixed point of V and 

ti--k 

EOxo( 0 qik(~)X T= ~ a~+k(Xo) Fe;i'/j! 
j=O 

we have aik(Xo) = 0 if 2i r 0 or k/> 1. Furthermore, we have aio(Xo) = Xo if 
2 i=0 .  

Proof. Since for each y in C n we have 

~by(t)--Xo= ~" ~ (aij(y)--aij(Xo))tJe)~it/j! 
i = l  j = 0  

we have V(Uw C(xo))= W~(xo). Let y be in WU(xo), let @ = V  .V, and let 
p~(~) be as in lemma 5.1. Then 

li 

(E~y~o-Ex o) p~(~)X r= ~ (aij(y)-au(xo)) Fe)~'tff! (7.1) 
j - O  

Since (gy(t)---~X o a s  t---~oo, the right-hand side of (7.1) goes to zero 
as t ~ oo. The left-hand side of 7.1 goes to zero as t goes to infinity if and 
only if ~ ( ) ~ ) < 0  or ao(y)-a~j(Xo)=O for j=0,. . . , l~.  Hence y is in 
V(UwC(xo)). Thus W~(xo)cV(UuC(xo))  and therefore W~(x0)= 
V(Uw C(xo)). A similar argument shows that WU(xo)= V(Su  C(xo)). | 

Meisters and Olech (1986) show that an attracting fixed point of a p-f 
vector field is globally attracting. We can add some information, about  the 
nature of attracting fixed points of p-f vector fields. We say a fixed point 
Xo of a C a vector field F is hyperbolic if all the eigenvalues of the matrix 
VF(xo) have negative real parts. 

Theorem 7.2. Let Xo in C A be an attracting fixed point of the p-f  
vector field V. Then Xo is hyperbolic. 

Proof. Without loss of generality x o = 0. Notice that Ws(O) = C n. Let 
U and C(0) be as in theorem 7.1. By that lemma, either each polynomial 
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in Uw C(O) is zero or U u  C(0) is empty. Since each air i is nonzero, we 
must have that UwC(O) is empty. That is, ~ ( 2 i ) < 0  for each 2i. Let 
@ = V . V .  By corollary5.2, p(..~)=I~i'm=l(~--2i) li is the generator of 
(-]7= 1 Ann(Xi). By lemma 4.1 with co = (1 ..... 1), we have that VV(0) satisfies 
p(~).  That is, p(VV(0))= 0. Hence all the eigenvalues of VV(0) are roots 
of p(~).  Thus all the eigenvalues of VV(0) have negative real parts. ] 

The following example shows that a fixed point of a vector field can 
be attracting without being hyperbolic. 

Example 7.1. The vector field 

9 = _y3 

has a nonhyperbolic fixed point at y =  0. Yet if y ( 0 ) = x ,  then y(t)= 
x(1 + 2x2t) 1/2, hence y - - 0  is an attracting fixed point. 

8. T H E  I D E N T I F I C A T I O N  P R O B L E M  

Which vector fields have polynomial flows? In one dimension this 
question is easily answered; the one-dimensional p-f vector fields are 
exactly those of the form V ( y ) =  ~y+  ~, where ~ and ]~ are scalars. In 
higher dimensions, however, this question has not been  definitively 
answered. We use results in this paper to give new insights into this 
identification problem. We give a new proof that the Lorenz system does 
not have a polynomial flow and we prove that the Maxwell-Bloch system 
does not have a polynomial flow. 

Coomes (1988, 1990a, b) that the Lorentz system 

= tr(y -- x) ] 

- 9 = p x - - y - - x z I ( x , y , z ) ~ N 3 ,  ~,p, f l > 0  (8.1) 

= --Bz + xy 

(see, for example, Lorentz, 1963; Sparrow, 1982; Guekenheimer and 
Holmes, 1983) does not have a polynomial flow. In fact, Coomes shows 
that (8.1) does not have a polynomial flow when the only restriction on 
parameters is o-~ 0. For the sake of illustrating our techniques, we prove, 
using spectral methods, that (8.1) does not have a polynomial flow. One 
could argue that since, for certain parameter choices, the flow behaves 
"chaotically," the Lorenz system cannot be embedded in a linear system 
and hence does not have a polynomial flow for those parameter choices. 
However, our methods are algebraic and do not take dynamics into 
account. 
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In our discussion the symbols x, y, and z play a dual role--we think 
of them both as functions of t and as indeterminates. Proposition 3.2 is 
used extensively. 

Example 8.1. The Lorenz system (8.1) does not have a polynomial 
flow. 

Proof. Let u be the vector field of (8.1) and let ~ = u  .V. Since zero 
is a fixed point of (8.1), by theorem 4.2 the spectrum 5~(~) is contained in 
the lattice generated by zero and the eigenvalues of 

which are 

v v ( 0 )  = p - 1  

0 0 

-/3, ( - a -  1 ___ x / ( c r -  1)2 + 4pa)/2 

Thus 5P(~) c N. 
By way of contradiction, suppose that the Lorenz system has a 

polynomial flow. Then by theorem 3.1, x, y, and z are torsion elements of 
the C[~] -module  C[x, y, z]. By the argument above, the spectrum of 
each of x, y, and z is contained in N. Let Xmax and Xmi, denote the largest 
and smallest elements of Spec(x), respectively. Similar definitions hold for 
Ymax, Ymin, Zmax, and Zmi n- 

Since ~ x  = a ( y -  x), we have 

(~/~ + 1 )x  = y (8.2) 

Since ~ y  = p x - y -  xz, we have 

xz= - ( ~ +  1 ) y + p x =  ( p - ( ~ +  1)(~/e + 1))x (8.3) 

Thus Spec(xz)c Spec(x). Since both Xmin+Zmin and Xmax+Zm,x are 
extremal elements of Spec(x) + Spec(z), they both lie in Spec(xz) and hence 

Xmi n "~ Zmi n • Xmi n (8 .4 )  

Xrnax"~ Zmax ~ Xmax (8 .5)  

Together, Eqs. (8.4) and (8.5) imply 

0 ~ Zmi n ~ Zma x ~-~ 0 

That is Spec(z)= {0}. 
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Since ~z  = -flz + xy, we have 

xy  = ( ~  + p ) z  (8.6) 

which implies that Spec(xy) c Spec(z). Since Xmi n "~ Ymin and Xma x ~- Ymax 
are both extremal elements of Spec(x) + Spec(y), they both lie in Spec(xy) 
and hence 

0 ~ Xmi n q- Ymin ~ Xmax ~- Ym,x ~< 0 

Thus Spec(x) and Spec(y) must both be singletons. Furthermore, if 
Spec(x) = {~}, then Spec(y)= { - 3 } .  By (8.2), we have Spec(y)c  Spec(x). 
Thus ~ = - 3  and hence ~ = 0. Therefore 

Spec(x) = Spec(y) = Spec(z) = {0} 

We now argue using multiplicities (see proposition 3.3). From (8.2) we 
have 

ordo(x) = ordo((~/a + 1)x) = ordo(y) = 0 

From (8.6) we have 

ordo(z) = ordo((~ +/~)z) = ordo(x) + ordo(y ) = 20 

From (8.3) we have 

30 = ordo(x) + ordo(z) = ordo((p - (@ + 1)(~/a + 1))x) ~< ordo(x) = 0 

Since 0 ~> 0 and 30 ~< 0, we must have 0--0. But this implies that 

~ x  = ~ y  = ~z  = 0 

which is a contradiction. Thus (8.1) does not have a polynomial flow. ] 

While the proof of example 8.1 was a new proof of a known fact, the 
following result is new. Coomes (1990a, question 4.1) posed the questions, 
"Does the system 

~ = - y  t 

?=x+ez  
~ = - e y  ( x , y , z , ~ , O ) ~  5, ~ (8.7) 

~=O 

= - ~  + / ~ ( z  + ~z) 
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which is complete and has a polynomial vector field with constant 
divergence, have a polynomial flow?" [-See Coomes (1990a) for a proof 
that this system is complete.] We show that (8.7) does not have a poly- 
nomial flow when/~ # 0. 

This system, which was shown to one of the authors by Darrel Holm, 
arises in nonlinear optics. It is a reduction of the coupled Maxwell-Bloch 
equations. See Allen and Eberly (1987) or Nath and Ray (1987) for more 
details. 

Example 8.2. The Maxwell-Bloch system 8.7 does not have a poly- 
nomial flow if/~ # 0. 

Remark. Attempts to prove this result using the techniques of 
Coomes (1988, 1990a, b) have not been successful. That is, a proof of 
example 8.2 that is similar in structure to either of Coomes's proofs that the 
Lorentz system does not have a polynomial flow has not been found. 

Coomes's proofs are based on p - s y m m e t r i e s  of vector fields; a 
polynomial map P: C n ~ C" is said to be a p-symmetry of the vector field 
V if P has a polynomial inverse and 

V P ( x )  V ( x )  = v ( P ( x ) ) ,  x E c ~ (8.8) 

If V is a p-f vector field, all t-advance maps associated with V are 
p-symmetries of V. If one can say a sufficient amount about the 
p-symmetries of a given vector field, one can decide whether it has a 
polynomial flow. Such is the case with the Lorentz system. 

A key step in Coomes' proof that (8.1) does not have a polynomial 
flow is his lemma 3.3 (1990a). This lemma shows that if P = (p, q, r) T is a 
p-symmetry of (8.1), by (8.8) we have the three equations 

~ ( y  --  x )  p~ + ( p x  --  y - x z )  py  + ( x y  - ~ z )  Pz + aP = ~q 

a ( y  - X ) q x  + ( p x  - y - x z ) q y  + ( x y  - Bz)q~  + q = p ( p  - r) 

a ( y - -  X ) r x  + ( p x - -  y - x z ) r y  + ( x y  - f l z ) r  z + fir = p q  

which show that deg p + deg r ~< deg q + 1 and deg p + deg q ~< deg r + 1. 
From these two inequalities, the fact that q can be written in terms of p, 
and the fact that P is invertible, one concludes that deg p = 1, and deg q, 
deg r ~ 2. That is, there is a bound on the degree of p-symmetries of (8.1). 

Now consider a similar approach to the Maxwell-Bloch system. Let 
P = ( p ,  q, r , s ,  u) r be a p-symmetry of (8.7) and let i = d e g p ,  j = d e g q ,  
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k = deg r, l = deg s, 
derived from (8.8) in this case are 

j<~i+ l 

i<.max{k +l , j+ 1} 

k+l<~max{i,j+ 1} 

j+I<~k+ l 

m<~l+ l 

i<~max{k +l ,m+ 1} 

k +l<<.max{i, m+ 1} 

and m = d e g  u. The possible inequalities one can 

(8.9) 

Notice that for any positive integer n, the choice i = 3n, j = n, k = 2n, l = n, 
and m=n satisfy all the inequalities in (8.9). That is, we cannot get a 
bound on the degree of the p-symmetries of (8.7) using arguments 
analogous to those in the proof of Coomes' (1990a) lemma 3.3. A more 
intricate degree argument may be successful. 

Proof  of Example 8.2. Let V be the vector field of (8.7). Notice that 
each point on the z-axis (the set {(x, y,z, e, 0)r~  ~5: x=y=~=O=O})  is 
a fixed point of V. Let Xo = (0, 0, c~, 0, 0) r. 

By way of contradiction, assume that (8.7) has a polynomial flow. Let 
N = V  .V. By corollary 4.1, the spectrum 5~(~) is the lattice generated by 
zero and the eigenvalues of 

VV(x0) -- 
1000 0 i) 
0 0 0 . 

0 0 0 

\/~ 0 0 ~/~-1 

which for ~/3~>0 are 0, ( x / ~ + i x / 4 - c q 3 ) / 2 ,  and ( -x /~_+ix/4-- i~ /3) /2 .  
Thus ~ = 0  implies that 5e (~ )=La t{0 ,  _ i}  and hence each eigenvalue 
of ~ is purely imaginary. But ~/3>0 implies that 5e(@)=Lat{0, 

( x / ~  + ix/4 - ~/~)/2, ( - x / ~  - i ~ ) / 2 }  and hence some eigenvalues 
of ~ have nonzero real parts. This is a contradiction. Hence (8.7) does not 
have a polynomial flow. | 

We thank Gary H. Meisters for reading the first draft of this paper 
and for making many helpful suggestions. 
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9. A D D E N D U M  

The referee pointed out that there are similarities between the results 
in this paper and a classical result, which Markushevich (1966) attributes 
to Weierstrass, on function equations. We say that a function f :  C ~ C 
obeys an algebraic addition theorem if there exists a nonzero polynomial a 
in C[X1, X2, X3] such that 

a ( f ( t + s ) , f ( t ) , f ( s ) ) = O ,  t , s ~ C  

We have the following 

Theorem 9.1 (Weierstrass) .  Suppose that an entire function f :  C --r C 
obeys an algebraic addition theorem. Then either 

o r  

f ( t ) = a o + a l t +  . . .  + a n t  'r , t s C  

f ( t )  = a o + [al cos(at) + bl sin(at)] + [a2 cos (2at) + b2 sin(2at)] 

+ --. + [a  n cos(nat) + bn sin(nat)], t ~ C 

for  some integer n >~ 0 and some set o f  complex scalars a, a I ..... an, b 1 ..... b n. 

Remark.  See Markushevich (1966) for a proof. See Painlev6 (1903) 
for an extension of this result to systems. 

Suppose that a = X l - b ,  where b is in C[X2, X3]. In this case, the 
proof  of theorem 9.1 reduces to solving linear first-order ordinary differen- 
tial equations. 

Lemma 9.1. Let  ~- be either ~ or C, let f :  F- ~ U: be a function whose 
range contains a nonempty open set, and let b be a polynomial in two 
variables with coefficients in Y-. Suppose that 

f ( t + s ) = b ( f ( t ) , f ( s ) )  t , s ~  

Then b is o f  degree one in each o f  its variables. Furthermore, there exist 
scalars a ~ 0 and fl such that i f  g = a f  + fl, either 

g ( t  + s) = g ( t )  g ( s ) ,  t, s ~ ~: 
o r  

(9.1) 

g(t  + s) = g(t)  + g(s), t, s E ~- (9.2) 

Acz61 (1966, Section 2.2.4) proves this result with I :=  ~ and Remark.  

f a nonconstant continuous function. However, Acz61's proof  works under 
the hypotheses of lemma 9.1. 
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If, in addition to satisfying the hypotheses of lemma 9.1, the function 
f is entire, the function g is also entire. Thus we may differentiate either 
(9.1) or (9.2) with respect to s and set s = 0  to obtain a linear first-order 
ordinary differential equation for g. In either case the differential equation 
can easily be solved. It follows that g(t) = e At or g(t) = At for some nonzero 
scalar 2. Since f =  (g - / ~ ) / , ,  theorem 9.1 follows. 

We thank the referee for bringing this result to our attention. 
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