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Inertial Manifolds and Inertial Sets for the 
Phase-Field Equations t 

Peter W. Bates 2'3 and Songmu Zheng 4 

The phase-field system is a mathematical model of phase transition, coupling 
temperature with a continuous order parameter which describes degree of 
solidification. The flow induced by this system is shown to be smoothing in 
Hl x L 2 and a global attractor is shown to exist. Furthermore, in low-dimen- 
sional space, the flow is essentially finite dimensional in the sense that a strongly 
attracting finite-dimensional manifold (or set) exists. 

KEY WORDS: Parabolic; attractor; infinite-dimensional dynamical system; 
global existence and regularity. 

0. I N T R O D U C T I O N  

Starting from a Landau-Ginzburg free energy functional of the form 

J(q~)--= fa [~2 iWpl2/2 + F(~b)] dx 

with double-well potential F, where the field qt is an order parameter 
representing local degree of solidification, one seeks an evolution equation 
for ~b which will decrease J(~b). This view of phase transition was proposed 
by Halperin et al. [HHM] and Langer ILl,  2] and, later, by Collins and 
Levine [CL]. The potential F is temperature dependent so that the relative 
depth of the two wells, representing pure solid and pure liquid phases, 
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changes with temperature. If the reduced temperature is denoted by u, then 
the usual choice for F, which ensures that solid is the preferred state for 
low temperatures and liquid for high temperatures, is given by 

F({b) = �88 2 -  1) 2 -2u~b 

Here we have taken u = 0 to be the critical temperature for planar inter- 
faces. At u = 0, ~b = -1  and ~b = +1 give the pure solid and liquid phases, 
respectively (see Fig. 1). 

For the model to account for the latent heat released by freezing and 
subsequent conduction, an evolution equation for ~b which decreases J for 
fixed temperature must be coupled with an evolution equation for u. The 
system devised by those mentioned previously is known as the phase-field 
equations: 

( r i '  = {2 A ~) + c} - ~b3 + 2u 
(PF) I 

u +-~ q) = K A u 
t 

where ~ is a relaxation time, ~ is a length scale, l is latent heat, and K is 
thermal diffusivity. A good description of the derivation of (PF) together 
with more sophisticated models which allow temperature-dependent latent 
heat, etc., is given by Penrose and Fife [PF]  (see also IF]). They also 
show that these systems are thermodynamically consistent in the sense that 
entropy increases along trajectories of (~b, u). 

Apart from the theoretical foundations being sound, computer simula- 
tions with the phase-field equations (see [K],  for example) showing 
instability of moving planar interfaces and dendrite formation closely 
resemble physical experiments. Furthermore, recent analytical and formal 
asymptotic studies (see [AB], [BF], [-C1-4], [CF],  IF] ,  and [FG],  for 

F F 

u >  

V 

Fig. 1. 

u < O  
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example) have predicted observed phenomena such as the Gibbs- 
Thompson relation, the spontaneous generation of phase interfaces, and 
subsequent coarsening. A rigorous analysis is far from complete, however. 
It is our intent to demonstrate that in one and two space dimensions, after 
a short time, the dynamics of (PF)  are essentially governed by a finite 
system of ODEs. Granted, extremely complex behavior can be generated 
by finite-dimensional dynamical systems but we like to think that this, 
nevertheless, represents a significant simplification for a system of PDEs. 
When we say that the dynamics of (PF), together with appropriate 
boundary conditions, are essentially governed by a finite dimensional 
dynamical system, we are referring to the existence of an inertial manifold 
(or set). This is a finite dimensional manifold (or set) within the infinite 
dimensional state space which attracts all solutions to (PF)  at an exponen- 
tial rate (see [FST] ,  [Y]). 

We wish to point out that a fundamental difficulty in dealing with the 
system (PF) is that it does not possess a maximum principle and only 
crude comparison results can be obtained. Furthermore, in its present 
form, regardless of which boundary conditions are imposed, the linearized 
operator is not self-adjoint and so does not fit the framework in [T]  to 
produce inertial manifolds. For  results in some non-self-adjoint cases the 
reader is referred to [M] ,  [SY],  and [Kw].  

This paper is organized as follows: In Section 1 we consider the 
Dirichlet problem for (PF)  in a bounded domain in Nn for n ~< 3. We show 
that positive semiorbits of (~b, u) are compact in H 1 x L 2 and that the flow 
is smoothing. Furthermore, there exists a compact global attractor in 
H 1 x L 2. 

In Section 2, motivated by the results in [BF] ,  we change variables in 
(PF), transforming it into a system with a self-adjoint linear part. We use 
a different change of variables from that given in [BF] ,  which is more 
suitable for our choice of boundary conditions. We proceed then to 
demonstrate the existence of an inertial manifold in the case n = 1 and n = 2 
with f2=  [0, L ]  x [0, L] ,  imposing Dirichlet boundary conditions on u 
and on ~b. 

In Section 3 we show that for a smoothly bounded domain f~ c ~ ,  
n ~< 3, (PF)  has an inertial set, that is, a positively invariant set of finite 
fractal dimension which attracts all solution at an exponential rate. The 
latter result relies on recent work by Eden et al. (see [ E F N T  1, 2]). 

Finally, we show that the previous results hold when u satisfies 
Neumann boundary conditions, provided that one restricts attention to 
fixed energy surfaces ~n (u + (//2)~b) dx = constant. 

These energy surfaces are invariant under (PF)  when zero-flux 
boundary conditions are imposed. This of course means that there is not 
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a global attractor in the usual sense but the state space is foliated with 
invariant affine hyperplanes, each of which contains a compact attractor 
and an inertial manifold (or set). 

1. A B S O R B I N G  SET A N D  G L O B A L  A T T R A C T O R  

In this section we are going to prove that for the following phase-field 
problem, 

zr = r 3 r  + r - ~b 3 + 2u (1.1) 

l 
u, +-~ (b,= K 3u (1.2t 

ulr=uAx), r162 (1.31 

ul,_o=Uo(X), r = ~bo(x) (1.4) 

for given functions ur(x) and (~r(X) and for all Uo(X), Co(X) in certain 
Sobolev spaces, there exists an absorbing set and a global attractor. We 
first prove the following global existence and uniqueness results. 

Theorem 1.1. Let f2 c ~n (n <~ 3) be a bounded domain with smooth 
boundary F and let Ur(X) and Or(X) be given smooth functions of x on F. 
Suppose Uo(X ) ~ L2(s Co(X) ~ Hi(f2), satisfying the compatibility condition 
7o(~bo)=r Then problem (1.11-(1.4) admits a unique global solution, 
~b ~ C ( ~ + ; H I ) ,  u ~ C(~ + , L  2) for any T >  0, Ct ~ L2([ -0, T] ,L2) ,  
e e L 2 ( [ 0 ,  T], H21. Moreover, u and (~e Coo((O, oo), C~176 and the orbit 
t6 [e, + o o ) ~  ((~(., t), u(., t)) is compact in H 1 x L  2 for any e > 0 .  

Remark. The restriction n ~< 3 is not necessary, and for general n the 
solution (r t), u(., t)) e (H 1 c~ L 4) x L 2. For existence and uniqueness of 
solutions, we need only the boundary data Ur and Cr to be in the trace 
class H1/2(F). The corresponding regularity of the solution is as expected. 

Proof. The global existence and uniqueness of a smooth solution 
have been proved in [EZ]  for (q~o, Uo)EH2(O)xH2(s Moreover, 
without loss of generality, taking Ur = Cr = 0, we find 

( ~  1 4 1 r  ) t et4K fo +Tu: d + fo , ,ll:dt+Jo T IlVull:dt 
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Then the usual compactness argument yields the global existence and 
uniqueness for (~bo, Uo)eH 1 x L 2- Moreover, the identity (1.5)still holds. 
To prove the compactness of the orbit t e [e ,  +~)~ (~b( - ,  t),u(., t)) we 
need the following lemma. 

Lemma 1.2. Suppose f ~ L2([0, T]; L2),  u o ~ L2(~"-2). Then the 
following problem, 

u t - - A u = f i n  s215 T) 

u l r = 0  on F x  (0, T) 

ul,=o=Uo(X) in t2 

(1.6) 

(1.7) 

(1.8) 

admits a unique solution, u~ C([0, T]; L2)~ L2(]-0, TJ; H1). Moreover, 
u~C((O, T]; H1)c~L2([e, T]; H2), u~LZ([e, T]; L 2) for any e>0,  

Ilu(t)ll~,l~< Nuol12+2 [If]12dt, Vt>O (1.9) 

Furthermore, if f~ ~ L2((0, T], L2), then ut ~ C((O, T]; Hi) , and 
u~C((O, T];H 2) 

Ilu,(t)tlzH~<-~ - [tuoll2+ Ilf(0)l[2+4 I[f,l[2dt, Vt>0 (1.10) 

We postpone the proof of Lemma 1.2. 
Once we have Lemma 1.2, it follows from Eq. (1.2) that 

ue C((0, T]; H 1) and 

Ilu(t)llHl<~C~, Vt~ [e, T] (1.11) 

It turns out from (1.2) and the regularity results (see Theorem II.3.3 in 
IT]) that we have 

u~LZ(E~,TJ;L 2) for 5>0 (1.12) 

Thus, Eq. (1.1) can be viewed as 

~ , = ~ + f  (1.13) 

with 

feL2([e ,  T]; L2), f ,  eL2([a, TJ;L 2) 
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Applying Lemma 1.2 again, we conclude 

q~, ~ C([e, T], H1), ~b e C(Ee, T]; H 2) (1.14) 

II~(t)liH=~< G, Vte [2e, T] (1.15) 

By the usual bootstrap argument, we get the C~(f2 x (0, + oo)) regularity 
results. The compactness of the orbit te(e,  +oo)-+((b( . , t ) ,u( . , t ) )  in 
H ~ x L 2 follows from (1.11), (1.15), and the uniform a priori estimates 
given in [EZ]. Thus the proof of Theorem 1.1 is completed. We now give 
the proof of Lemma 1.2. 

Proof of Lemma 1.2. The existence and uniqueness of solution in the 
space u ~ C([0, T],L 2) c~ L2([0, T]; HA) are well-known (for instance, see 
Theorem II.3.1 in IT];  see also [HI  and [P]).  Therefore, we need only to 
prove (1.9) and (1.10). Similar estimates can be found in [H]  but for later 
use we include the details of the proof. 

Let u~ be the solution to the problem 

ut-- Au= f (1.16) 

Ulr=O (1.17) 

u l t=o=0  (1.18) 

and u2 be the solution to the problem 

u, - -Au=O (1.19) 

U l r = 0  (1.20) 

u It = o = Uo(X) (1.21) 

By uniqueness we have 

u = u I + u2 (1.22) 

Applying the regularity result to ul (see Theorem 11.3.3 in [T]), we have 
Ul e C([0, T]; HA) c~ L2([0, T], g2), ul, E L2([0, T]; L2). Moreover, 

IlUl(t)U 2~< Itfll 2 dt, Vt>~O (1.23) 

Since - A  is a symmetric operator with the domain D(A)= H 2 n  H~ dense 
in L2(O) by a well-known result in semigroup theory [P]  we have 

u2 c C/((0, co); D(Ak)), Vj, k>~O (1.24) 
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Multiplying Eq. (1.19) by u and u,, respectively, and integrating yields 

l d  
---Ilu(g)l[2 + IlVull2 = O, v t > O  
2 dt 

(1.25) 

l d  
---INull2 + Ilu~t12 = O, Vt>O 
2 dt 

(1.26) 

Multiplying (1.26) by t and then adding to (1.25) yields 

1 d iluU2_t_ ~ i/Vu[12= 0 1 d ( t l l V u l l 2 ) + t l l u , l { 2 + ~  
2 dt 

(1.27) 

Integrating with respect to t gives 

t IIVu(t)lt 2 + llu(t)tl 2 ~ [luol[2 (1.28) 

[IVu(t)H 2 = [lu(t)lE~ ~ Iluolt 2 (1.29) 

Adding (1.29) with (1.23) results in (1.9). Similarly, since (Ul), satisfies 

u~ - Au = f , (1.30) 

Ulr=O (1.31) 

u l , = o = f ( x ,  0) (1.32) 

we have 

[l(ulL(t)ll 2 ~ iif(O)ll2 + 2 f] IILll 2 at (1.33) 

For u2 we have 

2 1  
II(u2),(OIl~/l~(t ~ (u2)t ~ (1.34) 

Noticing that [[(u2)(t)[t 2 is decreasing with respect to t, we have, by 
integrating (1.27) with respect to t, 

s 1 
2 [lu'(O[[2 + ~ Ilu(t)tl2 ~ 2 ISu~ (1.35) 

Ilu,(t)H2 ~ 2  ]luoH 2 (1.36) 
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Using (1.34), (1.36), we find 

2 1 / \ t  2 8 
N(u2),(t)llnl ~ (u~),l~) <7 Ilu~ (1.37) 

Thus, (1.10) follows from (1.34), (1.36). 
In what follows, we prove the existence of an absorbing set. We first 

use translation of u and r to make the boundary condition homogeneous. 
Let ~7, q$ be harmonic functions satisfying on the boundary F 

a l r = u r ( x ) ,  8 1 r = r  (1.38) 

We introduce new unknown functions 

v = u - <  4 = r  

Then 4 and v satisfy 

r4~ = 42 A4 + (4 + q~) - (4 + r + 2(v + ~) 

l 
v,+~4,=KAv 

41 / -=v l r=O 

41,=o = 4 o ( X )  - Co(X)- ~(x), v l,=o = Uo(X)  - a ( x )  = V o ( X )  

(1.39) 

(1.4o) 

(1.41) 

(1.42) 

(1.43) 

To prove the existence of an absorbing set for r and u, we need only 
to prove the existence of absorbing set for 4 and v. 

Multiplying (1.40) by 4, and (1.41) by (4/l)v, and adding and 
integrating with respect to x, yields 

ddtfg2(~_~_2lVl/] I 2 }_ ~ (i//_~_ (l~)4 _ ~ (4 .~_ {fi)2 ...{_ ~/)2 _ 21//~) dx 

"{- %" H4tN 2 -[- 4K ]iV/) N 2 = 0 (1.44) 
1 

Let 

fa(-~ 1 1 2v2 2fffi) d x V(t)= IV412 + g  (4 + ~ ) 4 - ~  (@ + r + 7 (1.45) 

It is easy to see from the expresion for V(t) that the boundedness of 
V(t) from above implies the boundedness of I1~112, + Nvl] 2. Therefore, we 
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need only to prove that lim sup~  o~ V(t)<<. C, independent of 00 and Vo. 
Multiplying (1.40) by 0 and integrating with respect to x yields 

l e g  2 IV012 + (0 + ~)4 _ ~(0 + ~)3 _ (0 nt- ~)2 _~_ ~(0 + ~) 

- 2(0 + q~)v + 2q~ - 2(0 + q~)~7 + 2q~z7 

+ ~0,(0 + ~) - ~O,~J dx = 0 (1.46) 

By the Young inequality ab <~ (aP/p) + (bq/q), we easily get from (1.46) 

fo [-~2 tVOl 2 "~- 2 (0 _1_ ~)4 __ (0 + ~)2-  40~7] dx~<2z II0t[I 2 + e  [lv[12 + c~ 

(1.47) 

with e being an arbitrary constant and C~ > 0 a constant depending only on 

By the Poincare inequality, we have 

Ir v [I 2 ~< c IlVv II 2 ( 1 . 4 8 )  

with C > 0  depending only on the domain f2. Dividing (1.47) by 2 and 
choosing e = 8K/CI, then adding with (1.44) yields 

dV 
d---[ + V(t) ~ C' (1.49) 

with C' >0  depending only on q~, t/. It follows from (1.49) that 

V(t) ~ e 'V(O) + C' (1.50) 

Notice that 

1 1 + ~ v ~ - 2 0 o  @ (1.51) 

is bounded if 110olJ~v + r/roll 2 is bounded. The inequality (1.50) implies the 
existence of an absorbing set. 

We now have the following theorem. 

Theorem 1.3. Suppose s ~ is a bounded domain with smooth 
boundary F. Suppose Ur(X ), r are given smooth functions. Then the 
semigroup S( t ) associated with the system (1.1)-(1.4) possesses a maximal 
attractor d which is bounded in H2(O) • H2(~2), compact and connected in 
H~(s x L2(f2), and attracts the bounded sets of  H1(s x L2(f2). 

865/4/2-11 
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Proof. The semigroup S(t) associated with the system (1.1)-(1.4) is 
defined as follows: 

S(t): (fro, Uo)~ n 1 x L2 ---~ (~( . ,  t), ~2(., t)) (1.52) 

Since ~b,~L2(~+,L2(12)), u~L2([0, T]; Hi(12)) for any T > 0  as 
proved in Theorem 1.1, then f-= ~b - ~b 3 + 2u ~ L2([0, T]; L2), g -= (//2)~b, 
L2([0, T]; L 2) immediately imply that S(t) is continuous in Hi (O)x  L2(O) 
for t >~ 0. Theorem 1.1 also claims that for any 8 > 0 and any bounded 
set B c H l x L  2, U {S(t)B: t>~8} is relatively compact in Hl x L  2. The 
existence of an absorbing set has been proved in the above. Thus the 
conclusion of this theorem follows from Theorem 1.1.1 in [T]. 

Remark. If ~b satisfies homogeneous Neumann instead of Dirichlet 
boundary conditions, the previous proofs are easily modified to again 
deduce the existence of a compact attractor. 

2. INERTIAL MANIFOLDS 

In this section we discuss the inertial manifold of semigroup S(t) 
associated with the system (1.40)-(1.43) instead of (1.1)-(1.4) in one and 
two space dimension, and in the next section we also discuss the existence 
of an inertial set, a notion recently introduced, and studied by Eden et al. 
(see [EFNT 1, 2] and [EMN]).  

We first discuss the system (1.40)-(1.43) is one space dimension. 
Since the phase-field equations (1.40)-(1.41) are not a diagonal 

parabolic system, if we put them into the abstract framework of first-order 
evolution equations 

du 
- - +  Au + F(u)=O (2.1) 
dt 

by subtracting (1.41)from (1.40) times -(l /2r) ,  then the operator is 
not self-adjoint. But the existing theory for inertial manifolds (see IT])  
usually requires that A be a self-adjoint operator. In what follows we use 
a technique similar to that in [BF] to reduce the problem to one with A 
being self-adjoint. Dividing (1.40) by z we obtain 

r +lr E(r 3+2v+2~] (2.2) 

Multiplying (2.2) by - ( l /2)  and then adding to (1.41) yields 

v t=KAv  ICeAO l 2~ - ~ E(r + 4%-  (6 + ~)3 + 2v + 2a] (2.3) 
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Since - A  defined on H 2 ~ H i c L2(g2) is a positive definite operator, we 
can write - A  as 

- A  = A 2 (2.4) 

where A is a self-adjoint positive definite operator. It can be given explicity 
by 

Au= ~ 2~/2(u, Un)Un, Vu~D(A)=H 1 (2.5) 
n = l  

with u, being normalized eigenfunctions of - A  associated with eigenvalues 
2n and (u, u,) being the inner product in L 2. Also, 

A- lu= ~ 22UZ(u, Un)U n (2.6) 
n = l  

Let 

Then (2.2) becomes 

2 
a=x/~----~, e=aA- lv  (2.7) 

tp, = 42 Atp + x/-~{ Ae + f~(O) (2.8) 
T "C 

1 
f l  = - [ (~ + q~) - (~ + q~)3 + 25] (2.9) 

"c 

Acting on Eq. (2.3) with aA -t yields 

e ,=KAe+ X / ~  AO+ f2(O)- l - e  (2.10) 

with 

f2(~b) = - ~x/7 A-1 [(ff + ~ ) -  (~, + ~)3 + 2z~] (2.11) 

Then the system (2.8), (2.10) can be written as 

dU 
dt + d U =  R(U) (2.12) 
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with 

() (Oe) U= , sg= x / l~  A - K A +  f2 
/ I  ' R =  f~ (2.13) 

T 

and initial condition 

•1 o 
U(0)= Uo=-(aA_lvo) (2.14) 

Here d o m ( d )  = H 2 c~ Ho 1 • H 2 ~ H~. 
It is easy to see from the expression for R that the system (1.40)-(1.43) 

is equivalent to the system (2.12)-(2.14) in the sense that if (~, u) is 
a solution to the system (1.40)-(1.43), then (~ ,e )  is a solution to 
(2.12)-(2.14), and vice versa. 

In what follows, we study the dynamical system (2.12)-(2.14) instead 
of the system (1.40)-(1.43). Theorem 1.3 shows, by the equivalence of the 
two systems mentioned above, that the semigroup operator S(t) associated 
with the system (2.12)-(2.14) possesses a global (maximal) attractor which 
is bounded in H 2 x  H 3, compact and connected in H 1• H~, and attracts 
the bounded sets of Hx(o)x  H~((2). Consider d as an operator with 
domain H 2 ~ H 1 • H 2 n H~ in L 2 x L 2. Then it is easy to see that d is self- 
adjoint. Also, 

( s / U , U ) - -  - - - A 0 , 0  - 2  (AO, e)+ + - e , e  "E '~ "C 

Z n = l  "C n = l  

l 
le, 

~ ' n = l  n = l  

f K n~=l 2.(e, u.) 2 if e:#O 

/ ~ y 2  oo (2.15) 

~ _ n E l  2n(~l, U.)2 if e = 0  

Thus d is a positive definite operator. 

Theorem 2.1. Let n = 1, (f2 = (0, L)). Then system (2.12)-(2.14) 
possesses an inertial manifold of the form given by Theorem VIIL3.2 in 
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( [T] ,  p. 436) in D ( d  '/2) 1 1 = H o • H o. This implies that the sys tem 
(1 .40) - (1 .43)  admits an inertial manifold in H i x L 2. 

Proof. It remains to prove that R is a bounded mapping from D ( ~  ~) 
into D ( d  ~) (taking c~=�89 7 = 0  in [ T ] )  and R is locally Lipsehitz and, 
also, to prove that the spectral gap condition is satisfied. 

For  C eH~,  n =  1, by Sobolev's imbedding theorem, f l , f 2  are 
bounded mappings from H i --* H i. It is easy to see that f l  is locally 
Lipschitz from Ho 1 to Ho ~ . To prove f2 is also locally Lipschitz, since A -  i 
is a bounded operator from L 2 to Ho ~, we need only to consider the term 
A - l r ( r  ~ ) 3 ] .  By (2.6) we have 

IIA ' [ ( r162  -- II(r 

~<cMI1r162 if It~,II.,~<M, ltr (2.16) 

CM being a constant depending on 3//. 
The spectral gap condition is the condition that the spectrum of d lies 

outside a sufficiently large interval of the positive real axis. We show that 
there are arbitrarily large gaps in the spectrum of d .  

For  O = (0, L), we look for the eigenvalue 2 and the associated eigen- 
function such that (r e) ~ H 2 m Ho 1 x H 2 m H i 

+!) (+e):" (+e) 
We rewrite the equations separately: 

- - -  A r 1 6 2  (2.18) "E "C 

xf l lr  A r  - K A e  + / e = 2e (2.19) 
"c "c 

Acting with A on (2.18), using (2.4), replacing Ar by the one in (2.9), we 
get 

K~ A2e + + Ae + e=O (2.20) ) 

The normalized eigenfunctions, which are also the eigenfunctions of - A  on 
H 2 c~ Hi ,  are 

. n ~ x  

e~ = san L ' n = 1, 2 ..... (2.21) 
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The corresponding eigenvalues 2 = ~{, satisfy 

~ {  - 4 \  w/-~{ / 4 . + 7 4 : = 0  (2.22) 

where {2.} ~ are the eigenvalues of  --A on H = m  Ho*, which is this case are 
given by 2.  = (nr~/L) 2, n = 1, 2 ..... 

0 o  Thus,  the eigenvalues { . } . = 2  are given by two forms: 

4 .  + = a 2 .  + b + , / ( a 2 ~  + b)  2 - c22  

2,7 = aZ, + b - x / ( a 2 ,  + b) 2 - c22] 
(2.23) 

where a = (Kz + ~2)/2"c, 
find 

a + - 2 + + , - 2  + = ( 2 , + , - 2 , ) [ a + ~ , ]  
(2.24) 

d n -  2~-+1-  2~- = ( 2 , + 1 -  2 , ) [ a -  c~,] 

where ~, --+ ~ as n --+ oo. 
It  follows that  d, + ~> d~- o oo since 2,  +,  - 2,  o oo as n --+ oo. F o r  fixed 

N, we define the gap at 2 u to be the m a x i m u m  of (2 u - / ~ )  and ( v -  2 u ), 
where #(v) is the largest  (smallest)  eigenvalue of ag less (greater)  than  2 u . 
Let  K =  K(N) be defined by 

b= (l/2z), and e =  ( x / ~ ) { .  No te  that  a2>~c 2. We 

2 + ~< 2N < 2++, 

Then  
either /~ = 2 + or # = 2 N_ , 

and 

- + = 2 N + 1  either v - -  2K+ 1 or  v 

I t  follows that  the gap  at 2Zv is at least 

d N =- min { d u , d N_ 1, 5dK1 + } (2.25) 

Clearly K=K(N)--+ c~ and hence du--+ oo as N--+ oo. Thus,  the 
spectral  gap  condit ions (3.7) and  (3.51) in I T ]  (pp. 423, 435) are satisfied 
and the p roof  of the Theo rem is complete.  

F o r  n = 2 a n d / 2  = [0, L ]  2, using a result in number  theory (see [ R ] ) ,  
we have the following theorem. 

Theorem 2.2. Let n = 2, (/2 = [-0, L]2).  Then system (2.12)-(2.14) 
possesses an inertial manifold of the form given by Theorem VIIL3.2 in [T] 
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in D ( d )  = H 2 ~ H i • H 2 (h H i. This implies that the system (1 .40) - (1 .43)  
admits an inertial manifold in H 2 ~ H i x H i.  

Proof .  By Sobolev's imbedding theorem, HZ(n = 2) is continuously 
imbedded in C(O). Therefore, R is a bounded mapping from D ( d )  into 
D(J)(cr = 1, ~ =0). The same argument as in Theorem 2.1 yields that R is 
also locally Lipschitz. The spectrum is still given by (2.23) but 2n is now 
the nth eigenvalue of - A  with domain 

H2([0,1;] 2) n/-/~( E0, L] 2) 

These eigenvalues have the form 

(L)2 ( i2+ j  2) with i and j integers (2.26) 

and a result in number theory (see l-R]) then implies the existence of/~ > 0 
such that 

2 n + l - 2 n > f l l o g n  as n ~ c ~  (2.27) 

As before, the spectral gap condition is satisfied and so the proof is 
complete. 

Remark. It is clear that this approach will fail for O a cube in ~3 
since the set of integers expressible as the sum of three squares has 
uniformly bounded gaps. 

Remark. If we have the Neumann boundary condition for ~b and the 
Dirichlet boundary condition for u, 

u l r = u r ( x ) ,  ~ =0  (1.3) I 
( J r /  F 

instead of both Dirichlet boundary conditions (1.3), then the theorems on 
the existence of absorbing set and the global attractor still hold. But the 
above symmetrized method fails and the existence of an initial manifold 
remains open. 

3. INERTIAL SET 

We can see from the above that the gap condition imposed severe 
restrictions on the domain in order to obtain the existence of an inertial 
manifold. Recently, Eden et al. (see [EFNT1 ] and [-EFNT2]) introduced 
the notion of the inertial set, which is defined to be a set of finite fractal 
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dimension that attracts all solutions at an exponential rate. More precisely, 
let H be a separable Hilbert space and B a compact subset of H. Let 
{S(t)}t>~o be a nonlinear continuous semigroup that leaves the set B 
invariant. Let 5e be the global attractor for {S(t)},>~o on B. Let us now 
recall the definition of inertial set (see I-EMN], [EFNT1, 2]). 

Definition 3.1. A set M is called an inertial set for ({S(t),~>o, B}) if 
(i) 5 ~ _ M ~ _ B ,  (ii) S ( t ) M ~ _ M  for every t>~0, (iii) for every uoEB, 
distu(S(t)Uo, M)<~ Cle -c2t for all t ~>0, where C1 and C2 are independent 
of Uo, and (iv) M has finite fractal dimension, dF(M ). 

Definition 3.2. A continuous semigroup {S(t)},~> o is said to satisfy 
the squeezing property on B if there exists t ,  > 0  such that S ,  = S ( t , )  
satisfies: there exists an orthogonal projection P of rank No such that if for 
every u and v in B satisfying 

l iP(S,  u - s ,  v)llM ~ I I ( I -  e ) ( s , u  - s ,  v)]l n (3.1) 

then 

IIS, u -  S ,  vllH~ ~Ilu--vlIH (3.2) 

In [ E M N ]  and [EFNT1,2]  the following result has been established. 

Theorem 3.1. I f  ({S(t)},~>o, B) satisfies the squeezing property on B 
and i f  S ,  = S ( t , )  is Lipschitz on B with Lipschitz constant L, then there 
exists an inertial set M for ({S(t)}t~>o, B) such that 

dy(M) <<. N o max{l,  ln(16L + l)/ln 2} (3.3) 

and 

distu(S(t)B,  M)<<. CI exp{ ( -  C2/t , ) t }  (3.4) 

In what follows, we are going to prove that for the system (1.1)-(1.4) 
and for general smooth domain t2 (n ~< 3), there exists an inertial set. 

As in Section2, instead of system (1.1)-(1.4), we consider system 
(2.12)-(2.14). We notice that the squeezing property implies the Lipschitz 
condition on the map (t, Uo)~ [0, t , ]  x B ~ S(t)u o in the norm of H. 

In what follows we take the product space L 2 x L:  as H. We also take 
the product space H 2 n H i x H 2 n H i as E. 

Theorem 3.2. Let s c ~n (n <~ 3) be a bounded domain with smooth 
boundary F. Let Uo = (~bo, eo) ~ H 2 n H i • H 2 c~ H i. The system (2.12)-  
(2.14) admits a global solution (~b, e) ~ C(~ +, H 2 ~ H 1 x H e ~ H 1) 
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C1(~ +, L2xL2). Moreover, there exists an absorbing set B in E=H2n  
H i x H 2 n H i. 

Proof. Since n ~< 3, by Sobolev's imbedding theorem R is locally 
Lipschitz on E. Thus, the local existence follows from standard results from 
semigroup theory. To prove the global existence it suffices to have uniform 
a priori E-norm estimates for (0, e), i.e., H 2 (3 H 1 x Ho 1 norm for (0, v) for 
the system (1.40)-(1.43), which have already been proved in [EZ]. Thus 
the global existence and uniqueness follow. To prove the existence of an 
absorbing set B, it suffices to prove that there exists an absorbing set of 

1 1 (0, v) in H 2 ~ H  o x H 0 for the system (t.40)-(t.43). Multiplying (1.41) by 
v, and integrating with respect to x yields 

l f _<_1 12 
__Kd2 dt IlVvlt = +/ Iv ' l12  = - 2  J# Otvtdx "~2 IIv'l/2 + 8 - 110'I1= (3.5) 

K d 1 l 2 
-2 dt IlVv [I 2 + 2 II viii 2 ~< 8- II 0,112 (3.6) 

Differentiating (1.40) with respect to t, then multiplying it by 0t and 
integrating with respect to x, we obtain 

z d 4= fQ fa 2dr 110'11=+ IIV0'112+3 (0+~)=0,2dx = IlO,Ilz+2 v,O, dx 

1 
~<~ Ilv,II = + 3 II0,11 = (3.7) 

Adding (3.7) and (3.6) yields 

K d H v v [ 1 2 z d  ( 12 ) - ~  +~ll0, l [2+~2llg0,112~< 3 + g  110,112 (3.8) 

Multiplying (3.8) by a small positive number 5 > 0  specified later and 
adding it to (1.44) yields 

0"[ 21 d I v(t) + f---~ HVvll2 +-~ l,O,,, 

( , 2 )  
<5 3+~-110,112 

Applying Young's inequality and Poincare's inequality yields 

T 
v(t) < ~ II 0,11 = + 27 ~ IlVvll 2 + c (3.10) 

+ �9 I/~ll ~ + / IlVvll ~ + ~ IIV~ll 2 

(3.9) 



392 Bates and Zheng 

We choose 

3 = 4(3 + 12/8) (3.11) 

and add (3.10) to (3.9) to obtain 

d g(t)+ IlVvll2+~ 110,112 +~ 110,112+ I/Vvll2+ g(t)<~C (3.12) 
dt 

Let 

Co =man (1, 4 ,  ~) (3.13) 

It follows from (3.12) that 

dIv(t)+fi____ ~ 2 & 2] & ilCtil21 ~ C llv, II +yll  Jl ll:+ Y 
(3.14) 

which results in 
3, v(t) + ~ IlVv112 + ~- II 0,1l 2 

Since 

~ (v(o)+ ~-~ ilVvotl2 + ~ 11r (3.15) 

11r ~ ~ (3.16) 

with C being a positive constant depending on i1r and [IvollL=, (3.15) 
implies that IIv(t)IIHI and IIr I1r is absorbed in a bounded 
set. By Eq. (1.40) we obtain the existence of an absorbing set of (r v) in 
H 2 n  H A x H A. This gives the existence of an absorbing set B for (r e) 
in E. 

To apply Theorem 3.1, we have to verify that ({S(t)},~>o, B) satisfies 
the squeezing property. 

Let U and O be two solutions of (2.12)-(2.14) and 

V = U - O  (3.17) 

Then V satisfies 
dP 
d-7+ se~'= R(g)- R(O) 

~(o) = Po 

(3.18) 

(3.19) 
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The self-adjoint positive definite operator d is given by (2.13), which 
has relabeled eigenvalues 2 {n) (n = 1,...) satisfying 

)~(') ~ +oo ( n ~  +oo) (3.20) 

Let V, be the corresponding eigenvector functions, i.e., d V ,  = 2(')V,. 
Let Hu=span{V1,..., VN} and PN:H--~HN, the orthogonal projection 
onto HN, and QN= I--PN" Let 

Then by (3.18)-(3.19) we have 

W= QN V (3.21) 

dW 
- -  + d W =  QN(R(U) -- R(O)) 
dt 

W(O) = QN Vo 
(3.22) 

- - -  II w II 2 + II wit 2 < II wII H II QN(R(U) - R(0)) [1H 

1 <(,~(N§ IIWII. IIR(U)-R(U)tlv (3.23) 

When Uo, On e B, by Theorem 3.2 we have 

tlU(t)IIE~C, II 0(t)IIE~ C, Vt~O (3.24) 

with C > 0  a constant depending on B. From the expression for R and 
Sobolev's imbedding theorem, we have 

I IR(U) -  R(U)II v ~  CII u -  01l v (3.25) 

with C>  0 a constant depending only on B. From (3.23) we have that 

1 d 2(U+ 1) ~2 
2dt IIWII~+2(N+I)IIWI[2<<"--~ - II W]I~+ 2(2(N+1))2 t iN-  01t2v (3.26) 

Applying Gronwall's inequality to (3.26) yields 

IIW(t) l l~<e- '~N+l) lIW(0)l l~+ (~(N+1))2 I I U -  Ol[~dt (3.27) 

l d  
2dt 

Let V = H ~ x H ~ ,  then multiplying (3.22) by W r and integrating with 
respect to x yields 
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On the other hand, from (3.18) it follows that 

l d  
2dr - - I1~112 f l12<  IIR(U)-R(O)IIH . + II H f i l l .  < c ,  II fll  2 

Applying Gronwall 's inequality to (3.28) yields 

f~ 1 e2C~ t [] ~']]2dt<~ H V(O)H 2 

Inserting (3.29) into (3.27), we obtain 

ii w( t ) l l  2 _;<~§ i] W(O)[I 2 1 ~,2 _ _  p2Cl t II 2 /_/~<e H+ 2 (2(N+,))2 ~ ,, f(0)ll H 

1 C2 ~2c~,~ 2 
4 e--;'(N+')t+-~(i(N+l>)2~ j IIf(O)ll~ 

from which the squeezing property follows. Indeed, we choose 

61n2 
t , -  2(a) 

and we choose No such that when N~> No, 

Thus if 

then 

Also, from (3.30) 

that is, 

~ ( N + I ) ~  C eClt * 
8,s 

IIPN0 V(t,)ll/~ ~ IIQN0 V(t,)ll H 

II V(t ,) l]  ~ ~< 2 II QNo ff(l, )n 2 H 

II V(t , ) l l  2 . ~< 1 II e(0)ll 

II f ( t , ) l l ,  ~ ~ II V(0)ll,  

which implies the squeezing property. 
Applying Theorems 3.1, we have proved the following. 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

(3.36) 
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Theorem 3.3. Let s ~ ~n (n <<. 3) be a bounded domain with smooth 
boundary F. Then the system (2.12)-(2.14) [accordingly, the system 
(1.40)-(1.43)] has an inertial set M in H 2 c~ H A • H 2 ~ H A [accordingly, an 
inertial set M in H 2 ~ H~ x H~]. Moreover, (3.3), (3.4) hold, where t .  and 
No are given by (3.31), (3.32). 

4. T H E  E N E R G Y  C O N S E R V I N G  S Y S T E M  

Here we consider the case where temperature satisfies homogeneous 
Neumann boundary conditions. There is an important difference between 
this situation and that discussed previously. In this case there is no 
bounded absorbing set for initial data varying throughout the whole space. 
This is because Eq.(1.2) and the boundary conditions imply 

l oo )dx  for t>~O (4.1) f~ ( u + ~ O )  dx=f~ (Uo+~ 

This is not as problematic as it appears, however. The energy conser- 
vation property (4.1)just means that all evolution takes place in an affine 
hyperplane, and so to understand the dynamics we can consider each of 
these invariant hyperplanes separately. 

We replace (1.3) by 

~u O, 00 0--s = ~nn = 0, or 0 = Or(x) on F (1.3)" 

We change variables by writing 

l v=u+~O-Co (4.2) 

where 

l 00) 

and work in L2x E 2, where 

dx (4.3) 

Spaces /~k= Hkc~/Z2 and H~N ~/~2 are also used, where the subscript N 
refers to the weak homogeneous Neumann boundary condition being 
satisfied. Note that we have a Poincare inequality for v E/~v. 
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When ~b satisfies the Neumann boundary condition, Eq.(1.44) 
becomes )2) 

dSf,, dx 

+z t l~b , l [ 2+~  V ( v - ~ b ) 2 = 0  (4.4) 

In the same way as before, this yields an absorbing set in H 1 x/52 for 
any fixed Co. Similarly, the proof of Theorem 3.2 may be modified to obtain 
the existence of an absorbing set in = H 1 HN• for fixed Co. The usual 
argument demonstrates the existence, for fixed Co, of a global attractor 
which is compact in H 1 x/7 z (see Theorem 1.3). 

To obtain inertial manifolds (or sets) for the system 

r~b t = 4 2 A~b + ~b - ~b 3 + 2v - l~b + 2c 0 (4.5) 

Kl 
vt= K A v - - ~  AO (4.6) 

with N - N  boundary conditions, we again change variables to produce a 
self-adjoint linear part. Let 

- - 2  
A 2 = - A  with domain H N in/52 

Then A is positive definite on its d o m a i n , / t  1. Let 

(4.7) 

2 
b - and e = bA -11) (4.8) 

v@ 
then the system (4.5), (4.6) becomes 

z~, = ~2 A~ + x//-~A l ( - -A)e+f(~)  

et= KAe + x//-Kll A - l ( -  A)O 

(4.9) 

(4.10) 

where f(~b) = (1 - l)~b - ~b 3 + 2Co. 
System (4.9)-(4.10) with initial data (~b o, bA lvo) is equivalent to the 

original system in z -2  H N x HN, as can be seen by the existence and uniqueness 
of solutions. Furthermore, this modified system is in a form such that 
inertial manifolds and inertial sets can be shown to exist in the appropriate 

k - - k  H N x H N space, depending on n ~< 3. If ~b satisfies Dirichlet boundary condi- 
tions, then the symmetrization fails and the existence of an inertial 
manifold remains an open question. Allowing co to vary in ~ certainly 
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changes the set of equilibria for (PF) with (1.3)" and, hence, the dynamics. 
However, state space should have a global, finite-dimensional, attracting 
manifold for (u, ~b) foliated with the invariant affine planes. Locally, this is 
the case. An interesting question is how the inertial manifolds may change 
when Co passes through a critical value. 
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