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Abstract. This work adopts the perspective of plural logic and measurement theory in order first 
to focus on the microstructure of comparative determiners; and second, to derive the properties of 
comparative determiners as these are studied in Generalized Quantifier Theory, locus of the most 
sophisticated semantic analysis of natural language determiners. The work here appears to be the first 
to examine comparatives within plural logic, a step which appears necessary, but which also harbors 
specific analytical problems examined here. 
Since nominal comparatives involve plural and mass reference, we begin with a domain of discourse 
upon which a lattice structure (Link's) is imposed, and which maps (via abstract dimensions such 
as weight in kilograms) to concrete measures (in N,R+). The mapping must be homomorphic and 
Archimedean. Comparisons begin as simple predicates on dimensions or measures; from these we 
derive classes of predicates on the domain, i.e., generalized determiners (quantifiers), and show, e.g., 
how monotonicity properties follow in the derivation. This results in a proposal for a logical language 
which includes DERIVED determiners, and which is an attractive target for semantics interpretation; 
it also turns out that some interesting comparative determiners are first order, at least when restricted 
to nonparametric and noncollective predications. 

Key words: Natural language, semantics, quantifiers, comparatives, plural logic 

1. I n t r o d u c t i o n  

N o m i n a l  c o m p a r a t i v e s  are syn tac t ica l ly  and seman t i ca l ly  c o m p l e x ,  invo lv ing  c o m -  

p lexes  o f  const ra in ts ,  (under)speci f ica t ion ,  and  quant i f icat ion.  The i r  s eman t i c s  is 

fur ther  c o m p l i c a t e d  by  the fact  that  they  necessa r i ly  invo lve  plural  and  m a s s  ref-  
e rence .  T h e  list b e l o w  is r ep resen ta t ive  o f  the syntact ic  and semant ic  r ange  o f  

nomina l  compa ra t i ve s .  

More (fewer) than 7 children sang. 
How many children sang? 
A trained 7 more (fewer) children than B saw (dogs). 
A trained twice as many children as B saw (dogs). 
A trained at least twice as many children as B saw (dogs). 
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More (less) than 2 liters of water spilled. 
How much water spilled? 
How many liters of water spilled? 
A spilled two liters more (less) beer than B drank (water). 
A spilled twice as much beer as B drank (water). 
A spilled at least twice as much beer as B drank (water). 

The present section provides an overview of the paper and a review of previous 
work. The following section includes all of the basic logical apparatus, includ- 
ing the relevant assumptions about plural and mass ontology, the requirements on 
measure theory, and the basic function of determiners derived from measure spec- 
ifications (including useful subcases). Section 3 reviews and derives the properties 
of measure determiners studied in generalized quantifier theory (hence GQT), and 
Section 4 sketches a logical language built on these ideas. Section 5 explores exten- 
sions to parametric determiners, determiners derived from additive relations, and 
determiners derived from multiplicative relations. Section 6 reports on a computa- 
tional implementation. 

1.1. PREVIOUS WORK 

Although there is an extensive literature on the semantics of ADJECTIVAL com- 
parison, there is much less on NOMINAL comparatives. Keenan and Moss (1984) 
investigate these fairly abstractly, also from a GQ perspective, demonstrating e.g. 
conservativity (and adducing an interesting class of ternary determiners). But their 
approach is broad and systematic; comparative determiners are syncategorematic. 
van der Does (1993) is a study relating type theory to plural quantification which 
is also to be recommended for its careful examination of the interaction of quan- 
tifiers. The treatment below examines quantifiers derived from comparatives in 
more detail than either of these, and it examines a wider range of quantifiers. 

Cartwright (1975), ter Meulen (1980) and others have pursued measure- 
theoretic analyses of mass-terms and plurals, but without assuming a lattice- 
structured ontology. Link (1987) discusses quantification over plural domains in a 
way largely compatible with the present proposal, which, however, generalizes his 
definitions. The present approach is closest to Krifka (1989), but this appears to be 
the first application to comparison and its relation to quantification. 

2. Measures and Determiners 

Although the current proposal is intended to extend to mass measurement, we focus 
on plurals throughout the presentation.* 

* Space prohibits examining mass reference separately. However, the generalization to mass 
reference is standard and straightforward in lattice-based theories - mass term lattices are not atomic, 
while plural lattices are. 
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Fig. 1. Semi.lattice of plural entities (for 3 individuals). 'Hi '  is lattice join; and 'a Eib '  or 'a 
ispart-ofb' holds if one can travel from a up to b along Hi-lines. E.g. d Ei ttAidtAih. 

2.1. REPRESENTATION OF PLURALS 

Since nominal comparatives crucially involve plural and mass term reference, we 
need to proceed from a representation language which accommodates it. This is a 
crucial respect in which the present study differs from other work on the semantics 
of comparatives (Klein, 1981; von Stechow, 1984; Keenan and Moss, 1984; Ballard, 
1989; Rayner and Banks, 1990), and, as will be demonstrated in Section 2.3 below, 
the incorporation of plural logic complicates the analysis of comparatives due to 
its postulation of monotonicity properties (distributivity) inherent in certain plural 
predications. 

In presenting a plural logic we borrow from the now extensive literature on the 
logic of plurals and mass terms (Link, 1983, 1987; Lonning, 1987, 1989a, 1989b). 
The structured plural ontology is independently motivated and requires no special 
modifications for the analysis of comparatives. 

We begin therefore with a universe of discourse E upon which Link's famil- 
iar semilattice structure has been imposed, ordered by 'Ei ' ,  or 'part-of'. This 
is the relation that holds both between subgroups and groups, and also between 
individuals and groups containing them. The atoms in the lattice satisfy the pred- 
icate atom(x), and they correspond to individuals; the nonatomic elements cor- 
respond to groups of individuals. Cf. Figure 1. We use D to designate the set 
of the atoms in E - corresponding to the nongroup individuals; this is appro- 
priate since D corresponds to the normal domain of discourse. We shall let 
x atom- E iy  r atom(x) A x F-i y. Link furthermore requires that the lattice 
be complete, so that we may allow, for any predicate of atoms P, that , P  denote 
the predicate true of the supremum of [P] (the least upper bound under E/of the 
atoms in ~P~) and everything beneath it, i.e. [ ,P]  = {xlxEi V [P] }; We shall also 
have occasion to use Link's distributive predicate operator, D; for any predicate P,  
Dp(x) +-* Vxl(x'atom - Eix --* P(xl)), i.e. Dp is true of objects whenever P is 
true of their component atoms. 
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Fig. 2. Measure functions # maps elements of the domain, E, onto ordered measures (of 
various dimensions). 

We assume that common noun (CN) phrases denote predicates of the , P  sort, 
and that NPs, interpreted as GQs, obtain their restrictors from the interpretation 
of their lq heads. We thus ignore the few CN phrases (e.g., pair, dozen) which are 
restricted to nonatomics of a particular size.* It is of course fine for there to be 
(determined) NPs which are interpreted not as GQs, but rather as simple referring 
expressions, as in Discourse Representation Theory. Cf. Nerbonne et al. (1990) 
for a development of plural logic with indefinite referring expressions. But this 
complication will not detain us below. 

2.2. PLURALS, MASS TERMS AND MEASURES 

Plural and mass objects are MEASURABLE; for plural objects, cardinality is the 
salient measure, for mass objects, weight and volume are normally the more useful 
measures. Figure 2 illustrates the function of measuring: mapping a structured 
domain onto a set of MEASURES: # : E ~-~ 3,4, where 3,t is an ordered set of 
measures, ordered by -<3,t. 

It should be clear from the examples and from Figure 3 that we are only 
concerned here with measures of size - number of members, weight or volume. All 
of these respect homomorphically the part-of-relation on the structured domain. 
These seem to be the only measures which function REGULARLY as natural language 
determiners - in contrast to the many other measures which we find in adjectival 
comparison and specification, e.g. ,five degrees warmer (temperature), two meters 
tall (height) or several points better (test results). This seems worthy of  separate 
remark: 

Ho momorph i cme asu re  determiners Only homomorphic measures serve to 
define natural language determiners, i.e. where # is a homomorphism from 

(E, Z_i)((~lq~, ~_i}) to (.hi, <-At/ 

* N.B. In the present treatment quantified logical forms have variables which range over plural 
entities, but they have truth conditions which depend on the lattice atoms, and atomic quantities. Link 
(1987) discusses the need for genuinely quantifying over the plural entities. 
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Fig. 3. Cardinality is a measure function over the plural lattice. 

The basic insight is due to Krifka (1989), who, on the basis of the contrast between 
twenty grams/* carats ofgoM, postulated that so-called numerative constructions 
need additive measure functions. 

Of course we do find nonsize measures used SPORADICALLY in deriving deter- 
miners, but interestingly, these uses seem restricted to cases in which the measure- 
ordering does preserve thepart-of-relation, at least over the substructure defined by 
the head noun:five dollars worth of  gas (cost), one megawatt o f  electricity (energy). 
The homomorphism requirement is more properly restricted to the lq denotation. 
Alternatively, one might examine so-called SIMILARITY TRANSFORMATIONS (see 
Krantz et al., 1971:10) to proper scales. 

In natural language determiners measures may be specified as simple numbers 
(cardinalities), but they are more generally specified as pairs: 2.2 lb., 1 kg., etc. 
We understand the latter element as specifying the mapping, the former the value 
under that mapping. It is clear that measure mappings should respect the plural/mass 
structure, e.g. that the measure of the sum of (nonoverlapping) objects should be the 
sum of the component measures. The relevant requirements are the following: 

def 
# is a measure function = 

# : E ~ A 4  e.g. .M = N, R + U 0 

x ~ i y  A #(x)  # 0 ~ 3n > 0 n .  #(x)  > ~  #(y) Archimedean 

xn iy  = J_ ~ #(xUiy) = #(x) + #(y) Additive 

The first clauses repeats the homomorphic requirement, discussed above. Krantz 
et al., 1971 argue that the second is assumed in all normal measurement; it frees 
measurement from ties to any particular scale. We make no explicit appeal to it 
below. We shall have recourse to the third clause below in analyzing both additive 
measures Two more (grams of) X than CONDITION and multiplicative measures 
(Twice as many~much X as CONDITION). The additive axiom allows that we add 



278 JOHN NERBONNE 

repeatedly, allowing thus multiplicative conditions, as well: 

+ 

n t~nes 

These requirements are standardly imposed on EXTENSIVE measures, in mea- 
surement theory (Krantz et al., 1971:71ff). Manfred Krifka has advocated their 
application in event semantics in several important papers (Krifka, 1987, 1989, 
1990). Krifka's work is especially d propos  because it likewise postulates a struc- 
tured ontology as the domain of the measurement function. 

It is worth pointing out that measure functions, as the definition here has it, per- 
form two subtasks which might profitably be distinguished:* (i) measure functions 
divide the domain of discourse into equivalence classes of entities having the same 
measure; and (ii) they assign concrete measures to (the members of) those equiva- 
lence classes, e.g. 2.2 lb. The  advantage in using this division of labor would be the 
opportunity to infer that two objects had the same weight even given the premises 
e.g. that one weighed 2.2 lb. and the other 1 kg. We could then make formal sense 
of the same abstract weight having more than one measure. In the interests of 
presentational simplicity I eschew this division of labor here, however. 

Cardinality is a measure function in the sense defined above. It maps the plural 
domain to N,  and is additive in the required sense. The requirement that measures 
be additive (and multiplicative) is needed in particular to treat some of the complex 
measure phrases we examine in Section 5.2. 

It seems clear that measure phrases can be used to denote measures: 

Three pounds is more than a kilogram. 

And I take this possibility as justifying somewhat the postulation of the measure 
sets and functions into them. But our focus lies on the on the descriptive semantics 
of these measures phrases in their use as determiners in noun phrases, not on 
philosophical and foundational questions about the ontological status of measures 
- whether primitive or derived.** I assume the existence of measures as well as their 
participation in a rich mathematical structure in order to explicate the semantics of 
their use as determiners. 

2.3. DERIVING DETERMINERS FROM/V[EASURES - PROBLEMS 

In general, measures contribute to quantifiers by providing RESTRICTORS. The basic 
idea is simple: given a measure m we wish to derive a determiner D,~. This is 
accomplished by obtaining the inverse image of ra under a measure function #, 
i.e. # - ( m ) ,  which is then in turn available to restrict an determiner. We examine 

* Cf. CressweU (1976:280--285) for a similar point. 
** But cf. Cresswell op. cir. on how some primitive properties of measures may be derived. 
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Fig. 4. # -  ((2, 3}), image of {2, 3} under the inverse measure function. 

difficulties with a natural formulation based on the existential; similar problems 
arise using the universal: 

DETmx(R(x),  S(x)) iff 3x(x  e #-(m) A R(x), S(x)) 

We are assuming the view of quantifiers from GQT (Westerst~_l, 1989) - that 
of relations between properties, represented above as 'R(x) '  and 'S(x) ' ,  which 
are mnemonic for RESTRICTOR and SCOPE.* We retain the relational notation 
'Qx(R(x), S(x)) '  because it is common in GQT. Since we defend the thesis 
below that measure quantifiers can be reduced to properties of properties, we could 
wri te '  Qx(R(x)/~ S(x))', but we stick with the standard notation. 

This simple view given by the above proposal is complicated (i) by compara- 
tives and other modifiers of measurement phrases, which involve not just single 
measures, but various SETS of measures; and (ii) by the plural structure on the 
domain of discourse E,  in particular the condition on (distributive) predicates that 
they be closed under Ui. We take up these issues in turn. 

Comparatives (more than one or more than one ounce) refer not to a single mea- 
sure, but to specified sets of measures (those greater than one or those greater than 
one ounce). Allowing reference to sets of measures is straightforward, however. 
Figure 4 illustrates the obvious generalization from taking the inverse of a single 
measure to taking the image of a set of measures under the inverse measure func- 
tion. The definitions below map SETS of measures onto determiners. For example, 
we could now generalize the definition above: 
For M C AA define binary DETM: 

DETM gef AR, S.3x(x e #-(M) A R(x), S(x)) 

or equivalently 

AR, S.3x(R(x) A U(x) e M, S(x)) 

* Note that, where Westersffuhl writes DET(A, B), we write DETx(A(x), B(x)). The latter 
notation alleviates some of the need for A's in representing natural language meanings. Nothing more 
is intended by the modification. 



280 JOHN NERBONNE 

/ 

_L 

e 341m < 2}' 
4 .  �9 �9 �9 �9 �9 �9 �9 �9 �9 �9 �9 

Fig. 5. Inverse image of complement of {m E .M Im < 2}, downwardly closed measure 
set. Derived determiner "fewer than 2" lives on this image. 

This constrnal, too, needs to be generalized to deal with the second problem, 
i.e. the interaction of plural structure and comparative determiners, noted in Link 
(1987). This may be seen in examples such as the following: 

Fewer than three children sang. (1) 

Let us assume that [sang~ (like other simple predicates) is closed under t&, so 
that if x, y E [sang] then xt-liy E [sang]. This means e.g. that if the 2-sets in 
Figure 4 are in Isang], so is their join, the 3-set. But, by the simple derivation of 
measure determiners proposed above, sentence (1) could be true, since there is a 
2-set with the required properties! This is is clearly incorrect, and, moreover, it is 
the direct result of working in the plural structure. (This is the problem referred to 
in Section 2.1 above, and it is simply ignored in treatments which abstract away 
from the problems of plural and mass term reference.) It should be clear that the 
natural alternative to the use of the existential in definition above, the universal, 
has symmetric difficulties with measure phrases such as more than three. 

The plural structure must inform the derivation of determiners from measures 
and measure sets. In this case, we would like the result that fewer than n holds of 
P, Q just in case there is no entity of size n or greater such that P and Q may be 
predicated of it. 

2,4. DETERMINERS DERIVED FROM MEASURE SETS 

The general scheme for deriving determiner meanings from the specification of 
measure sets is as follows: 

Let .M be the range of a measure function, ordered by <za, and 
let M c_ 34. We obtain the determiner derived from M, DETM �9 

DETM z (R(z),  S(x))~=f max_<~ {/~(x)[R(x)A S(x)} E M 
(2) 

I.e. among the measures in M is the maximal measure of objects satisfying the 
predicates R and S. Note that this handles the "fewer than 3" as well as the "more 
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than 3" cases. The "fewer than 3" case comes out right because the definition here 
requires that the maximal measure (max) satisfying the properties involved falls 
within the measure set.* The proposal to make reference to the maximal set is due 
to Krifka (1989:104-110). 

The more exact properties of determiners depend on the properties of the sets of 
measures M they are based on, especially whether M is be upwardly (downwardly) 
closed, or convex. 

M i s  T-closediff m E M A m < A ~ m  ~ ---+ m t E M  
M i s  .L-closediff m E M A m  ~ _ < ~ m  ~ m t E M  
M i s c o n v e x i f f  m , m " E M A m < ~ r n  t < . ~ m "  ~ m t E M  

(3) 

The three interesting subcases, where the initial set of measures M is T-closed 
("more than 3", "more than 5 kg"), S-closed ("fewer than 3","Iess than 3 kg"), or 
convex ("between 3 and 7") allow interesting reductions. 

M T-closed Then: 
m a x < ~  {#(x)[R(x) A S(x)} E M ~ 3x(R(x) A #(x) E M, S(x)) 

---~: The max must measure some x E E. 
,---: Trivial consequence of T-closure. 
Thus the definition initially given holds for this subclass. 

M l-closed Then: 
max_<~ {#(x)lR(x ) A S(x)} E M ~ ~3x(R(x) A #(x) E M,S(x))  

4 :  Since M is j.-closed, M < ~  M, and in particular maxM < M. There 
cannot be any y satisfying R, S with #(if) > maxM, so none E 
~ :  If there is no x with R(x) A S(x) A #(x) E M, then every x with 
R(x) A S(x) is such that #(x)  E M,  including m a x ~  

M convex (and neither T, J.-closed) Then: 
m a x < ~  {#(x)[R(x) A S(x)} E M 

E A {mira < AM},S(x)) 

--, : Given that the max is in M, then (i) something is, and (ii) nothing 
measures past M, and therefore past its maximum. (Convexity is irrelevant in 
this direction.) 

: We cannot simply reverse this reasoning, however. We might have a set 
of measures M into which some z satisfying R, S measures, and such that no 

* For measure sets in the reals, maxima may not exist, so that we might prefer to use suprema 
rather than maxima. On the other hand, we shall never measure such suprema, so that this may be a 
nicety. The proof of reduction below (this section) for the case of ]'-closed M requires that maxima, 
not suprema be available. 
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satisfactory x measures beyond it. But if the measure set is not convex, we 
may run afoul of plural structure again, i.e. we may have found some non- 
maximal x satisfying R, S which measures into M (consider an even number 
off. On the other hand, if M is convex, then the max must be found within it. 

We do not propose further reductions, and we shall not discuss the remaining class, 
that of nonconvex measure sets, in any detail. 

The significance of the reductions is twofold. On the one hand, they will be 
useful when it comes to adducing monotonicity properties, because they amount 
to reductions to the well-studied existential and negative existential quantifiers. 
More interestingly, from the point of view of design for meaning representation 
languages, the reductions show that the properties of complex determiners ("more 
than 3") arise from the (closure) properties of the measures sets they are derived 
from. Since these in turn are inherent in comparison, we have an opportunity to 
derive complex determiner meanings (and their inferential properties) from the 
type of comparison involved. 

Finally, the reductions clarify the relation of this proposal to Link (1987), 
demonstrating that the separate definitions there for the cases such as "more than 
three" on the one hand, and "less than three" on the other are special cases of the 
present treatment, which furthermore generalizes to nonconvex cases. Of course, 
Link's treatment suggests specific postulates about the syntax-semantics interface 
which one might find congenial - e.g., that the existential (or negative existential) 
force of the quantifier arises from a (tacit) determiner while the measure is expressed 
by the numeral. Although the present treatment has been linked to an implemented 
syntax of these constructions, we prefer here to present a treatment with as few 
specific assumptions as possible. See Section 7 below for an example of the sort of 
syntax analysis with which this semantic treatment was combined in detail. 

2.5. SIMPLE EXAMPLES 

We showed above that determiner definitions follow once measure sets are pro- 
vided. This is quite general; the definitions are available not only for measure sets 
provided by comparative phrases, but for measure sets quite generally. It is now 
time to return to the treatment of comparatives, in order to illustrate how the clo- 
sure properties of measure sets (investigated in the last section) can be put to use. 
In each case, we assume information about closure properties in order to provide 
reasonable determiner definitions. 

- For T-closed M, define binary T DETM: 

T DETM de=f AR, S.3x(n(x)  A lZ(X) �9 (M), S(x)) 

Natural language examples include: More than 2 children sang, More than 2 
liters of water spilled, At least 2 children sang, etc. 
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- For l-closed (and not T-closed) M, let M be the complement wrt 34, and 
define binary + DETM: 

~ D E T M  ae=_f AR, S . - ,~x(R(x)A  6 ix(x) 6 -M, S(x))  

Natural language examples include: Fewer than 2 children sang, Less than 2 
liters of  water spilled, At  most 2 children sang, Not more than seven children 
sang, etc.* 

- For M convex, (but neither +-closed nor T-closed): 

T/j/DETM clef AR, S. T D E T M x ( R ( x ) ,  S(x))  
A 1 DET m :.Im<A(M) x(R(x), S(x)) 

Cf. Exactly five children sang, Between ten and twenty children sang, Either 
four or five . . . , At  least three and not more than s even . . . ,  

2.6. EARLIER PROPOSALS 

Krifka (1989) first exploited the use of measure functions in connection with alge- 
braic domains, and has demonstrated their usefulness in studies on aspect and event 
semantics, and especially in the interaction of aspect with plural and mass reference 
(Krifka, 1987). The present paper may be regarded as an extension of the program 
begun in Krifka (1987), in particular extending the kinds of measures allowed (to 
include parametric measure specifications) and exploring systematically the effects 
on quantification. 

Van der does (1993) studies plural quantification with particular attention to the 
"numeric" quantifiers, (exactly) n, such as (exactly) three. The primary differences 
between this work and van der Does's is (i) the focus on measure theory here, 
and the concommitant survey of a larger range of quantifiers; (ii) van der Does's 
derivation of (many) plural quantifiers from singular quantiifers through type- 
theoretic "lifts"; and (iii) a difference in identifying the locus of ambiguity (and 
disambiguating information). The present work views plural NPs - with or without 
determiners - as essentially unambiguous, and postulates that predicates to which 
they are attached may ambiguously be true of individuals or groups, thus giving rise 
to the collective/distributive ambiguity. This follows Link (1983). van der Does, 
on the other hand, provides for the ambiguity in his specifications for quantifier 

* But Carl Pollard has brought one sticky case to my attention: 

Consider a situation where there are multiple meetings of kids. Interlocutor A wishes to emphasize 
that these were big meetings, while B wants to provide a counterexample: 
A: No fewer than 5 kids met in every meeting. 
B: Wrong. Only 4 kids met on the playground. SO FEWER THAN 5 KIDS DID MEET. 
B is clearly NOT denying that there were kids' meetings of size 5 or more, but claiming that at 
least one was smaller. This is the existential reading. 

I think the example CAN have the apparently counterexemplary reading, but that it should be 
possible to analyse the example in keeping with the proposal here if the (event) quantification over 
meetings is seen to be infecting the interpretation, i.e. if it is analyzed roughly "There was a meeting 
�9 .. ". See Lasersohn (1990) and Krifka (1989) for suggestions on how event and entity quantification 
are to be reconciled. 
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meanings, as a consequence of which several varieties of numeric quantifiers are 
provided, including collective and distributive versions. 

3. Properties of Measure Determiners 

The section reviews the properties of the derived quantifiers against the background 
of GQT. Van B enthem (1983: 451 ) single s out CONSERVATIVITY as a general property 
of natural language determiners: 

CONS DETx(A(x),B(x)) r DETx(A(x) ,A(x)AB(x))  

It thus comes as no surprise that the general definition of measure determiners (2) 
guarantees that they are conservative. This is a straightforward consequence of the 
definition (repeated here): 

DETM x (R(x), S(x) ) def max_<~ {#(x)lR(x ) A S(x) } e M 

which is conservative, since: 

max___~ {#(x)[R(x) A S(x)}  ---- max<~  {#(x)[R(x) A (S(x) A R(x)) } 

It is similarly straightforward to see that all the measure determiners respect QUAN- 
TITY (van Benthem 1983:456): 

QUANT DETEx(A(x), B(x)) only depends on the number of 
individuals in A, A N B, B, and E[domain] 

Though of course here we should prefer to generalize "number" to "measure". 
Finally, measure determiners must be symmetric: 

SYMM DETx(A(x),B(x)) r DETx(B(x),A(x)) 

We can likewise adduce the monotonicity of the comparative determiners (those 
derived from T / .[-closed measure sets): 

MON T DETx(A(x),B(x)) A Vx(B(x),B'(x)) ~ DETx(A(x),B'(x)) 

MON $ DETx(A(x),B(x)) A Vx(B'(x),B(x)) ~ DETx(A(x),B'(x)) 

The MONT of T DETM follows from the MONI" of the existential, which it is 
was shown to reduce to (Section 2.5). Similarly, $ DETM inherits MONI from the 
MONJ. of the negative existential, its reduction. If we investigate monotonicity in 
the first argument of the determiner, we see that T DETM, like the existential, is 
q'MON, or TPERSISTENT, while l DETM, like the negative existential, is IMON, 
or .LPERSISTENT (van Benthem (1983:452-453) has the relevant definitions and ref- 
erences). Keenan and Moss (1984:86ff) make similar remarks about comparatives 
determiners, but we have we have shown how they follow from a unified view of 
measure determiners as predicates on measures. 
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3.1. AN ALGEBRAIC PERSPECTIVE 

Finally, an algebraic perspective is interesting. The quantifiers generated by deter- 
miners (once a restrictor property has been provided) exist within a lattice of 
properties, and these are likewise studied. We interpret the predicates via their 
set-theoretic extensions and examine the structure generated by the subset relation. 
For example, the negative existential not only satisfies MONJ., as noted above, it 
is also closed under U (disjunction), i.e., for given A 

- - ,3z (A(x) ,B(z ) )  A ~ 3 x ( A ( z ) , B ' ( z ) )  ~ -~3z (A(x ) ,B(x )  V B'(x))  

So if no one swims and no one jogs, then it follows that no one swims or jogs. 
These two characteristics, downward closure and closure under U, show the (scope 
of the) negative existential to be an algebraic IDEAL (Burris and Sankappanavar 
1982:155). Since the ~ D E T M  is reducible to the negative existential, it too is 
an ideal, given the analysis. But this result may appear questionable given the 
following fallacy: 

Fewer than 4 people swim. 
Fewer than 4 people jog. 
Fewer than 4 people swim or jog. 

The definitions thus far would appear to make the fallacy valid, as may be appre- 
ciated formally by inspecting the logical rendering of the conclusion: 

-~3 x(person(x)A #(x) _> 4, swim(x)V jog(x)) 

There cannot be any z of the sort required to refute this, unless x simultaneously 
satisfies the measure restriction AND one of the properties in the disjunctive scope 
as well. But the same x would refute one of the premises. 

The key to understanding the argument is the plural structure; there may be no 
x s.t. P(x)  and #(x) > rn, and no y s.t. P'(y)  and #(y) > m, even while there is 
a z, viz. xUiy that is of the larger size. And while this plural object cannot satisfy 
a disjunction without satisfying one of its disjuncts, it CAN satisfy a closely related 
property, e.g. 

.kzVz'(z'E_iz ~ swim(z') Vjog(z ' ))  

equivalently: 

DAz(swim(z)  V jog(z)) 

If this is the meaning of the disjunctive VP, then we can explain the fallacy, even 
while maintaining the analysis thus far given. This may seem like a radical proposal, 
but we do not necessarily need to revise the semantics of disjunction to do this, 
since it would suffice to identify any source for the distributive reading, e.g. a 
generally available option in VP interpretation, as Roberts (1987) suggests. See 
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Q CONS QUANT MON closure 

3~g + + T MON T -([q) 

TDETM + + T MON T , ( rq)  

-~3~g + + l MON ,[ U 

1 DETM + + I MON ~ U 

algebraic 
character 

quasi-filter 

quasi-filter 

ideal 

ideal 

Fig. 6. Summary of properties of standard plural determiners. 

Link (1983) for a related proposal on the semantics on predicate CONJUNCTION for 
examples such as husband and wife.* 

The T DETM cases are clearly MONT, as noted above, and they just as clearly 
fail to be closed under rq, so that they constitute QUASI-FILTERS, rather than FILTERS, 
just as singular existential determiners are. The table in Figure 6 summarizes the 
quantifier properties adduced in this section. 

4. A Logic with Measure Determiners L M D  

Section 2.4 shows that measure determiners are well defined semantically. In this 
section we suggest a form for measure determiners in a meaning representation 
language. 

In order to specify a set of measures, all that is really required is a relation, e.g. 
more than, and a pole of comparison - a fixing of one term in the relation, which 
is effectively interpreted as a supremum in the measure set, e.g. '3 l' (three liters). 
We can designate this, e.g., via ' (>  3/)'. Section 2.4 demonstrates that, given a set 
of measures, we can properly derive a determiner meaning. It should be enough, 
therefore, to represent More than 3 liters of water spilled as 

(> 3/) z (water(x), spilled(x)) 

This compact form, in which we'd like to represent the meaning of measure 
determiners, is definable given the notion of derived determiner above. 

We assume reference to numbers (and magnitudes) and reference to measures 
via common name, e.g. 3, 4 kg., etc. MEASURE SPECIFIERS denote the relations 

* It is also worth noting here that we also have a further option to explore, viz. using the "dis- 
tributive" join directly in the model theory (rather than viewing it as a property of the mapping from 
natural language into the model). I have not explored this in depth, however. At this point I would 
prefer the solution proposed by Roberts. 
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on which set descriptions depend, and MEASURE DETERMINERS are formed by 
combining specifiers and measures: 

< magnitude > ::= < digit > +.  < digit > + 
< scale > ::= kg, 1, g, lb . . . .  

< measure > ::= (< digit > + l  < magnitude >) < scale > 
< measure-specifier > ::= >, _>, <, _<, =,  # 

< measure-determiner > ::= " ( " < measure-specifier > <  measure > " ) " 

Westerst/~hl (1989) provides basic definitions for a language of generalized quan- 
tifiers, to which we propose the above extension. Measure determiners are simply 
a special subclass of Westerst,~thl's DET.  The semantics of these new determiner 
expressions assumes the semantics of numerical expressions and their orderings 
as well as that of measurement functions (cf. Section 2.2) in order to provide 
determiner specifications: 

For < measure-determiner > = <  measure-specifierm >, 
if < measure-specifier > is ' > ' ,  then 

[< measure-determiner >1 = T DET{m'lm'>m } 
, etc. 

These notes are too incomplete to count as specifications, but they serve to indicate 
how the language and its model theory would be developed. 

4.1. LOGICAL STATUS OF MEASURE DETERMINERS 

The present work has specifically linguistic aims: the account of what measure 
phrases mean, how they contribute to phrasal meanings, esp. NP meanings, and 
what follows semantically from them. There has been no attempt to identify which 
comparative statements (if any) should count as logically true. The present account 
assumes too much mathematics (the real numbers and their ordering, measure 
homomorphisms, etc.) to be regarded as a contribution to the semantic foundations 
of comparison. 

5. Extensions 

Our basic tack should by now be clear: a measure phrase specifies a set of measures 
from which a determiner meaning, in the sense of generalized quantifier theory, 
may be derived. The sections above show how a wide range of determiner meanings 
can be defined naturally on the basis of just such a set of measures. 

We now turn to several interesting applications and extensions of the basic tech- 
nique, viz. PARAMETRIC DETERMINERS ill which a parameter appears as measure, 
and determiners derived from 3-PLACE RELATIONS on measures - the ADDITIVE and 
MULTIPLICATIVE comparative determiners. 
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5.1. PARAMETRIC DETERMINERS 

The only examples we have considered up to this point have been comparative 
determiners which specify measure sets absolutely, i.e., with respect to constant 
measures, e.g., more than 3. But the definitions of the determiners T DETM, 
.L DETM, ~/~ DETM do not depend on the parameters used to define M, i.e., all 
of the properties of the determiners are predictable even when parameters are used. 
For example, all of the following are well defined: 

more than n (> n) T DET{me~l~>n} 
fewer than n (< n) J. DET{meZ41m<n} 
exactlyn (= n) ~/~V DET{n} 

These definitions are useful in the analysis of constructions which Bresnan 
(1973) and others have termed "comparative subdeletion": 

A saw more kids than B heard dogs ~m E .M 

((= m)x(dog(x), hear(b, x)), 

(> m) y (child(y), see(a, y))) 

A saw fewer kids than B heard dogs 3m E M 

((= m) x (dog(x), hear(b, x)), 

(< m)y(child(y), see(a, y))) 

The formulas provide simple and correct renderings of semantics of the subdeletion 
cases - but it need not be that exactly these logical forms are used to render the 
readings (rather than some equivalent), nor that other forms must be less useful 
in providing a compositional account of the readings. In particular, we have not 
attempted to provide an account here of the mapping in case quantifiers appear in 
the than clause: A saw more kids than everyone heard dogs. See Pinkal (1989) for 
an account of these (compatible with this). 

Remark: All the cardinality determiners treated up to this section have been 
first order, e.g., more than 5, exactly 5, and fewer than 5. The parametric deter- 
miners introduced here clearly go beyond first-order, however. For example, we 
can formulate the semantics of most using parametric determiners (cf. Barwise and 
Cooper (1981) for the proof that most- in the sense of "more than half" - is not 
first-order definable): 

MOSTx(A(x), B(x)) .w 3m e M ((= m) x (A(x), -.B(x)), 
(>m) y (A(y) ,B(y) )  

5.2. ADDITIVE RELATIONS 

Measure determiners are derived from the sets of measures; the latter have been 
specified above by 2-place relations on measures, especially ' > '  and '< ' .  But 
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these specifications were chosen as introductory illustrations for their simplicity. 
3-place relations on measures serve equally well to define measure sets, and some 
natural language constructions (illustrated below) provide excellent justification 
for exploiting this possibility. The additive and multiplicative conditions imposed 
on measure functions above (Section 2.2) justify using addition and multiplication 
in the definition of relations on .A4. We explore the additive relations in this section, 
the multiplicative ones in the next. 

The additive relations seem best defined on the basis of the previous ' > '  and 
' < '  relations, i.e., 

for relation R on A4, d E Ad let(xRy, A"  d) de=f xRy  A Ix - Yi = d (4) 

We borrow an idea from Situation Semantics here, where we use the rolename "/x" 
to designate an argument position rather than rely on order. This is not semantically 
different from order-based argument binding, but it is mnemonically easier. We 
discuss the motivation for the content of the definition below, but first we note the 
effect of the /k  specifications on measure set specification: 

( * > y ,  ~ : 2 )  r x > y  A I x - y i  = 2 

x = y + 2  

( x < y ,  ~ : 2 )  r x < y  A I x - y l  = 2 

x = y - 2  

and on derived determiner meanings: 

(exactly) two more than n (> n, Z~ : 2) T/yDET{m~jm=n+2} 

(exactly) two fewer than n (< n, ~ �9 2) T/~DET{me~Im=n_2} 

In order to present the full range of natural examples, we borrow a device 
made popular by Situation Theory and Situation Semantics at this point, viz. 
that of RESTRICTED PARAMETER. This will allow us to represent the semantics of 
complicated comparisons in a relatively simple way. Barwise (1987) introduces 
restricted parameters as variables which are not yet bound by quantifiers (though 
they may eventually be), which are RESTRAINED tO obey some restriction. For 
example, the sentence a child walks might be represented: 

walk(xlchild(x)) 

The semantics of restricted parameters requires that variable assignment functions 
satisfy the restriction associated with a given variable; in the example above, that 
Ix] be found in [child], A formula containing a restricted parameter is satisfiable 
only if it is satisfied by some variable assignment which also satisfies all parameter 
restrictions. 
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We shall have occasion to parameterize 3-place relations both in the "pole of 
comparison" position as well as this new "A" position. We show the effects of 
parameterizing measure set specifications in this argument position: 

( x > y ,  A"  (did>2))  r x > y  A [ x - y l  = (did>--2) 
x >_ y + 2  

( x < y ,  A ' ( d l d > 2 ) )  r x < y  A Ix-Y[  = (did>_2) 
x < _ y - 2  

The first of these formulas is thus for example true of triples x, y, d, where x > y 
and x - y = d, AND, where d is additionally constrained to satisfy d > 2. Note 
that we could express this same meaning in a more complex fashion if we make 
use of A-abstraction and explicitly existential quantification. For example, the first 
relation above could also be rendered: 

/~x~y(x > y A 3d(d >_ 2 A Ix - Yl = d)) 

But we take the earlier representation to be more perspicuous. 
From the parameterized set specifications, we can derive parameterized deter- 

miner meanings in the step that is by now familiar: 

at least two more than n (> n, A : (did >_ 2)) T DET{me.MIm>_n+2} 

at least two fewer than n (< n, A" (did >_ 2)) 1 DET{m~.~Jm<~-2) 

Finally, two natural language examples: 

A taught exactly two more children than B trained dogs 

Sm E AA ((= m) x (dog(x), train(b,x)), 
(> m, A ' 2 )  y (child(y), teach(a, y))) 

A taught at least two more children than B trained dogs 

3m �9 A4 ( ( = m )  x (dog(x) train(b,x)), 
(> m, A :  (did >_ 2)) y (child(y) teach(a,y))) 

We might have attempted other definitions of 3-place determiners: 

( x > y ,  A : d )  d e f x > ( y + d )  (5) 

( x < y ,  A ' d )  d e f x < ( y - d )  

The considerations that speak in favor of the former definition (4) are not conclu- 
sive, but they may be worth review. To begin, I assume that specifications exactly 
in exactly two more etc. modify the the difference (A) rather than anything else. 
There is good syntactic reason for this: 
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- the specifications appear only with the differences 
| exactly~at least two m o r e . . .  

| *exactly~at least ~ m o r e . . .  

- the specified differences may be coordinated 
| at least two a n d p e r h a p s  even ten m o r e . . .  

- the specified differences may be used to answer questions 
| H o w  many  m o r e . . .  ? 

�9 Exactly~At least two. 

Compositionality then argues that the syntactic constituent be interpreted as a 
semantic unit as well. Once this is accepted, then the definition (4) is to be preferred 
to the alternative (5). 

- the latter definitions would not distinguish exactly two more from at least two 

more; the former does. 
- the (> n, 2x : 5) relation in (4) can never hold of n I < n, since it is required 

that n ~ > n A [n - n~[ = ~; the altemative is more lenient in some cases: 
(> n, A :  (did < 2)) 

Alternative (5) reduces this to (n' < n + 2), and this seems too lenient. The 
distinction is relevant in sentences such as the following, 

Smith hired at most two consultants more than Brown 

Definition (4) makes this false if Smith hired fewer consultants than Brown; 
definition (5) makes it true. The former seems correct.* 

Finally, the example above also highlights a complication caused by the possibility 
of parameterizing the specifications of differences, which is that the monotonicity 
properties of measure sets cannot be "read off" the relation constant used to specify 
them. This will complicate clauses in the model theory (for 3-place determiners) 
for L M D .  Cf. Section 4 above. 

5.3. MULTIPLICATIVE RELATIONS 

The additive condition imposed on # justifies using multiplication in the definition 
of relations on 34. This section is parallel to section 5.2, only somewhat more 
abbreviated. We concentrate on the semantics underlying the factors used in so- 
called "equative" comparison, summarizing the differences between these and other 
comparatives below. We again define the 3-place multiplicative relations much as 
we defined the additive ones. The choice of relational symbol ( '= ' )  is motivated 
here only by the linguistic tradition of referring to the typical uses of multiplicative 
comparisons as EQUATIVE. Note that it plays no role in the definiens. 

For the relation = on A4, f E R let (x = y, �9 : f )  de=f x / y  = f 

* One anonymous referee differs in his judgements, suggesting that the sentence might truly 
uttered even if Smith in fact hired fewer consultants than Brown. This restriction may readily be 
formulated as a three-place relation if the reading is genuine. 
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We turn some examples of multiplicatively specified measure sets: 

( x = y , , : 2 )  c , z / y  = 2  

x = 2 . y  
(x = y, *:  1/2) r x/y  = 1/2 

x = y/2 

And some natural language examples: 

(exactly) twice as many as n (= n, �9 : 2) T/~DET{,~e~[m=2.n} 

(exactly) half as many as n (= n , ,  : 1/2) T/yDET{meMIm=n/2} 

Factor specifications may be parameterized as well: 

(x = y, �9 : ( f l y  - 2)) ~ ,  x / y  = ( / I f  >- 2) 
x > 2 . y  

(x = y, * : ( f l f  >_ 1/2)) r x/y  = ( f ir  >- 1/2) 

x >_ y/2 

which leads to a treatment of determiners such as the following: 

at least twice as many as n (=  n, �9 : (fly >-- 2)) T DET{mc.Mlm>_2.n} 

at least half as many as n (=  n , ,  : (flf  >- 1/2)) ~DET{m~A~lm>_n/2 } 

Finally, we present two example translations: 

A taught exactly twice as many children as B trained dogs 

3m e .s ( (=  m) x (dog(x), train(b, x)), 

(=  m , , :  2) y (child(y), teach(a,y))) 

A taught at least half as many children as B trained dogs 

3m E .hd ( (= m) x (dog(x), train(b,x)) 
(=  m , , :  ( f l f  >- 1/2)) y (child(y), teach(a,y))) 

Just as in the case of the additive determiners, other definitions of 3-place mul- 
tiplicative determiners are also available. And it will be noted that the definition 
proposed here for multiplicative determiners is not even parallel to (4), the defini- 
tion proposed for additive determiners. In particular the inference to the equality 
WITHOUT the factor specification has to be invalid: 

( x > y ,  A : d )  =~ x > y 
( x = y ,  * : f )  ~ x < y 
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Cf. the case of f = 1/2 above. 
Other differences are even more striking when we examine factor specification 

in combination, not with equatives, but rather with comparatives. These differences 
are summarized in the table below. 

Type Factor  Example Proport ion Formula  

= > 1 three times as much x / y  = 3 x / y  = f 

< 1 one-third as much x / y  = 1/3 x / y  = f 

> > 1 three times more x / y  = 3 x / y  = f 

< 1 one-third more x > y A x / y  = 1 + f 
Ix - y l / x  = 1/3 

< > 1 three times less x / y  = 1/3 x / y  = 1 I f  

< 1 one-third less x < y A z / y  = 1 - f 
I x -  y l / x  = 1/3 

The table above is restricted to the mass determiners. Plural determiners substitute 
many for much, and fewer for less, not always felicitously. 

It is worth noting that the FRACTIONAL specifiers (in the fourth and the sixth 
lines) might also be grouped with the additive determiners, since both addition 
and multiplication are involved. There is obviously more investigation to do here. 
Among other topics, it would be worth checking which of the combinations make 
semantic sense, since not all combinations are felicitous, and some infelicities may 
be semantic, rather than purely syntactic. For example, the multiplicative specifiers 
are peculiar when used in combination with plural ~-DET's: 

�9 . . .  three times fewer . . .  
� 9  one-third fewer . . .  

(But note that three times more and one-third more are heard frequently, both 
for mass and for plural determination.) The peculiarity extends imperfectly to the 
prescriptively preferred equative form, including surprisingly the mass determin- 
ers: 

�9 . . .  three times as f e w . . .  
�9 . . .  one-third as few . . .  
�9 . . .  three times as little . .. 
� 9  one-third as little . . .  
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5.4. NONCOMPARATIVE MEASURE DETERMINERS 

Measure determiners can arise from ANY specification of a set of measures - the 
specification need not be based on comparatives, as several of the examples above 
show. One of the most interesting classes of noncomparative measure determiners 
uses simple measure phrases as determiners, for example: 

Three people have arrived. 
Two kilos of cocaine were seized. 

There is a longstanding debate about whether sentences such as these should be 
analyzed as meaning e.g. At least three people have arrived or Exactly three people 
have arrived. On the one hand, there are situations in which such sentences appear 
to be used to assert the weaker meaning: 

If three people have arrived, we can play. Have three people arrived? 
- Yes, three people have arrived. In fact, five people have arrived. 

Furthermore, there is a reasonable Gricean account, due to Horn (1972), of how 
the stronger ("exactly") readings might be inferred from the weaker ("at least") 
readings. This account postulates that a speaker is normally as informative as is 
necessary, but that he may safely be less specific about irrelevant information. 
Thus, in many situations a speaker can utter propositions compatible with a large 
set of measure specifications ("at least three") and yet be understood as describing 
a situation in which the least of these in fact obtains ("exactly three"). On the other 
hand, not all uses of the simple measure specifications are compatible with the 
postulate of weaker meaning.* Atlas (1984) is likewise critical of simple accounts 
along these lines. 

The present work cannot decide this question (though it should be clear that 
both meanings are readily formulated in LMD),  but we'd like to contribute one 
point to the debate, viz. that, at the level of compositional semantics - as opposed 
to the level of sentence meaning, there is no very satisfying locus for the "Gricean" 
sort of meaning. The are two likely candidates for such a locus, the number (or 
measure phrase) itself, and the relation to which it supplies an argument, in this 
case the specification of the measure set. If the meaning of four were '  > 4', then the 
meaning of all the measure specifiers at least, exactly, . . .  and all the expressions 
of relations between them would be extremely counterintuitive. If on the other 

* Jonathan Ginzburg discussed the following example, in a talk "Informativeness Evaluated" to 
the Situation Semantics Working Group at CSLI in Winter, 1990. He credited unpublished work of 
Carston (1985): 

If you eat 1500 calories a day, you'll lose weight. 

This example suggests that, on the "Gricean" account, the conventional meaning must contain a 
parameter ranging of the relation on measures which context sets and which the measure referred 
to must stand in (with respect to the second argument of the relation). Perhaps it must be viewed as 
defaulting to one of the directions. 
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hand, the relations to which measures supply arguments all have a built-in bias up 
the scale, then there is absolutely no way of deriving the meanings of phrases with 
specified measures, To see this, assume that d more  than m means at least d more  

than m, and now try to feed a specified measure into that argument position, e.g. 
at  m o s t  dr. * 

It would therefore seem that more sophisticated treatments of quantity implica- 
tures are required. A more promising tack might be to view unspecified measure 
phrases as implicitly requiring a specification from which a measure set can be 
derived. The specification is often provided explicitly (at  least, etc.), but in the 
absence of explicit specification, an appropriate candidate must be found (perhaps 
by default). But pursuing this topic here would bring us too far afield. 

6. Implementation 

The work described in this paper was implemented as an extension to N ' s 1 6 3  a 

meaning representation language built on GQT (although only a restricted class of 
multiplicative quantifiers was included). In addition to the meaning representation 
described above, one rule of inference specific to comparatives was implemented; 
this rule exploits the transitivity of the order relations on measures. 

N'/2/2 proceeds from a core consisting of the language of generalized quanti- 
tiers (with only atomic determiners) to a set of extensions which are intended to 
allow experimentation with various approaches to natural meaning representation, 
inference, and application-interfaces. The core together with the extensions thus 
comprises a possibly incompatible set of logical languages. N'Z;s and its imple- 
mentation is described in more detail in Nerbonne et al. (1993b) and Lanbsch 
(1989). 

The original implementation was carried out in the Refine language, chosen 
because it provides (i) a grammar facility for language definition, including parser 
generator and printer; (ii) facilities for transformation either at the level of syntactic 
expression (in the defined language) or at the level of data structure; (iii) many high- 
level programming constructs (sets, mappings, etc.) which ease coding; and (iv) 
some support for the concept of language extension through grammar inheritance. 
Refine generates Common Lisp programs, and the entire system was integrated 
into H P-N L, a natural language processing program developed at Hewlett-Packard 
Laboratories and written in Common Lisp (Nerbonne and Proudian, 1987). 

* Note, too, that the same point can be made against the proposal to take adjectival meanings such 
as t tall to mean at least t tall, or as tall as to mean at least as tall as (or as have every degree o f  tallness 
as, as in several more sophisticated treatments). Furthermore, the less variant of the comparative is 
also impossible to interpret semantically once one assumes that the base (positive) adjective denotes 
a reIation between objects and measures that they are taller than. 
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7. Mapping Natural Language into LMD 

Although this paper has chosen examples mainly from the plural domain, it is 
the mass-term domain which best show the close relation between syntax and 
semantics which the present treatment allows. 

We provide a single example of a syntax analysis (below).* The syntactic 
analysis conforms to the general framework and substantive hypotheses of HEAD- 
DRIVEN PHRASE STRUCTURE GRAMMAR (HPSG), described in some detail in 
Pollard and Sag (1987; 1994). 

NP 

NP 

/ 
Det 

Meas-NP Det 

Meas-Spec. Meas-NP more 

at least Num N 

sand 

S/Meas-NP 

Part S/Meas-NP 

than 

Smith wanted [sand] 

4 ~g 

* The syntax is due primarily to Carl Pollard. Dan Flickinger and Lyn Walker collaborated with 
him on the analysis and were responsible for implementation. 
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The point of showing the syntax here is to highlight the parallels between syntax 
and semantics. We note that the semantics analysis presented here has correspond- 
ing types for all of the syntactic categories employed above. In particular, we find 
the following parallels: 

Syntax 
Measure Specifier 
Numeric NP 
Measure Noun 
(Unspecified) Measure NP 
(Specified) Measure NP 
Determiner more 
Specified Determiner 
S/Measure-NP 

Semantics 
Measure Relation 
Number 
Scale 
Measure 
Measure Set 
3-place Measure Relation 
Parametric Measure Set 
Restricted Measure Parameter 

The translation from syntax into semantics reduces then to the assembly of 
semantics expressions from their components. There are almost no special purpose 
translation rules for comparatives - instead, use is made of general schemes for 
supplying arguments to relations. 

The detailed presentation of this interface would require a great deal more space 
than would be reasonable here. We shall therefore let the table above suffice. 

The most sensitive interface issues in (nominal) comparatives seem to be scope 
in than complements (clauses and phrases), and the related status of comparative 
complements as negative polarity contexts. These are the subject of works on 
adjectival comparison by Larson (1988) and Pinkal (1989:243-248); the general 
points apply immediately to nominal comparisons. Larson (p. 18) effectively argues 
for an analysis of comparative complements in which than complements are forced 
to scope over comparative degrees, i.e. he would like to guarantee that the sentence 
such as (6) receives the reading (7) rather than (8): 

A taught more children than everyone (else). (6) 

Vp(person(p), 

3 n ~ M  

-7((> n) z (child(z), teach(p, z)) (7) 

(_> n) y (child(y), teach(a,y))) 

3n E .h4 

~(Vp(person(p), 

(_> n) x (child(x), teach(p, x)) (8) 

(_> n) y (child(y), teach(a, y))) 

The correct reading may therefore be formulated in the logic here. (It is noteworthy 
that Larson assumes that the meaning of the "missing" determiner is the inequality 
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' > '  rather than the equality '---', as was tacitly assumed - for the sake of presenta- 
tional simplicity - in the examples above, e.g., in Section 5.1 .) We shall not take up 
the question of exactly how the syntax/semantics interface should be constructed, 
even if nothing seems to stand in the way of a (perhaps inelegant) compositional 
interface. Cf. Larson (1988) for discussion of interface questions. 

Pinkal (1989:243-248) addresses a closely related problem, the force of dis- 
junction in comparative complements. Comparative than-phrases are analyzed as 
free relatives (the term is Pinkal's), which would easily be formulated in the logic 
suggested here (in the same way L~son's  treatment was formulated above for 
(6)). 

As a final note~ we add only that the semantics presented in this paper is of 
course general enough to be compatible with alternative syntactic analyses. 

8. Conclusions and Prospects 

An extension of this approach to the ternary determiners discussed by Keenan 
and Moss (1984) would be interesting, since these used the same additive and 
multiplicative properties of measures exploited here: 

Smith hired three more men than women 
Smith hired three times as many men as women 

Another obvious application of the approach using measure theory is to adjec- 
tival comparison; this would resemble the approach in Cresswell (1976). 
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