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ABSTRACT. This paper is concerned with the construction of a base contraction (revision) 
operation such that the theory contraction (revision) operation generated by it will be fully 
AGM-rational. It is shown that the theory contraction operation generated by Fuhrmann's 
minimal base contraction operation, even under quite strong restrictions, fails to satisfy the 
"supplementary postulates" of belief contraction. Finally Fuhrmann's construction is 
appropriately modified so as to yield the desired properties. The new construction may be 
described as involving a modification of safe (base) contraction so as to make it maxichoice. 

Key words, belief, change, contraction, revision, base, theory. 

We often change our beliefs. We learn new things, occasionally things 
that conflict with our current beliefs. On such occasions new beliefs 
replace the old ones. It is as if this process is completed in two steps: (1) 
first we identify and throw out the beliefs that conflict with the new 
information and then (2) we accept the new information. In the literature 
(1) is referred to as the problem of  "belief contraction", and (2) as the 
problem of "belief expansion". The combination of (1) followed by (2) is 
called "belief revision". Though this account of belief change is very 
intuitive, 1 its logic is not understood very well. If  it is assumed that a 
rational epistemic (doxastic) agent wants to minimize unnecessary 
loss of information, then belief contraction becomes a very difficult 
problem. 2 This paper is about belief revision seen from a foundationalist 
perspective. 

We show that in order to satisfy the Gfirdenfors postulates for 
belief revision in a foundationalist framework, we need to radically 
revise Fuhrmann's [5] construction of a reject-set. This result makes 
an interesting connection between Nebel's [18] theory revision based 
on maxichoice base revision and his [20] unambiguous partial meet 
revision. This contraction operation also bridges the gap between 
Fuhrmann's  [4, 5] minimal theory revision approach and Nebel's 
approach. 
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1. BACKGROUND 

We assume that the objects of beliefs are propositions, which may be 
represented as equivalence classes of sentences, or as sets of worlds. The 
believer's language ~ is assumed to contain the usual propositional 
connectives {-~, V, A, --,, ~ } .  We represent the individual beliefs 
(propositions) by the lower-case Roman letters with or without sub- 
scripts and superscripts, and sets of beliefs (propositions) by upper-case 
Roman letters, again with or without subscripts and superscripts. Cn is 
used to denote the consequence operation of the believer's logic. The 
yielding relation F- between a set of propositions A and a proposition a is 
defined in term of Cn as 

AF-a iff aECn(A) 

We take Cn to be a mapping from sets of propositions to sets of 
propositions with the following properties: for all sets A and B of 
propositions, 

A C_ Cn(A) (inclusion) 

Cn(A) = Cn( Cn(A) ) (iteration, or idempotence) 

Cn(A) C Cn(B) whenever A C_ B (monotonicity). 

Furthermore we assume Cn to include tautological implication, to satisfy 
the rule of introduction of disjunction in the premises, i.e., if 
x E Cn(A U {y}) and x E Cn(A U {z}) then x E Cn(A U {y V z}) 3 and to 
be compact, i.e., i f x  E Cn(F) for a set of propositions, F, then there is a 
finite subset P* of F such that x is in Cn(F*). 

Throughout this paper K denotes the belief set (also called "knowledge 
corpus" or "theory") of our doxastic agent. K is always taken to be 
closed under Cn, i.e., Cn(K) C_ K, and usually consistent. We also 
assume that there is a contextually fixed set of basic beliefs that generates 
K. We take this set of basic beliefs to be finite, and it is denoted by B. 
Hence 

DEFINITION 1.1. K =  Cn(B). 

In other words, when we talk of a belief set K, we really talk of the pair 
(K, B) where B is the contextually determined base of K. When required, 
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we use superscripts or subscripts on K or B to denote other belief sets or 

belief bases. 

1.1. The Gdrdenfors Postulates 

By a belief removal operation we will understand an operation that 
effectively removes an undesirable element from a belief set. In the AGM 
system 4 a well-behaved belief removal operation is required l:o satisfy the 
following set of  six "basic" postulates introduced by Gfirdenfors. In 
these postulates (and later), for any belief x, K~- stands for the result of 
removing the belief x from the belief set K. Following Makinson [17], we 
call a belief removal operation - that satisfies the first five postulates a 

belief withdrawal operation, and if - satisfies all these six postulates, we 
call it a belief contraction operation. 

(1-) K a is a theory if K is (closure) 
(2-) K 2 _C K (inclusion) 
(3-)  If  K ~ a then K a = K (vacuity) 
(4-)  If  0 ( a then a ~ Cn(Ka) (success) 
(5-)  If  Cn({a}) = Cn({b}) then K a = Kb- (preservation) 
(6-) K c_ Cn((K~) U {a}) when K is a theory (recovery) 

Corresponding to the six basic postulates of  contraction, there are the 
G/irdenfors postulates of  revision. In these postulates K~ stands for the 

belief set that results from revising the existing belief set K by the new 
belief x, (i.e. suitably "adding" the new belief x to K). It must be noted 
that x is possibly inconsistent with K. In (5*) we use K• to denote the 
absurd belief set in LP. 

(1") Ka* is a theory 

(2*) a E K~ 
(3*) K a C_ Cn(KU {a}) 
(4*) I f K g  -,a then Cn(KU {a}) C K*a 
(5*) K 2 = K• iff ~- ~a  
(6*) If  ~-a ~ b, then K2 = K~ 

Besides these basic postulates of contraction and revision, G~rdenfors 
has put forth a pair of supplementary postulates for each of  these 
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operations. They are: 

(7-)  (Ka ) N (K f  ) C_ K~aAb ) i f K i s  a theory 

(8-)  If  a ~ K(~ A b) then K~Ab) C_ K a for any theory K 
(7*) K(aAb ) C_ Cn(K~ U {b}) i f K i s  a theory 

(8*) If  -~b ~ Ka* then Cn(K a U {b}) C_ K(aAb ) 

Motivations for these postulates can be found in [6]. 
As we indicated before, belief revision is normally seen as a sequential 

combination of two operations. When we come up with new observa- 

tions, first we check whether they can be consistently accommodated 
into our current belief corpus. If  it is so, we include the new data into our 
belief corpus and let the background logic take care of  the rest. On the 
other hand, if the new data is not consistent with our current belief 
corpus, then we suitably contract the latter so as to make it consistent 
with the new data before we include the new data into it. This intuitive 
process is captured by the following identity named after Isaac Levi: 

�9 Levi Identity: K~* = Cn(K~a U {a}). 

There are many ways of constructing the revision operations, the two 
best known among them being the "partial meet revision" and the "safe 
revision" operations, s In partial meet contraction a "choice function" ",/ 
picks out a suitable subset of K_l_ x, which is the family of  maximal 
subsets of K tha t  fail to yield x. Then K x is identified with the set of those 

beliefs that are common to all members of  7(K_I_ x). The revision 
operation is defined from this contraction operation via the Levi Iden- 
tity. Here the crucial factor is what subset of  K • x the choice function q, 
picks out. It has been shown that, given that the background logic is 
supraclassical, every partial meet contraction (revision) operation satis- 
fies the six basic postulates of contraction (revision). It has also been 
conversely shown that every contraction (revision) operation that satis- 
fies the six basic postulates of  contraction (revision) is a partial meet 
contraction (revision) operation. The more interesting case is when q, 
picks out the "best" elements of KA_ x. If  there is a preference relation _< 
over 2 K and 7 picks out the _<-best elements of K_I_ x (i.e. 7 is relational 
over K) then the (relational) partial meet contraction (revision) opera- 
tion determined by 7 will satisfy 7 -  (7*). If  the preference relation in 
question is transitive, then 7 is said to be transitively relational over K, 6 
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and the partial meet contraction (revision) operation detemlined by it is 
said to be a transitively relational partial meet contraction (revision) 
operation. It has been established that an operation on the belief set K is 
a transitively relational partial meet contraction (revision) operation if 
and only if it satisfies all the eight G/irdenfors postulates for contraction 
(revision). (For proof, see [1].) 

Safe revision uses a method that is, so to say, the dual of that used in 
partial meet revision. Whereas partial meet revision uses as a tool the 
maximal subsets of K that fail to yield x, safe revision uses as a tool the 
minimal subsets of K that imply x. Let < be a non-circular ordering 7 over 
K. Let Et(x) be the set of minimal subsets of Ktha t  imply x and R~(x) the 
set of <-minimal elements in the members of E'(x). Then K\R'(x) is the 
subset of K whose members are safe with respect to x (not to be blamed 
for the implication of x). Accordingly, K x is identified with 
Cn(K\Rt(x)) and revision is defined from it via the Levi Identity. It 
turns out that safe contraction satisfies the six basic postulates of 
contraction. Further conditions on the <-relation ensure that the 
supplementary postulates are satisfied. We must, however, remind that 
whereas partial meet revision uses a preference relation over subsets of a 
belief set, safe revision uses a preference relation over the elements of a 
belief set. (For details, see [1] or [3].) 

1.2. Belief Change: Coherence vs. Foundational Theory 

According to a dichotomy introduced by Gilbert Harman [8], the AGM 
approach is coherentist in character. In the AGM system, though the 
beliefs are graded according to their epistemic importance (or 
entrenchment), all beliefs are taken to be equally fundamental. Thus the 
distinction between the basic beliefs and inferred beliefs is allegedly 
obliterated, s On the other hand, Alchourr6n and Makinson [2], Andr6 
Fuhrmann [4, 5], Sven Ove Hansson [9, 10, 11, 13], David Makinson [17] 
and Bernhard Nebel [18, 19, 20] have emphasized the importance of 
keeping the basic beliefs separated from the inferred ones while updating 
beliefs. Fuhrmann, Hansson and Nebel have studied how the belief base 
is affected (or should be affected) when a belief set incorporates new 
information. In their works, the new belief set is determined by first 
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determining what the new belief base would be. Following Harman's  
lead, we call this approach the foundationalist approach. 

Suppose that K is a belief set and B a belief base such that K = Cn(B). 
Let # and u be operations, respectively on B and K, such that 
Cn(#(B, x)) = u(K, x). When the theory operation u is thus determined 
by the base operation #, we will call u a foundational operation. 
Furthermore, if the foundational operation u is a theory removal 

(revision) operation, we call the corresponding base operation # a base 
removal (revision) operation. 9 When u is determined by # in the above 
manner, we will call u a foundational removal (revision) operation. It 
must be noted that foundational operations are operations on theories or 

belief sets whereas base operations are operations on belief bases. 

2. FOUNDATIONAL THEORY DYNAMICS 

Corresponding to the two approaches to coherentist theory dynamics, 

there are two approaches to the foundationalist theory dynamics. Nebel 
and Hansson construct the base removal (revision) operations out of  the 
maximal subsets of  B that fail to entail the undesired belief a, and the 
foundational theory removal (revision) operations out of the base 
removal (revision) operations. Hence their approaches are related to the 
partial meet revision. Fuhrmann, on the other hand, constructs the base 
removal (revision) operations out of the minimal subsets of  B that entail 
the undesired belief a, and the foundational theory removal (revision) 
operations out of  such base operations. Hence his approach is closely 
related to the safe revision approach. Our account below is motivated by 

Fuhrmann's  approach. 

2.1. Minimal Theory Revision Based on a Choice Function 

Suppose that a doxastic agent is in a belief state represented by K with 
base B whereby he believes in the proposition a. Then he finds some 
contravening evidence so that he decides to dump his belief a. What does 
he do? He cannot dump a without making some corresponding adjust- 
ments in B, since B b- a. One might think that the obvious way is to find 
the smallest subset of B that yields a, and throw out the least important 
(whatever that may mean) members of  that set. We can define this set as 
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the set S such that 

S c_ B A a E Cn(S) A gs, cs(a ~ Cn(S')). 

But this procedure might completely fail, since there is no guarantee that 

S will be unique. Hence we define E(a), the set of  entailment sets of  a as: 

D E F I N I T I O N  2.1. E(a) = {S:  S C B A a e Cn(S) A Vs, c s(a r 

Thus, E(a) is defined as the set of  the inclusion-minimal subsets of  B that 

entail a. Here we mention the following result that we will need later. 1~ 

O B S E R V A T I O N  2.1. For any proposition a and any set of  propositions S, 
if  a E Cn(S), then there is a subset S* of  S such that S* C E(a). 

It  is clear that the basic beliefs to be discarded are those that are least 
important  in some member  of  E(a) or other. This leads Fuhrmann  to 

define a relation, called comparative retractability relation, over B. 1t 

However, for more generality, we will assume that there is a choice 
function C defined over 2 B, which, from any subset of  B picks out its 

most  rejectable elements. We will call it a rejector. 

D E F I N I T I O N  2.2. For  any subset S of  B, C(S) is a subset of  S. 

Note  that as the above definition stands, C(S) is possibly empty even if S 

is non-empty. Later on we will require C(S) to be non-empty if S is. 

Now it is only natural to expect that  in order to give up the belief a, we 

must reject the most  rejectable members  of  different entailments sets in 

E(a). Hence the reject-set Ro(a) of a is defined as the set of  all such basic 
beliefs: 

D E F I N I T I O N  2.3. Ro(a) = {x:  3see(a)(x e C(S))}. 

I t  may be noted that if there is more than one most  rejectable member  in 

a set in E(a), then all such rejectable elements find their way to Ro(a). 
Now we can define @f, corresponding to Fuhrmann ' s  minimal base 
contraction operation, and the foundational theory removal operation 

-fw, corresponding to Fuhrmann ' s  minimal theory contraction operation, 
as follows: 
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D E F I N I T I O N  2.4. B @f a = B\Ro(a) 

D E F I N I T I O N  2.5. g - f w  a = Cn( B Q f  a). 

Similarly, we can define @f and +f,  corresponding to Fuhrmann's  
minimal base revision operation and minimal theory revision operation 
respectively. 

D E F I N I T I O N  2.6. B@fa  = (B@f ~a) U {a) 

D E F I N I T I O N  2.7. K +f a = Cn(B@f a). 

It can be easily verified that the foundational operation -fw satisfies (1-), 
(2-),  (3-)  and (5-). Furthermore, if the rejector C satisfies the following 

condition: 

�9 Success: I f  S r 0 then C(S) r 0 

then -fw satisfies (4-) too. The above condition on C is dubbed 
"Success" after the A G M  name for (4-). That  satisfaction of  (4-)  makes 

the imposition of  Success on C almost necessary is shown by the theorem 
4.1. However, even in presence of this condition on C, Recovery is not 
satisfied by -fw. In other words, in presence Success, -fw is a withdrawal 
operation, but not a contraction operation. (Hence the subscript w in 

-fw.) 
We must emphasize that Fuhrmann, unlike us, does not take Cn to 

sanction the V-introduction in the premises. Either way, given that C 
satisfies Success, -fw is as well-behaved as Fuhrmann's  minimal theory 
contraction is: both are only withdrawal operations. In the framework of 
[4] he shows the minimal theory contraction operation to violate (7-),  but 
leaves it as an open problem whether (8-) is satisfied or not. In [5] he 
does not consider the question whether the supplementary postulates of  
contraction are satisfied by this operation. We will show in the sequel 
that -fw does not satisfy either (7-) or (8-),  even when quite strong 
conditions are imposed on C. However, as we will see, the counter- 
examples in question will suggest a new way to construct a foundational 
contraction operation that satisfies recovery, (7-) and (8-). 
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2.2. Recovery  Regained 

Recovery requires that when we give up a belief x, we give up at most as 
much information as we would regain if we were to reintroduce x to our 
truncated belief set. The following example illustrates that this postulate 
is very appealing: 

I believe silicon based breast implants cause cancer, and 
hence, Ms. Maple, who is otherwise healthy but has such 
implants, is likely to get cancer. In the morning newspaper 
I read a news item that according to the Food and Drug 
Administration there is no reason to think that silicon 
based breast implants are dangerous. However, in the 
evening TV news it was announced that the news item in 
question was a misinformation campaign orchestrated by 
the breast implant industries. 

After reading the newspaper in the morning, I give up the belief that 
silicon based breast implants cause cancer. However, I cannot con- 
sistently do that while believing that Ms. Maple, who is otherwise 
healthy, has such implants and will get cancer. So I give up the belief that 
Ms. Maple will get cancer. (Possibly I give up the belief that she has 
breast implants, too!) What should I do after listening to the evening 
news? Of course, if I do not take the evening news to be reliable, that is a 
different story. But, given that I accept the evening news, I have an 
epistemic obligation to recover the beliefs that I lost in the process - I 
should believe that Ms. Maple has breast implants, and that she is likely 
to get cancer. This is exactly what recovery mandates! Giving up recovery 
amounts to unnecessary and substantial loss in information. 

However, Hansson [10, 11], Levi [14] and Nieder6e [21] have 
vehemently argued that recovery is very counterintuitive. Instead of 
taking up the issue here, we just note that it is not very difficult to revise 
the operation - fw so that the ensuing foundational removal operation 
will satisfy recovery. What we need to save recovery is to appropriately 
weaken the members of Ro(a) instead of completely rejecting them. 
Toward this end we define a new base operation - f :  

DEFINITION 2.8. B "-fa = ( B @ f a )  U {a --+ x : x E R0(a)} 
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and accordingly a new foundational operation -fc: 

DEFINITION 2.9. K-fc  a = Cn(B-fa). 

These definitions are motivated by similar constructions by Nebel [18, 
19]. Clearly, if K~- is equated with the K -fc a, then it will satisfy the 
postulate of recovery. Furthermore, if C satisfies Success, then -To will 
be a foundational contraction operation, and thereby, a partial meet 
contraction operation. 

Interestingly, as Makinson [17] and Nebel [18, 19] observe in frame- 
works different from ours, if our interest is only in the revision of K, then 
it does not really matter whether we use Of  or - 'f  to generate the relevant 
foundational revision operation. We get the same operation in either case. 

3. C O N D I T I O N S  ON THE R E J E C T O R  

Choice functions like the rejector have been well studied in rational 
choice theory. Sten Lindstr6m [15], in a completely different framework, 
has examined the consequences on belief revision and nonmonotonic 
reasoning of imposing different conditions on a choice function. The 
following conditions (except Credulity and/3+) give a partial list of them. 
For all subsets X, Y of B, 

(1) If X r 0, then C(X) r 0 (Success) 
(2) If x E C(X) and y E C(X), then x = y (Credulity) 
(3) C(C(X)) = C(X) (Iteration) 
(4) If C(X) C_ Y C_ X, then C(X) c_ C(Y) (Cut) 
(5) C(XU Y) c_ C(X) U C(Y) (Distributivity) 
(6) C(X) n YC_ C(XN Y) (a, Chernoff) 
(7) If X _C Y and C(X) n C(Y) r O, then (/3, Sen) 

c(x) c c(r) 
(8) If X c y and X N C(Y) r ~, then (/3+) 

c(x) c_ c( r) 
(9) If C(X) C_ Y c_ X, then C(Y) C_ C(X) (Aizerman) 

(10) C(C(X) U C(Y)) = C(XU Y) (Path 
Independence) 

(11) If C(X) n Y r O, then C(XN Y) = 
C(X) n Y (Arrow). 
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Lindstr6m calls Success "Consistency Preservation", but here it is called 

"Success" because, as mentioned earlier, it leads to the satisfaction of  

(4-)  which is called "Success" by G/irdenfors. The second condition in 
the above list is called "Creduli ty" because it leads to what is called 
credulous reasoning, as opposed to skeptical reasoning, as defined in [24]. 

We will often use the following equivalent formulation of  a given in [23]: 

ALPHA. If  S and T are subsets of  B such that S c T, x E S and 

x E C(T), then x E C(S) 

Occasionally, we will refer to the former formulation of  a as c~1 and the 
latter by a2. It is easy to see that these two formulations are equivalent. 
To see that the earlier formulation entails the latter, suppose that S c_ T, 

x E C(T) and x E S. Clearly then, x E C(T) n S, from which, by the 
application of the former formulation it follows that x E C(TN S) = 
C(S). To see that the converse holds, suppose that x E C(X) N Y. 
Clearly, x E C(X) and x E (XN Y) C_ tl. Applying the latter 

formulation we get x E C(Xn Y). 
The combination of Success, Credulity and a is rather special: as 

Theorem (3.1) shows, in presence of Credulity and Success, every other 
condition on C listed above is either equivalent to or entailed by a. 

T H E O R E M  3.1. In presence of Success and Credulity, condition c~ entails 
Iteration, Cut, Distributivity and fl, and is equivalent to/3+, Aizerman, 
Path Independence and Arrow. 

Hence, imposing these three conditions on a choice function amounts to 
imposing all of  the eleven conditions above. It turns out that (see w 4.1) it 
is almost necessary to impose these conditions on C in order to construct 
a foundational removal operation which is fully "rat ional"  in the AGM- 
sense. We will eventually show that if the rejector C satisfies the three 
conditions Success, Credulity and c~, then a foundational contraction 
operation can be constructed based on @f that satisfies (7-)  and (8-). 

4. T H E  S U P P L E M E N T A R Y  P O S T U L A T E S  

The supplementary postulates (7-)  and (8-)  are rather strong conditions 
on a belief removal operation. This has led many writers like Fuhrmann 
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[4] and Levi [14] to reject these postulates. I, however, find these 
postulates very intuitive. (7-) looks impeccable. It essentially says that 

�9 I f  neither giving up a nor giving up b forces one to give up c, then one 
should not give up c by giving up the conjunction of  a and b. 

The motivation for this condition should be obvious. In order to give up 
a conjunction it would suffice to give up one of the conjuncts. Since one 
should not be wasteful with information, one should not lose more 
information than what would suffice to ensure that the conjunction of a 
and b is given up. So, in either case, whether one loses a or one loses b in 

order to give up this conjunctive belief, one should still retain the belief c. 
Similarly, (8-)  is also extremely compelling. It may be paraphrased as: 

�9 I f  one gives up a by giving up the conjunction ofa andb, andgives up c 
by giving up a, then one should give up c by giving up the conjunction 

of  a and b. 

Suppose that you believe in both a and b. Now you are asked to give up 
your  belief in a/X b, and you find yourself compelled to reject your belief 
in a. Why? Intuitively, it is necessary to get rid of  one of the beliefs a and 
b in order to discard a/x b; and since you are discarding a willy-nilly, a 
must be at least as dispensable as b. Now that you discard a in order not 
to believe in a/x b, you must discard along with it the minimum that must 
be given up in order not to believe in a. You might discard more for some 
inexplicable reason, but it is the minimum that you must do. That  is, you 
may not, while discarding a/x b, retain a belief which you must give up in 
order to dump a. That  is exactly what postulate (8-) says: K~A b has to be 
a subset of K a .  

Thus we see that the two supplementary postulates (7-)  and (8-) are 
quite compelling. We will show in this section that if the foundational 
operations -fw and -fc are to satisfy the supplementary postulates (7-)  
and (8-),  then it is almost necessary to impose Credulity and c~ on C. 
Furthermore, we also show that satisfaction of  (4-) nearly necessitates 
the imposition of Success on C. 

However, as it turns out, Success, Credulity and a are not enough to 
guarantee that either -fw or -fc will satisfy the supplementary postu- 
lates. We examine one more plausible-looking constraint F on C, but it 
leads to a triviality result. We argue in the next section (w 5) that the 
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construction of these removal operations is basically flawed and needs 
drastic repair. 

Before we proceed any further, we need to define the concepts of 
strong independence and partial independence (a set of propositions being 
independent up to one of its subsets). 

DEFINITION 4.1. A set of propositions S is (weakly) independent iff 

Vses[(S\{s})  ~/ s and (S\{s}) ~/-~s]. 12 

DEFINITION 4.2. A set of propositions S is strongly independent iff 

S t Vfinite S c_s[(S\ ) ~ V(S')] .  13'14 

DEFINITION 4.3. T is weakly independent up to its subset S iff 

V~es[(T\{s}) ~/s and (T\{s}) ~/-~s]. 

DEFINITION 4.4. T is strongly independent up to its subset S iff 

v .Jtos, s[(r\s') y v(s')]. 

It is easily seen that the regular independence (call it "weak independ- 
ence") is a special case of strong independence - namely, when S'  ranges 
over those subsets of S that have less than two members. Note that in the 
two extreme cases - when S'  is the null-set and when S'  is S itself - 
strong independence degenerates to the conditions, respectively, that S 
be consistent, and that every member of S be informative. The set 
{p V q V r, p V q V s, p V r V s} where {p, q, r, s} is a partition, is con- 
sistent and weakly independent, but not strongly independent. On the 
other hand, {p V q V r V t, p V q V s V u, p V r V s V v} is a consistent and 
strongly independent set of  proposition, given that { p, q, r, s, t, u, v} is a 
proper subset of a partition. In general, in order to construct a strongly 
independent set with n members we need a partition with at least 2 n 
members. 

Another way of stating the difference between strong independence 
and weak independence is this: A set S is weakly independent iff S is 
consistent and every member s of S is such that -~s is consistent with 
A(S\{s}), i.e., if you replace any one member of S by its negation, you 
get a consistent set. On the other hand, S is strongly independent iff S is 
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consistent and every subset S ~ of S is such that -7 V (S') is consistent with 
A(S\S~), i.e., if you replace any number of members of S by their 
contradictories, you will still get a consistent set. This explication 
presupposes that S is finite. 

In case S has just two members x and y, strong independence means 
that neither x nor its negation -,x follows either from y or from its 
negation --,y. Thus strong independence is at least as strong as pair-wise 
independence. 

4.1. Why Constrain C? 

We have seen in w 3 that the combination of Success, Credulity and a is a 
very strong condition on C. Currently we give some results that motivate 
the imposition of this conditions on the rejector C. 

THEOREM 4.1. I f  a base B is independent up to its nonempty subset Bo, 
then, given that (4-) holds for an operator generated by C, C satisfies 
Success with respect to Bo; i.e.,for all nonempty subsets B1 of Bo, 
C(B~) # O. 

THEOREM 4.2. I f  a base B is independent up to its subset Bo, then, given 
that (7-) holds for an operator generated by C, a holds with respect to Bo; 
i.e.,for all subsets B1 and B2 of Bo, if B1 C_ B2, x E B1 and x E C(B2), then 
x E C(1~1). 

THEOREM 4.3. I f  a base B is independent up to its subset Bo, then, given 
that (8-) holds for an operator generated by C, t3+ holds with respect to 
Bo; i.e.,for all subsets B1 and B2 of Bo, if B1 C_ B2, x E C(B1) and y E B1, 
then x E C(B2) / fy  E C(B2). 

These results argue for the imposition of Success, a and/3+, which are 
indeed reasonable conditions on the rejector C. However, many would 
have reservations against the imposition of Credulity on C. For instance, 
Pollock [22] has argued that though credulous reasoning is appropriate 
in practical reasoning, it is not suitable for theoretical reasoning. In 
the coherentist tradition of AGM and Levi, credulous reasoning is 
consciously avoided. Notwithstanding such reservations, as the 
following theorem (4.4) and its corollary. 
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THEOREM 4.4. I f  B is independent up to its subset {x ,y}  such that C 
cannot choose either of  x or y over the other, then satisfaction of(7- )  
requires that x V y E Cn(B \{x , y } ) .  

COROLLARY 4.5. I f  B is strongly independent up to its subset {x, y} and 
(7-) holds, then either C(x ,y)  = {x} or C(x,y)  = {y}. 

show, if the agent manipulates her belief base in order to arrive at a new 
belief-corpus, credulous reasoning is almost necessary for (7-) and (8-) 
to be satisfied; that is, in a foundationalist framework, we have to accept 
something very close co Credulity. 

Thus we see that tlhere is good reason to impose the four conditions 
Success, ~,/3+ and Credulity on the rejector C. However, as we saw 
earlier (theorem 3.1), in presence of Success and Credulity, ~ and/3+ are 
equivalent. Hence we will appropriate a, which is more popular and 
convenient, and assume henceforth that C satisfies the conditions 
Success, o~ and Credulity.15 

4.2. Success, c~ and Credulity are not Enough 

Unfortunately, even if the three conditions Success, o~ and Credulity are 
imposed on the rejector, neither the withdrawal operation -fw nor the 
contraction operation -fc satisfies either of the supplementary postulates 
(7-) or (8-), namely: 

(7-) K~ N Ks C K~Ab) 

(8-) If  a ~ K(aA b)' then K(~A b) C Ka-. 

We show this by presenting two counterexamples, one to (7-.) and the 
other to (8-) that are similar to each other in an important way, and 
suggest that C needs to be further constrained. 

EXAMPLE 1. The following example serves to show that conditions 
Success, o~ and Credulity on C are not sufficient to ensure the satisfaction 
of (7-) by -fw or -fc. Let 

B = {al, bl, a2, b2} 

a = a l  Va2 

b = b l  Vb2 
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where B is a strongly independent set of basic beliefs. Now simple 
computation will show that 

E(a) = {{al}, {a2}}, 

E(b) = {{b,}, {b2}} 

and 
E(aAb)={{al ,b l} , {a l ,bz} ,{az ,  bl},{az, b2}}. 

Now if we put C(aa, bl) = al, 16 C(al, b2) = al, C(a2, bl) = a2 and 

C(a2, b2) = b2, then we get that 

Ro(a)={al,a2}, 

Ro(b) = {bl,b2} 

and 
Ro(a/x b) = {al, a2, b2}. 

Now then, K - f ~  a = Cn(B\Ro(a)) = Cn({bl, b2}). Hence a2 V b2 is in 
K -fw a. Similarly, K -fw b = Cn({aa, a2}) whereby a2 V b2 is in it. But 
K-fw (a A b) = Cn( { bl } ). Since B is strongly independent, 

{al, bl} ~/a2 V b2, whereby {bl} [/a2 V b2. Hence a2 V b2 would not be in 
K -f~ (a/x b), disproving postulate (7-). It may be noted that all the 
three conditions Success, ~ and Credulity are satisfied in this example. 

Furthermore, it can be shown from this example that even if the 

foundational contraction operation -fc were used instead of -fw, still 
(7-)  will not be satisfied. Toward this end, we need to show that 

{bl, a A b ~ al, a A b ~ a2, a A b ~ b2} ~/a2 V b2. For  this, it will be 
sufficient to show that X = {bl, a A b --+ al, a A b ~ a2, a A b --+ b2, 
~a2,-~b2} is consistent. Now, we know that B -- {al, a2, bl, b2} is 
strongly independent, whereby, Y = {--al, -,a2, bl, -~b2} is consistent. 
However, since {~al,--,a2} V -,(a A b), X C_ Cn(Y). Hence, Xis  

consistent. 

EXAMPLE 2. Similarly we can also show thatSuccess, a and Credulity 
are not strong enough to ensure the satisfaction of postulate (8-). Let 

B={al,a~,bl ,b2} 

a=(a l  Aa2) V (a2 Ab2) 

b = ( b l  Aa2) V (a2 Ab2) 
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where B is a strongly independent set of basic beliefs. Now simple 
computation will show that 

E(a) = {{al, a2}, {a2, b2)) 
and 

E(a A b) = {{al, a2, bl}, {a2, b2}} 

If we further stipulate that C(al, a2) = al, C(a2, b2) = a2 and 
C(al, a2, bl) = bl, then we will see that 

Ro(a) = {al, a2) 
and 

Ro(a A b) = {a2, bl }. 

This shows that every member of  E(a) has a member in Ro (a/x b), 
hence, afL Cn( B \ Ro ( a A b)). Furthermore, though al E Cn( B \ Ro ( a A b ) ), 
since B is strongly independent, a l r  Cn(B\Ro(a)) whereby 
Cn(B\Ro(a A b)) ~ Cn(B\Ro(a)).  Hence, -f~. does not satisfy (8-). 

Now, in order to show that -fc does not satisfy (8-) either, first we 
note that a is equivalent to a2 A (al V b2) and a A b is equivalent to 
a2 A (b2 V (al A bl)). Accordingly, K - f c  a = Cn({bl,b2,a -+ al}) and 
K -fc (a A b) = Cn({al, b2, a A b ~ bl }). Now, since B is strongly 
independent, {al, bl, b2} ~/a2 whereby a2 r K -fc (a A b). However, a2 is 
a consequence of a itself, hence a ~ K -fc (a/X b). Now, all we need to 
show is that K- f~  (a A b) ~ K -f~ a. That is easy to show. Clearly 
al E K-f~ (a A b). However, since B is strongly independent, 
X = {bl, b2,-hal,-ha2} is consistent. However, since {~a2} ~- -~a, 
K - f ~  a C_ Cn(X) whereby (K-re  a) U {-~al} is consistent. Hence 

al qJ K - f e  a. 

4.3. No Further Constraints on C 

Let us consider the example (2). Analysis of  this counterexample shows 
that its success mostly depends on three facts: 

| {al,a2} E E(a) 
�9 {a2, b2} E E(a) 

and 

�9 though a2 is in both these sets, it is chosen by C from one only. 
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This is really ironical, since if a2 were chosen from both, we would lose 
less information. It is interesting to note that the counterexample to (7-) 
shares this feature. For example, both the sets {a2, bl } and {a2, b2} with 
the common element a2 are in E(a A b), but whereas this common 
element a2 is chosen from the former, it is not chosen from the latter. 
Once we assume that a2 is chosen from both of these sets, the counter- 
example is blocked, since in that case b2 would still be in K~a^b ) to yield 
a2 V b2. 

Fuhrmann comes pretty close to this point when he considers and 
rejects as too strong the following principle as a guide to forming a 
reject-set (see [4] p. 118): 

(,) For each pair of entailment sets (S, S/) such that 
S n S I r 0, consider only sentences in S n S ~ as candidates 
for rejection. 

The following related constraint on C appears to be more promising: 

(F) VS, S, EE(a)VxESMs,(X E C(S) ~ x �9 C(St)) .  

It is easily seen that acceptance of F can block the counterexamples to 
(7-) and (8-). In fact, it can be shown that Success, ~, Credulity and F 
together can ensure the satisfaction of these supplementary postulates. 
However, the following triviality result 

OBSERVATION 4.1. No choice function C can simultaneously satisfy the 
three conditions Success, Credulity and F if B has a strongly independent 
subset containing more than two elements. 

shows that F is too strong a condition, and that we must find alternative 
ways of satisfying the supplementary postulates. 

5. R E V I S I O N  B A S E D  O N  A N E W  R E J E C T - S E T  

The triviality result in the last section shows that if the foundational 
belief revision is determined by -fc or -fw, then the epistemic system will 
occasionally crash: for there may not be any rational way of contracting 
(withdrawing) certain beliefs from the belief corpus. Though it is a very 
discomforting result, it is not surprising. Success, Credulity and F 
together imply that for any member S of E(a), there is only one member 
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of  S in Ro(a). That would obviously be impossible if E(a) has more 
members than UE(a) has, or, as in the relevant part of  the case con- 
sidered in the proof  of  observation (4.1), E(a) and UE(a) have the same 
number of  members, but not all members of  E(a) are singletons. Since 

we cannot avoid such logical facts, we must weaken at least one of  the 
three conditions Success, Credulity and F. 

The case of  Success is rather uncontroversial. The motivation for the 
conditions, Credulity and F, is to minimize the loss of information. If  we 
have to give up a, we must give up at least one, and preferably exactly 

one element from each member of  E(a). From this vantage point 
Credulity looks reasonable. Furthermore, theorem (4.4) and its corollary 

provide strong support for Credulity. On the other hand, F imposes 
the condition that exactly one element from each member of  E(a) is 
ultimately rejected. But we have seen that it is often impossible to satisfy 
this condition. So the moral is to satisfy F to the extent it is possible. 

5.1. The New Reject-Set 

Let us again look at the example (2) for guidance. We notice that the sets 
{al, a2) and {a2, b2) are in E(a), and that al is chosen from the former 
whereas a2 is chosen from the latter. We argued that if a2 were chosen 
from both, then the loss of  information will be minimized while satis- 
fying our purpose whence we considered imposing the condition F. But 
the point is, in the example in question, there was unnecessary loss of  
information not because F was violated, but because even if  we had not 
rejected a member of  Ro (a), namely al, still we could have successfully 
given up a. Hence instead of  putting an extra condition like F, we should 
try to modify the way the reject-set is constructed. The reject-set R(a) 
that we are looking for should not contain an element such that if we 
reject only the rest we could give up a. In other words, B\R(a) should be 
an inclusion-maximal subset of  B that fails to entail a. 

D E F I N I T I O N  5.1. For  all sets X and proposition a, 

X •  { r C  X : a r  A 

AVr,~_x(r  c Y' -+ a ~ Cn(Y'))}. 

Thus X_L a (pronounced " X  less a") is the set of  maximal subsets of  X 
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that fail to entail a. Note  that X is any arbitrary set, hence it could be a 

belief base or a belief set (theory). Going back to our present concern, 

then it seems that if R(a) is the set of  elements to be discarded from B, 

then B\R(a) should be a member  o r b  _1_ a. We have noticed that Success, 
Credulity and a are not jointly sufficient to ensure that B\Ro(a) is a 
member  of  B .1. a. Hence we need to identify a suitable subset R(a) of  

Ro(a) such that B\R(a) E B_I_ a. 
We suggest the following method of constructing R(a). First look at 

the set of  elements of  R0 (a) that can be retained without yielding a and 

identify its least rejectable member,  say xl. Then we consider if 

R1 (a) = R0 (a)\{Xl } is the right reject-set R(a). I f  B\R1 (a) ff B _1_ a, then 

we continue repeating the above process till we get Rn(a) E B • a and 

identify it with R(a). This step-wise process of  identifying R(a) is 
captured by the following definition: 17 

D E F I N I T I O N  5.2. 

Ro(a) = {x:  ~see(a)X E C(S)} 

Ri(a) ifVx~Ri(a)(B\Ri(a)) U {x} F- a 

Ri+l(a)= Ri(a)\{y} otherwise 

where y E Ri(a) is such that 

(i) (B\Ri(a)) U {y} ( a  

and 

(ii) VzER,(a)((B\Ri(a)) U {z} ~ a  ~ z E C(y,z)); 

R(a) = R,(a) such that R,(a) = R,+a(a). 

It  is easily seen that R(a) is well defined: since B is finite, there will be 

some n or other such that R,,(a) = Rn+a (a). Accordingly, we define 

D E F I N I T I O N  5.3. B @m a = B\R(a) 

D E F I N I T I O N  5.4. B - "m  a = (B\R(a)) U {a ---* x :  x E R(a)}. 

Since B @m a is a member  of  B • a, we call (~m a maxichoice base 
withdrawal operation, and correspondingly --'m a maxichoice base 
contraction operation. I t  remains to be seen whether any of these 
operations can generate the desired foundational operation. 
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5.2. B\R(a)  Induces the Desired Operation 

There is a sense in which the propositions that do not occur in any 
member of E(a) are not relevant to the entailment of  a. Hence UE(a) 
contains all the a-relevant propositions. The following observation 

shows that if we consider the sub-base of  B that contains all and only 
a-relevant propositions, taking out members of  R(a) from it leaves us 

with one of  its maximal subset that fail to entail a. 

OBSERVATION 5.1. UE(a)\R(a) e U E(a) • a 

Furthermore, UE(a)\R(a) is not just any member of UE(a) Z a, it is the 

latter's most preferred element in the following sense: all members of  
UE(a) • a other than UE(a)\R(a) retain a more rejectable element at the 
cost of  rejecting a less rejectable element. That  it is so is shown by the 
corollary to theorem (5.1). Let us first make this notion of  preference in 
question more precise: 

D E F I N I T I O N  5.5. ~ is a preference relation over 2 B such that for all 

subsets X and Y of  B, X _E Y iff Vx c x \  r 3y e r \x C(x, y) = x. 

This definition says that X is at most as preferred as Y just in case for 
every x in Xtha t  is not in Y, there is a member y in Ythat  is no t in  Xsuch 

that of  the two elements, x and y, the former is more reject worthy. The 
following observation shows that __Z is transitive over 28. 

OBSERVATION 5.2. Given Success, Credulity and a, ~ is transitive 
over 2 8 . 

In the proof  of  the above, we use the following fact: since every member 
X o f 2  B is finite, there is x0 in Xsuch that C(x, xo) = x i f x  is in X. We can 
construct it by successively eliminating the chosen elements first from X, 
then from X \ C ( X ) , . . .  The finiteness of X and a will ensure the desired 
property of  this element. We call it the least rejectable element of X. In 
general, we will denote the least rejectable element of  a set X by Cmin(X). 

The following theorem (5.1) says that if some member S of  UE(a) • a 
contains an element x that is not retained in UE(a)\R(a), then there is an 
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entailment-set X in E(a) with x as its most rejectable element such that it 
has at least one other element x r which S fails to retain, yet is retained by 

UE(a)\R(a). As a corollary to this theorem, we get that UE(a)\R(a) is 
the most ___-preferable element of  UE(a) • a. It may be helpful to note 
that the set S \ (UE(a)\R(a))  used in the statement of  the theorem (5.1) is 
identical to the set S n R(a). 

T H E O R E M  5.1. Let S C U E ( a ) l a  andx E S\ (UE(a) \R(a)) .  Then, 
given that Success, Credulity and a are satisfied by C, 
3XeF.(a)(C(X) = x A X fs SU R(a)). 

C OR OLLAR Y 5.2. I f  C satisfies the conditions Success, Credulity and a, 
then for all S in UE(a) A_a, S U UE(a)\R(a).  

As you might have already anticipated, the analogous result holds for 
members of B l a. Theorems (5.3) and (5.4) together show that B\R(a)  
is the unique, most ___-preferred element of  B _1_ a. 

OBSERVATION 5.3. For all S in B L a  and S ~ in UE(a) _l_a, 

�9 (a) (B \  U E(a)) C_ S. 
�9 (b.1) S 'U  (B \  U E(a)) is in B •  and 

(b.2) S \ ( B \  U E(a)) is in OE(a)_l_a. 
�9 (c) Ifaparticular member X ofUE(a) • a is included in S, then S is 

unique; i.e., S is the only member of B L a that includes X. 

T H E O R E M  5.3. Given that C satisfies Success, Credulity and a, for all S 
in B_La, S r- B\R(a) .  

T H E O R E M  5.4. Given that C satisfies Success, Credulity and a, i f  
S E B _L a is such that for all S I E B _1_ a, S ~ E S, then S is unique; i.e., S is 
the only member of B_l_a such that S'  r- S for all S'  E B l a .  

These results suggest that all the members of  K_L a that contain B\R(a)  
might be the (only) best elements of  K • a in the relevant sense. Hence we 

define: 

D E F I N I T I O N  5.6. " /c(K•  = {M E (K_L a) :  B\R(a)  C_ M }  
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It is clear that if there is a relation N over 2 K such that 7c picks out the 
N-best elements of K 2_ a then the partial meet contraction operation 

generated by it will satisfy the postulate (7-)  and further more, if N is 
transitive over 2 K then (8-)  will also be satisfied by this contraction 
operation. Hence we extend __ to 2 K in the following manner: 

D E F I N I T I O N  5.7. For  all subsets X and Y of K, 

XE_ Y i f f  X N B r  YNB.  

It can be easily verified _E is transitive over 2 x. Finally, theorem (5.5) 
shows that ~/c(K2- a) is really the set of E-best elements of K2- a. 

L E M M A  5.1. Let D C_ Ksuch that a f~ Cn(D). Then there is asuperset D* 
of  D such that D* E K 2- a. 

T H E O R E M  5.5. {X E K2_a : (B\R(a)) C_ X}  = {X E K2-a : 
Vx ,~x iaX '  E X}  

Since the extended [- is transitive over 2 x, it follows that Yc is a transi- 
tively relational choice function, and hence the contraction operation 
generated by it will be a transitively relational partial meet contraction 

operation and will satisfy all G/irdenfors postulates of  belief contraction, 
including the supplementary ones. Furthermore the revision operation 
associated with it will satisfy all the G~irdenfors postulates of  revision. 

5.3. Rejecting by Saving 

We have seen that B\R(a) is the best element of  B 2_a we were looking 
for. Note that we get this element by strategically rejecting the "worst  
elements" from B so that with minimal loss of  information we succeed in 
removing a from K = Cn(B). We may wonder whether there might 
be another way of  arriving at B\R(a) by similarly saving the "best 
elements" of B as much as possible so long as the elements thus saved do 
not yield a. We recall that for any nonempty subset B ~ of  B, we refer to 
the least rejectable element of B' by Cmi~ (B~). We will denote Cmin (B) by 
bl and Cmin(B\{bl,. . . ,  bi}) by bi+l. Now, we inductively define B Y a as 
follows: 
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D E F I N I T I O N  5.8. 

bi+l E B T a 

iff ~ {bl} ~/a i f / =  0 

t ({bl,. . . ,  be} n B T a) u {bi+l} ~/a otherwise 

intuitively, B T a is formed in a step-wise manner: we first begin with 

Cmin (B). It will be in B T a if and only if it does not imply a. Then we 
consider Cmin(B\{Cmin(B)}). If  it, together with Cmin(B) in case the latter 
is in B T a, does not imply a, then it is in B T a; otherwise it is not in B T a. 
Then we consider the least rejectable element of  B\{Cmi,(B), 
Cmi,(B\{Cmi~(B)})}, and so on. Clearly B T a is an element o f B  _L a. The 
following observation shows that B T a is a _Z-best element of B _1_ a. 

OBSERVATION 5.4. For all members S of B _k a, S Z__ B T a. 

Given the uniqueness of the E-best elements of B _L a (theorem 5.4), it 

follows that B T a is identical with B\R(a). 

5.4. Base After the Update 

Now the question arises, Do we have a base contraction operation 
associated with this belief contraction operation generated by "yc? for 
it is also desirable to identify the new base after the belief update is 
completed. Theorem (5.6) shows that ~'m does the trick: we can 
profitably take B--'m a to be the new base after removing a from 

K = Cn(B) .  

L E M M A  5.2. Let S C_ K such that S t;/a. Then 

n { X c  K_La : S c_ X}  = Cn(S U ( K n  Cn({~a}))) 

For  its proof, see Nebel's proof  of lemma 13 in [18]. 

T H E O R E M  5.6. nTc( K-L a)= Cn( B~m a) 

Thus the foundational contraction operation generated by the 
maxichoice base contraction operation -'m is a transitively relational 
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partial meet contraction operation and hence will satisfy all the 
eight postulates of contraction) 8 It can be easily shown that the 
corresponding base revision operation -i-m 

DEFINITION 5.9. a-~- m a = ( a  "--m-,a) U {a} 

will generate a foundational revision operation which, being a transi- 
tively relational partial meet revision operation, will satisfy all the eight 
postulates of revision. Hence B-~m a will be the new base after revising K 
by a. 

We may mention that the foundational revision operation corre- 
sponding to @m will be identical with the one generated by ~-m. Hence, if 
we are interested only in belief revision, it does not really matter whether 
we use @m or -'m to generate the foundational revision operation in 
question. We however leave open the question whether the foundational 
withdrawal operation generated by @m will satisfy the supplementary 
postulates of contraction. 

6. SUMMARY AND OUTLOOK 

We started with an intuitive way of revising a belief base B in face of new 
information -7 a: first minimally contract B (if necessary) so that the 
contracted base no longer implies a, and then add this new information 
to this contracted base. The basic idea behind this removal of a was 
to delete from the base B those elements that are least desirable in 
a-entailing inclusion minimal subsets of B. For this purpose we assumed 
a choice function C over 2 B that chooses the least desirable elements of 
any set of basic beliefs. In sections w 2 and w 3 we showed that this process, 
in general, fails to meet the demands of rationality on three counts: (1) it 
violates "recovery", i.e., by re-believing the proposition willfully 
discarded, it was not possible to recover all the information lost in the 
process, (2) it violates (7-) which maintains that in giving up a 
conjunction of two propositions we should not lose more information 
than what we lose by giving up the two conjuncts in parallel, and (3) it 
violates (8-), which says that if one must give up the belief x in order to 
give up x/x y, then in order to give up this conjunctive belief x/~ y one 
must give up what it is necessary to give up in order to give up x. 
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In w 2.2 we noted that we can save recovery if, instead of completely 
rejecting the required basic beliefs, we weaken them in an appropriate 
manner. In w 4 we discussed the need of three conditions on the choice 
function C, namely, Success, a and Credulity. We saw that though these 
conditions are almost necessary, they are not sufficient to ensure the 
satisfaction of the supplementary postulates. This result suggested that 
the set of beliefs not rejected (weakened) should be an inclusion maximal 
subset of B that fails to imply a. In w 5 we suggested how to construct this 
reject-set from R0 (a) by successively removing the_"good" elements from 
the latter, and then showed that if we appropriately weaken the base B 
with respect to the members of this reject-set, then we satisfy all the 
G/irdenfors postulates of belief contraction. It follows that the corre- 
sponding revision operation will satisfy all the G/~rdenfors postulates of 
belief revision too. 

The suggested revision procedure, however, has the following 
limitations. 

(1) The three conditions Success, Credulity and (a) constitute a very 
strong set of conditions on the rejector - they entail all the other 
eight conditions that we mentioned in w 3. However, we cannot 
easily weaken these conditions since the construction of the reject-set 
R(a) presupposes that the rejector satisfies Success and Credulity. 
Hence a more versatile way of constructing the reject-set is called for, 
one that does not presuppose any condition of the rejector C, but is 
capable of generating the reject-set R(.  ) that we have studied in the 
special case when C satisfies Success, (a) and Credulity. It might 
prove valuable to study foundational belief revision in such a general 
framework. 

(2) It cannot handle repeated belief changes, since the choice function 
used is defined for the old base only. It would be interesting to see if 
we can generalize our approach using super rejectors analogous to 
the super selectors of Hansson [12]. 

(3) If  the belief set Cn({a A b}) with base {a/x b} is contracted by a we 
essentially get Cn({a --* b}) as the new belief set. In case a and b are 
independent, we lose more than we bargained for: intuitively, we 
should get Cn({b}) as the new belief set. This suggests that the ideal 
solution may be more complicated than our solution. 
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A P P E N D I X  

Proof of Observation 2.1. Let a E Cn(S). Since Cn is compact, there is a 
finite subset, say S', of  S such that a E Cn(S~). It will be sufficient to 
show that S ~ has a subset S* such that S* E E(a). We do that by 
applying strong induction on the size of S ~. 

Assume that if S ~ has less than m members, then it has a member of  
E(a) as its subset. We need to show that if S ~ has m members, then there 
is a subset S* of S ~ such that S* E E(a). Let then S ~ have m members. 
Either S' itself is the required S* or it is not. The first case is trivial. As to 
the second case, suppose that S'  is not the required S*. Then there is an 
(m - 1)-membered proper subset S" of S ~ such that a E Cn(S"). Hence, 
by the inductive hypothesis, there is a subset S* of  S" such that 
S* E E(a). But S* is a subset of S ~. QED 

Proof of Theorem 3.1. ~ implies Iteration, Cut and Distributivity even in 
absence of Success and Credulity (see [15]). Clearly/3+ implies/3. We give 
the proofs of the rest below. When the sets in question are empty, the 
proofs become trivial; hence proofs of only the principal cases are given. 

Assume that C satisfies success and Credulity. 

(i) We show that ~2 is equivalent to/3+. For  left to right, suppose 
that C(X) = {x}, y E X, XC_ Yand  C(Y) = {y}.19 Now, by a, 

y E C(X) and by Credulity, x = y. Hence x E C(Y). For  right to left, 
suppose that Y _ II, x E X a n d  C(Y) = {x}. Let C(X) = {y}. Then, by 

/3+, y ~ C(Y). Now, by Credulity, x = y, hence x E C(Y). 
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(ii) It is to be shown that oz 2 is equivalent to Aizerman. For left to 
right, assume that C(X) c_ Y c_ X. By c~, we get C(X) C_ C(Y), where- 
from, by Credulity we get C(Y) c_ C(X). For  right to left, assume that 
S c_ T, x E C(T) and x E S. By Credulity we get C(T) C S C T, hence 

by Aizerman we get C(S) c_ C(T). By Credulity, then C(S) = C(T) 
whereby x E C(S). 

(iii) We show that c~2 is equivalent to Path Independence. Left to right: 

First we show that C(XU Y) c_ C(C(X) U C(Y)). Let x E C(XU Y). 
Then, x must be either in X or in Y. However, since X and Y are subsets 

o f X  U Y, by a,  either x E C(X) or x E C(Y), whereby x E C(X) U C(Y). 
Furthermore, C(X) U C(Y) C_ X U Y, hence, by a, we get the desired 

resul t thatx 6 C(C(X) U C(Y)).FromC(XU Y) C_ C(C(X) U C(Y)) ,by 
Credulity, we get that C( X U Y) = C( C( X) U C( Y) ). Right to Left: 
Suppose that S C_ T, x E S and x E C(T). Since T = S U (T\S),  by Path 
Independence we get x E C( S ) U C( T \ S ). Since x E S, x ~ T \ S, hence x 

must be in C(S). 
(iv) We show that al  is equivalent to Arrow. Right to left is trivial. 

For  left to right, assume that C(X) A Y ~ ~. Then by Credulity we get 
C(X) M Y = C(X). Now, by a, C(X) C C(XN Y) and then by 

Credulity, C(X) = C(XM Y). QED 

Proof of Theorem 4.1. Assume that (4-)  holds. Let a base B be 
independent up to its subset B0. Consider the removal of A(B1) from 
Cn(B) for any nonempty subset B1 of  B0. Clearly, E(A(BI)) has only one 

member, namely B1. Hence, whether we use -fw or -fc, by (4-), C(BI) 
must be a nonempty subset of B1. QED 

Proof of Theorem 4.2. Assume that (7-) holds. Let B be independent up 
to its subset B0. Let B1 and B2 be subsets of B0 such that Bl C_ B2, x E B1 
and x E C(B2). Define a = A(B1) and b = A(B2\BI). Since B is 
independent up to B0, we get E(a) = {B1}, E(b) = {B2\B1 } and 
E(a A b) = {B2}. Accordingly, x E Ro(a A b) but x ~ Ro(b). Hence, 
invoking the partial independence of B, we get that x ~ K -fw (a A b) but 

x E K-fw b. Since x q~ K -fw (a A b), by (7-),  x q~ (K-fw a) fq (K-fw b). 
However x is already in K- fw  b. Hence, surely, x ~ K-fw a whereby 

x E Ro(a) = C(B1). 
In order to see that the theorem holds even if -To were used instead of  
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--fw, we note that K - f e  (a /X b) = K - f w  (a /X b) and K - f c  a = K- fw  a. 
This is so because (1) since a/x b is logically equivalent to A(B2), 
a/X b ~ y, for any y E Ro(a/X b) = C(B2), is a tautology, and (2) since a 
is defined as A(BI), a --* y, for any y E Ro(a) = C(B1), is a tautology. 
QED 

Proof of  Theorem 4.3. Assume that (8-) holds. Let B be independent up 
to its subset B0. Let B1 and B2 be subsets of B0 such that B1 C B2, 
x E C(B1), y E B1 and y E C(B2). Define a = A(B1) and b = A(B2\B1). 
Since B is independent up to B0, we get E(a) = {B1}, E(b) = {Bz\B1} 
and E(a/~ b) = {B2}. Accordingly, x E Ro(a) and y E Ro(a/~ b). Since B 
is independent up to B0 and y E C(B2), it follows that y fL K -fw (a/~ b). 
However, since y E B1, {a} f- y. Hence a r K - f w  (a/X b). By (8-), 
then, K -fw (a/X b) _C K -fw a. We further note that since x E Ro(a), 
x f{ K --fw a. Hence x f~ K --fw (a/x b). Since x E B2 E E(a/~ b), it follows 
that x E Ro(a /X b) = C(Bz). 

Using the same argument as in the proof of the theorem 4.2, we can 
show that this theorem holds even if - i t  were used instead of -fw. QED 

Proof of  Theorem 4.4. Let B be independent up to {x,y} such that 
C(x,y) = {x,y}. Due to this independence, x E (B\Ro(y)) and 
y E (B\Ro(x)). Hence x Vy E Cn(B\Ro(x)) N Cn(B\Ro(y)) = 
K -fw x N K -fw Y. So, by (7-), x V y E K - f w  (x A y) = 
Cn(B\Ro (x/x y)). Now, clearly the set {x, y} is in E(x/x y). Since 
C(x,y) = {x,y}, surely {x,y} C_ Ro(x Ay), so that B\Ro(x fly) C_ 
B\{x ,y} .  Hence x Vy E Cn(B\{x,y}) .  

If  we use -fc instead of-fw,  the result is no different. Clearly x V y is in 
both K - f c x  and K -fc Y. Furthermore, since (B - ' f  (x/x y)) \ (B @f (x A y) ) 
is a set of tautologies, namely {x/x y ~ x, x/X y --, y}, we get that 
K -fc (x/k y) = K --fw (X/~ y), wherefore x V y is in Cn (B\{x, y}). QED. 

Proof of  Corollary 4.5. Let the antecedents hold. By the definition, 
C(x, y) must be one of the sets {x}, {y} or {x, y}. Suppose, for reductio, 
that C(x, y) = {x, y}. Hence by theorem (4.4), x V y E B\{x ,  y}. But this 
is impossible if B is strongly independent up to {x, y}. QED. 

Proof of  Observation 4.1. Let B contain a strongly independent subset 
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{x,y,z}. Let a = (xAy)  V ( y A z )  V (z A x). Hence E(a) D_ {{x,y}, 
{y, z}, {z, x}}. Consider C(x, y). By Success and Credulity, it has only 
one element. Let C(x, y) = x. (The other case is similar.) Then, by F, 

x E C(z, x). By another application of Credulity we get that C(z, x) = x. 
Again, by Success and Credulity, either C(y, z) = y or C(y, z) = z. In 
either case F is violated; in the first case since y is also in {x, y} but not 
chosen from it, in the latter because z is also in {z, x}, but not chosen 
from it. QED. 

Proof of Observation 5.1. U E(a)\R(a) C_ B \R(a). Hence U E(a) \R(a) ~/ a. 
Let x E R(a). It would suffice to show that (UE(a)\R(a)) U {x} ~- a. 
Now (B\R(a)) U {x} k a. Hence there exists a set S in  E(a) such that 
S C (B\R(a)) U {x} = (UE(a)\R(a)) U ((B\ U E(a))\R(a)). Further- 
more, since S E E(a), S N (B\ U E(a)) = ~. Hence it follows that 
S C_ (UE(a)\R(a)) U {x} whereby (UE(a)\R(a)) U {x} F a. QED. 

Proof of Observation 5.2. In this proof  we will utilize the following 
property of C: 

�9 If  x E C(x, y) and y E C(y, z), then, x E C(x, z), given that C 
satisfies a and/3+.  

The proof  is quite easy. Suppose that x E C(x,y) and y E C(y, z). Then, 
by/3+,  x E C(x,y,z) wherefore, by a, x E C(x,z). Of course, if C also 
satisfies Credulity, then we can strengthen it to: I f x  E C(x, y) and 
y E C(y, z), then x = C(x, z). We will refer to this property as the 

"transitivity" of C. 
Now, Suppose that X, Y and Z are subsets of B and that X ~ Y and 

Y u Z. It would suffice to show that X ~_ Z. Let x be an arbitrary 
element in X \ Z .  We need to show that there is an element z in Z \ X  such 
that C(x,z) = x. Let Cmin(X\Z) = xo. Now, either x0 is in Y or not. 

In the first case, suppose that x0 is in Y. Then x0 is in Y\Z .  Hence, by 
hypothesis, there exists z0 in Z \ Y such that C(x0, z0) = x0. Now, either 
z0 is in X or not. If  not, then by the transitivity of C, z0 is the required 
element z. On the other hand, if z0 is in X, then z0 E (XN Z ) \ Y  C X \ Y .  
Let z l be the least rejectable element of (X n Z ) \  Y. Hence C(zo, z a) = zo. 
Again, by hypothesis, there exists Y0 in Y \ X  such that C(zl, yo) = zl. If  
y0 is in Z then, by the transitivity of  C, it is the desired element z. On the 
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other hand, if y0 is not in Z, then it is in Y \ ( X U  Z). Let Yl be the least 
rejectable element of Y \ ( X U  Z). Since Yl is in Y \ Z  there exists z2 in 
Z \  Y such that C(yl, z2) = yl. Now, the following argument shows that 
zz is not in 2". Suppose that z2 is in 2". Then zz is in (XN Z) \Y .  Now, by 
hypothesis, C(zl, z2) = z2. Hence, by the transitivity of C, C(zl, Yl) = Yl. 
Furthermore, C(Zl,Y0) = Zl and C(yo,yl) = Yo. Again, by the transi- 
tivity of C, C(zl, Yl) = Zl. Hence, by Credulity, Yl = zl. But that is 
impossible, since Yl and zl are, respectively, in the two disjoint sets 
Y \ ( X U  Z) and (XN Z ) \ Y .  Hence z2 is not in X, whereby it, being in 
Z \X, is the desired element z. 

The second case is similar. Suppose that x0 is not in Y. Then there is a 
Y0 in Y \ X  such that C(xo,Yo) = xo. If  y0 is in Z then it is the desired 
element. On the other hand, if Y0 is not in Z, then consider the least 
rejectable element y~ of the set Y\  (X U Z) to which y0 belongs. Let z0 be 
in Z \ Y s u c h  that C(yl, zo) = y~. Now, either z0 is in Xor  not. If  z0 is not 
in X, then it is the desired element. On the other hand, if z0 is in X, then it 
is in (XN Z ) \ Y .  Let z~ be the least rejectable element of (XN Z ) \ Y .  
Now, zl is in X \ Y .  Hence, let y2 be in Y \ X  such that C(Zl,y2) = zl. 
Now, using an argument similar to the one we used in the first case, we 
can show that Y2 must be in Z, i.e., in (YN Z) \X.  Hence it is the desired 
element. QED. 

Proof of  Theorem 5.1. Assume (1) and (2): 

(1) s uE(a)  _L a 
(2) x E S\(UE(a)\R(a)).  

Furthermore, for reduetio, suppose that 

(3) Vx~(a)(C(X) = x --, Vx,~X(X' r S ~ x'  C R(a))). 

We conclude the proof by establishing the following two opposing claims 
that follow from assumptions (1)-(3): 

Claim (1): 3xee(a)({x} = XN R(a)) 
Claim (2): Vxee(a)(X E X 4-4 {x} C X N  R(a)). 

In order to establish claim (1), first we observe that for every y E R(a) 
there exists a set Y E E(a) such that YN R(a) = {y). (Suppose 
otherwise. Let yo E R(a) such that YN R(a) = {Y0) for no Y E  E(a). 
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Then no member Y of E(a) is a subset of (B\R(a)) U {Y0} whereby 
(B\R(a)) U {Y0} ~/a, which is prohibited by the definition (5.2)!) 
However, it follows from the assumptions (1) and (2) that x E R(a). 
Hence there is a set X E E(a) such that X O R(a) = {x}. This establishes 
claim (1). 

We establish claim (2) in two steps. In the first step, we show that 

•XEE(a)((X E )(f /k C(X)  = x) -"+ {x} C J['n R(a)). In the second step we 
show that Vxee(a)((x E X A C(X) r x) ~ {x} C X n R(a) ). 

Step 1: Take an arbitrary member X of E(a) such that x E X and 

C(X) = x. Since x E R(a), clearly {x} C XN R(a). Since x E X, there is 
x ~ E Xsuch that x' f[ S. (If there is no such x ~ E X, then X c S whereby 

S ~- a; but since S E U E(a) i- a, S F/a.) Hence, by assumption (3), 
x' E R(a) whereby {x,x'} C Xfq R(a). Since x E S but x '  ~ S, surely 
x r x'. Hence, {x} c XN R(a). 

Step 2: Take an arbitrary member X of E(a) such that x E X 
and C(X) r x. Let X1, . . . ,  Xm be all the members of E(a) that have 
x as a member such that for all i <_ m, C(Xi) = xi r x. Let 

R(a) = Rn(a). 
First we show by induction that {x l . . .  Xm} C Rj(a) for a l l j  <_ n. 

Clearly {Xl . . .  Xm} C_ Ro(a). For the inductive step, suppose that 
{x l . . .  Xm} C_ Rj(a) for some j  < n. We need to show that 
{x l . . .  Xm} C_ Rj+l(a). Consider an arbitrary element xi of  the set 
{ x l , . . . ,  Xm}. It will be sufficient to show that xi E Rj+l(a). Now, either 
(B\Rj(a)) U {xi} t- a or not. The first case is trivial, considering the 
definition (5.2). As to the second case, let (B\Rj(a)) U {xi} ~ a. Now, the 
following argument shows that (B\Rj(a)) U {x} ~ a: 

Since x E R(a) C_ Rj(a), x E Rj(a). However, x E Xi for all 
i < rn. Hence, every set Xi E E(a) such that x E Xi and 
C(Xi) --/= x has at least one of its members (namely xi) 
besides x present in Rj(a). Similarly, it follows from step 
(1) that every member X ~ E E(a) such that x E X'  and 
C(X ~) = x has at least one of  its members besides x in 
Rj (a). Thus every member of E(a) that has x as one of  its 
members has one of  its members besides x in Rj (a) 
whereby (B\Rj(a)) U {x} ~/a. 

Thus {x, xi} C_ Rj(a), (B\Rj(a)) U {x} ~/a and (B\Rj(a)) U {xi} ~/a. 
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Furthermore, C(x, xi) = xi (note that though x E Xi, C(Xi) = xi r x). 
Hence, by the definition (5.2), xi E Rj+I (a). 

We have seen that {Xl,... ,Xm} C_ Rj(a) for al l j  _< n. Since 
R(a) = Rn(a), it follows that {x l , . . . ,  Xm} C_ R(a). Now, since X E E(a), 
x E X and C(X) r x, for some k _< m, X = Zk and C(X) = xk. Hence 
{x, xk} c_ X N  R(a) whereby {x} c XN R(a). This completes step (2) 
and thereby establishes claim (2). QED. 

Proof of Corollary 5.2. We need to show that if C satisfies the conditions 
Success, Credulity and a, then for all S in UE(a) 2_ a, ifx is in S but not in 
UE(a)\R(a), then there is y in UE(a)\R(a) but not in S such that 
x E C(x,y). This easily follows from the above theorem (5.1). Suppose 
that S is in UE(a) 2-a, x is in S but not in UE(a)\R(a). Then by the 
theorem (5.1), there exists X E E(a) such that C(X) = x and some 
member x'  of Xis such that x'  r S and x' ~ R(a). Now, since x' f[ R(a) 
but x' E X E E(a), clearly x' E (UE(a)\R(a). Also, x' r S. Further- 
more, since both x and x' are in x and C(X) = x, by condition a, 
C(x, x') = x. Hence x' is the desired y. QED. 

Proof of Observation 5.3. (a) Suppose to the contrary that S is in B 2_a 
but (B\ U E(a)) ~ S. Then SU (B\ U E(a)) k a. In that case, there is a 
proposition x such that S k x and (B\ U E(a)) ~- (x ~ a). Furthermore, 
S ~/(x ~ a). Now take a minimal subset $1 of S such that S1 F- x. 
(Existence of such a subset is guaranteed by observation (2.1).) Now, 
Sl U (B\ U E(a)) k a. Hence, there is a subset $2 of S~ U (B\ U E(a)) 
such that Sz is in E(a). Now, since $1 ( a, the set $2 must contain at least 
one member of B\  U E(a). But since $2 is a member of E(a), it does not 
contain any member of B\  U E(a). Contradiction. 

(b) Suppose that S E (B2_a) and S' E (UE(a) 2_a). 
(1) Suppose for reductio that S' U (B\ U E(a)) r B2_a. Then 

S' U (B\ U E(a)) k a, whereby, for some x, S' k x and 
B \  U E(a) k (x --+ a). Let $1 be a minimal subset o fS  ~ such that $1 k x. 
Then there is a subset $2 of $1 U (B\ U E(a)) such that $2 is in E(a). But, 
in order to entail a, $2 must contain at least one member of B\  U E(a). 
But that is impossible since $2 is in E(a). 

(2) Surely S \ ( B \  U E(a)) V a. Suppose for reductio that 
S \ ( B \  U E(a)) ~ UE(a) 2_ a. Then clearly there is a subset of S" of 
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UE(a) such that S \ ( B \  U E(a)) C S" and S" V a. Now, since UE(a) is 
finite, we can construct $1 D S \ ( B \  U E(a)) such that $1 E UE(a) _1_ a. 
Now, S c ($1 U (B\  U E(a))) and by (b-l) above, 
$1 U (B\ U E(a)) E B_l_a. But this is impossible since S c B.l_a. 

(c) Let X E UE(a) _L a. Let $1 and Sz be members ofB • a such that X 
is included in both of them. Clearly X c_ Si(=t,2)\(B\ U E(a)). Further- 
more, by (b-2) above, Si(=I,2)\(B\ U E(a)) is in UE(a) _1_ a. However, X 
itself is a member of UE(a) A_ a. Hence X = Si(=hz)\(B\ U E(a)). It 
follows from it that Si(=1,2) c_ XU (B\  U E(a)). Now, by (b-l) above, 
X U (B\  U E(a)) is a member of B A_ a. Since $1 and $2 are also members 
of B • a and are its subsets, clearly they are identical with it, whereby 

$1 = $2. QED. 

Proof of Theorem 5.3. Given that C satisfies Success, Credulity and a, we 
show that for all S in B _L a, i f x  is in S but not in B\R(a), then there is y 
in B\R(a) but not in S such that C(x,y) = x. Let x be in S but not in 
B\R(a). Clearly, by observation (5.3a), B \  U E(a) is a subset of both S 
and B\R(a). Hence x is in UE(a), whereby in S n UE(a). Now 

UE(a) N (B\R(a)) = (UE(a) n B)\(UE(a) n R(a)) 

= UE(a)\R(a). 

Furthermore, by observation (5.3b.2) S N UE(a) = S \ ( B \  U E(a)) is in 
UE(a) _L a. Hence, by corollary (5.2), there exists y in UE(a)\R(a) such 
that y is not in S n UE(a) and C(x,y) = x. Now, 
y • (SN UE(a)) U (B\  U e(a)). Again, since SN UE(a) is in UE(a) _La, 
it follows by observation (5.3b.2) that (S n UE(a)) U (B\  U E(a)) is in 
B A_ a. Since S N UE(a) is also included in S and S is in B_t_ a, it follows 
by observation (5.3c) that S is identical with (S N UE(a)) U (B\  U E(a)), 
whereby y is not in S. Clearly y is in B\R(a). QED. 

Proof of Theorem 5.4. Given that C satisfies Success, Credulity and ~, we 
show that if S E B _1_ a is such that for all S r E B _L a, if x is in S I \ S  there 
is y E S \ S  ~ such that C(x, y) = x, then S is unique. Let $1 and $2 be two 
members of B A_ a such that for all S ~ in B _L a, if x E S ~ \S;(=1,2) then 
there is y in Si(=1,2)\S ~ such that C(x, y) = x. Suppose that $1 and $2 are 
different. Then, given Credulity and a it follows that there is an element 
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s2 in $2\$1 such that for all x in $I\$2, C(x, s2) = x and there is sl in 

$1\$2 such that  for all y in $2\$1, C(sl, y) = y. Then, by Credulity, 
sl -- s2. But by assumption, s~ and s2 are in two disjoint sets. Hence, by 

reductio, S1 -- $2. QED. 

Proof of  Lemma 5.1.20 Assume the antecedents. I f  a r K, then the solu- 

tion is trivial: we identify D* with Kitself. For  the principal case, let Wbe 

a maximally consistent set of  proposit ions such as D C W a n d  -~a E W. 

Now, either W _c K or not. I f  W C_ K (this is the case if K is inconsistent), 

W itself is the required D*. On the other hand, if W ~ K (i.e. K is con- 

sistent), consider W n  K. Clearly a f[ Cn( W N K). Let x ~ K \  W. Since 

W is maximally consistent, -~ x is in W, whereby -, x V a is in it. Further- 

more, since a is in K, surely --,x V a is in K too .  Hence -~x V a is in WN K, 

whereby a E Cn((WN K) U {x}). Hence WN Kis  the desired D*. QED. 

Proof of  Theorem 5.5. (Left to right) Let X E K •  such that 

B\R(a) C X. Let J( '  E K_L a. It  suffices to show that J( '  _Z X, i.e. 
B N X  f E B N X .  

First of  all, we claim that B N X = B\R(a). Right to left is trivial 
(surely B\R(a) C B and B\R(a) C__ X.) Now we show that  

B N X C_ B\R(a). Suppose that x r B\R(a). We need to show that 

x ~ B n X. Since x f~ B\R(a),  either x ~ B or x E R(a). The first case is 
trivial. As to the second case, suppose that x E R(a). It  will be sufficient 
to show that  x ~ X. Suppose, to the contrary, that x E X. Then 

B\R(a) U {x} C_ X. But, since x E R(a), by the definition (5.2), 

a E Cn((B\R(a)) U {x}) _C Cn(X). However, since X E K •  a, X ~/a. 
Contradiction! 

We further note that since X ~ n B ~/a and X t N B C B there is 

S E BA_ a such that J ( '  n B C_ S. Clearly, S Z_ B\R(a). It  follows then 
that  since X '  N B is a subset of  S, (X t n B) Z_ B\R(a). 

(Right to left) Let X E K •  a such that for all X '  E K •  a, X t _E X. It  

suffices to show that B\R(a) is a subset of  X. By lemrna (5.1), for all S t in 
B •  there is X t in K •  such that S ~ c_ XC Hence, for all S ~ in B •  
S ~ _E X N  B. Furthermore,  since X N  B C B and X N  B ~/a surely there is 
S E B A_ a such that J( G B _C S. Hence there is S E B • a such that  for all 
S ~ E B •  we have S t _z XN B C_ S. In particular, S Z XN B _C S, from 

which it easily follows that X n B = S. Hence S E B • a is such that for 



530 A . C .  N A Y A K  

all S ~ E B l a, S ~ ___ S. B u t  t h e n  by  t h e o r e m  (5.4), S is u n i q u e  a n d  by  

t h e o r e m  (5.3) is B\R(a) .  H e n c e  B\R(a )  = X M B C_ X. Q E D .  

Proof  o f  Observation 5.4. L e t  S E B • a. A s s u m e  t h a t  x is in S b u t  n o t  in 

B T a. Sure ly  the re  is k _> 1 such  tha t  x = bk. H e n c e  

(B r aM { b l , . . .  ,bk-1})  U {bk} F- a. H o w e v e r ,  s ince bk E S c B Za ,  
c lea r ly  the re  is j < k such  t h a t  bj E B T a a n d  bj q~ S. Since  

C(bj, bk) = bk, bj is the  des i r ed  e l emen t .  Q E D .  

Proof  o f  Theorem 5.6. 

N T C ( K Z a )  = N{X E K Z a  : B \R(a )  C_ X }  

= C n ( B \ R ( a )  U (Cn(B) rq Cn({ -~a}) ) )  

(by l e m m a  (5.2)) 

= Cn(B\R(a)  U Cn((B n {~a})  U 

U {x V y : x E ( B \  { .~a} ) , y  E ( { - - , a} \B)}  

= Cn((B\R(a))  U {--,a V x :  x E B}) 

(since -~a r B) 

= Cn((B\R(a))  U {a --* x : x  E R(a)}) 

= Cn(B "--m a). Q E D .  

N O T E S  

1 Not that everybody agrees with it. Isaac Levi's [14] account of"coerced contraction" and 
Hansson's [10] account of "external revision" presuppose that first new information is 
added to the knowledge corpus, and then, if lacking, consistency is restored in it by selective 
deletion. 
2 See especially [16] for a very good discussion of this problem. 
3 Here we differ from Fuhrrnann who, unlike us, does not assume that Cn-satisfies the 

V-introduction in the premises, or that it includes tautological implication. 
4 After the authors of [1]. 
5 For partial meet revision see [1] or [6]; for safe revision see [1], [3] or [6]. 
6 7 is transitively relational over K just in case there is a transitive relation < over 2 K 

such that, irrespective of what x is, a member A t of K •  x is in 7(KZ x) iff A < A t 
for all A E K •  x. Intuitively speaking, the transitive relation < orders subsets of K 
according to the degree they are worth keeping, and ,y picks out the best such elements in 
K• 
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7 The relation < over a set A is said to be non-circular if and only if for no members 
al, a2 , . . . ,  an(,_> 1) of  A does al < a2 < . . .  < an < a1 hold. This condition can be equiva- 
lently reformulated as the minimality condition that for all al, . . . ,  an E A there exists i < n 
such that for no j <_ n, aj < at. 
s See [7] for an interesting discussion on the distinction between the foundationalist vs. 

coherentist theories of  belief change. G~irdenfors argues to the effect that though a belief set 
itself does not distinguish between the basic beliefs and the inferred beliefs, the epistemic 
entrenchment ordering associated with the belief set may implicitly contain some of  the 
relevant information; hence the distinction between the basic beliefs and the inferred beliefs 
is not completely obliterated in the coherentist framework. 
9 We must note that we are deviating from the intuitive notion of contraction here. For 

instance, suppose that B = {a, a ~ b}, K = Cn((a, b}) and x = b ~ a. Let u(K, x) = 
Cn({b}) and let #(B, x) = {b}. Clearly u can be taken to be a theory contraction operation 
on K, hence, according to this convention,/~ is a base contraction operation on B. However, 
many like Isaac Levi would refuse to call # a contraction operation on B simply because 
~,(B,x) g B. 
10 We give the proofs of  this and all other subsequent claims in the appendix at the end of  
the paper. 
11 In [4] he allows two or more members of  B to be equally retractable, but in [5] he avoids 
such ties by the condition that comparative retractability is an acyclic relation. However, in 
both of  these works he allows members of  B to be incomparable under the comparative 
retractability relation. 
12 Note that the second clause is automatically satisfied if S is consistent, and that we have 
assumed that the base B is consistent. 
is V(X) and A(X) stand, respectively, for the mutual disjunction and the mutual con- 
junction of  the members of  X. As usual, V(r is taken to be the "falsity" F and A(0) is taken 
to be the " truth" T. Definitions (4.2) and (4.4) must presuppose that S '  is finite, but this 
restriction hardly limits the power of  these definitions. This can be shown by semantic 
considerations. Suppose we define V(X) to be satisfiable just in case at least one member of  
X is satisfied in some model. Then we can talk of  the satisfiability of  V(X) where X is 
arbitrarily large. Given some reasonable properties (like compactness) of  ~, it can be shown 
that Vs, c_s[(S\S') ~ V(S')] just in case Vc,~it~s,cs[(S\S') ~ V(S')]. 
14 One might think that we would need extra clauses in definitions (4.2) and (4.4) corre- 
sponding to the second clauses of  definitions (4.1) and (4.3) in order to deal with a possibly 
inconsistent set S. But such contingencies are already taken care of: definition (4.2) implies 
that if S is strongly independent, then (S \~) ~/V(~); i.e., if S is strongly independent, then S 
is consistent; similarly, definition (4.4) implies that if Tis strongly independent to any of  its 
subset S, then T is consistent. 
Is There is an interesting c, onnection between the choice function that we propose to use and 
the (total) preference ordering that Nebel [18] uses. Suppose we define a preference ordering 
< c  over B induced by C in the following manner: 

x < c y  iff 3sc_B(yeSAx~C(S ) ) .  

Now, given Success, Credulity and ce, we can show that < c  is a total ordering over B. 
Furthermore, since in presence of  Success and Credulity, c~ is equivalent to/3+,  the choice 
function C is "normal";  i.e. if we define a choice function C_< induced by the preference 
relation < in the manner: 

For  all subsets S of  B, C<_(S) = {x : Vy~sx < y} 
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then C(S) = C<_c(S). This makes our approach all the more interesting. See Amartya Sen's 
[23] for more on it. 
16 Henceforth we use the convention of dropping the brackets in C((.. .}) and use C(...) 
instead. 
17 This definition of a reject-set might look rather ad-hoc. But, as we show in w 5.3, 
(observation 5.4), a more intuitive looking construction of a reject-set turns out to be 
equivalent to this. 
18 Readers acquainted with [18, 20] will notice some similarity between Nebel's results and 
ours. Nebel shows that given a total ordering < ' over B, we can have a transitive ordering 
E~ over 2K: 

X_E ~ Y iff Vx~(Snx)\(Bnr)3yc(Bnr)\(Bnx.)x <~y 

and that there is exactly one member S of B l a such that the E '-best elements of K_L a are 
those elements of K_L a that include S. But he does not identify that interesting element of 
B _L a. Using a choice function instead of a total ordering over B, we have identified the 
corresponding member of B _L a that does the trick. In his more recent paper [20] Nebel has 
developed the concept ofprioritized epistemic relevance, that he introduced in [19]. He has 
shown that given an unambiguous epistemic relevance ordering over the belief base B (which 
amounts to a total ordering over B), the prioritized base revision operation (called 
unambiguous partial meet revision) satisfies all the eight revision postulates of G~irdenfors. 
However, he does not make any connection between the unambiguous partial meet revision 
of [20] and the maxichoice base revision of [18]. Interestingly, it turns out that the 
unambiguous partial meet revision corresponds to the foundational revision based on 
B T a. Hence, observation (5.4) shows that the unambiguous partial meet revision is really 
the foundational revision based on q-m in a different guise, and that the comparative 
retractability relation of Fuhrmann is intimately connected with the prioritized epistemic 
relevance of Nebel. 
19 By Success and Credulity, c(r) is always a singleton (unless I" is empty). Hence, in 
presence of this condition, we will often write C(P) = 7 instead of C(F) = {7), if there is no 
fear of confusion. 
2o I thankfully acknowledge the help of my friend Ramkrishnan Nambimadom for the 
construction of this proof. 
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