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Dimensions of Attractors for Discretizations 
for Navier-Stokes Equations 

Yin Yan 1 

In this paper, we discretize the 2-D incompressible Navier-Stokes equations 
with the periodic boundary condition by the finite difference method. We prove 
that with a shift for discretization, the global solutions exist. After proving some 
discrete Sobolev inequalities in the sense of finite differences, we prove the 
existence of the global attractors of the discretized system, and we estimate the 
upper bounds for the Hausdorff and the fractal dimensions of the attractors. 
These bounds are indepent of the mesh sizes and are considerably close to those 
of the continuous version. 

KEY WORDS: Navier-Stokes equation; finite difference; attractor; Hausdorff 
dimension. 

1. I N T R O D U C T I O N  

In recent decades, great progress has been made in the research of the 
Navier-Stokes equations, especially in the 2-D case. Significant theory of 
dynamical properties of the 2-D incompressible Navier-Stokes equations 
can be found in [L2], [C-FI],  [C-F2], [C-F-T], [T3], and the references 
listed therein. It is proved that there exist global attractors of finite 
Hausdorff and fractal dimensions. The bounds for the Hausdorff 
dimensions D of the global attractor of the 2-D incompressible Navier- 
Stokes equations have been improved to 

D <~ cG2/3((log G)l/3 + 1) in the periodic boundary condition case (1.1) 

and 

D <<. cG in the Dirichlet boundary condition case, (1.2) 
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where G is the Grashof number defined by 

IlfllL~ 
G= v221 (1.3) 

wherefis  the volume force, v is the viscosity constant and 21 is the smallest 
eigenvalue of the Stokes operator (see I-T3]). 

In this paper, we consider the discretization of the 2-D incompressible 
Navier-Stokes equations. We use the finite difference method. After dis- 
cretizing all functions and differential operators involved in the Navier- 
Stokes equations by following the standard finite difference scheme, we 
obtain a system of finite dimensional ordinary differential equations 
simulating the continuous version of the Navier-Stokes equations on 
appropriate grids. 

We concentrate on the long-time dynamical behavior of our dis- 
cretized system, particularly on the existence of attractors and the estimates 
of their Hausdorff and fractal dimensions. 

For this purpose, we follow the outline of arguments used for the 
study of continuous version of the Navier-Stokes equations. Technically, 
difficulties arise due to the discretized version of inequalities in the sense of 
finite difference. 

Throughout this paper, we consider the discretizations for the 2-D 
incompressible Navier-Stokes equations with the periodic boundary condi- 
tion only. 

In Section 2, we discuss the basic properties of the discretization by 
using the finite difference method. Section 2.1 describes the discretization 
of the objects involved in the Navier-Stokes equations, such as functions, 
differential operators, integrals, norms, etc. In Section 2.2, we solve the 
spectrum of the discretized - A  by using the finite difference method. 

The existence of global solutions and global attractors are discussed in 
detail in Section 3. In the continuous version, the nonlinear term B(u, u) of 
the Navier-Stokes equations satisfies 

(B(u, v), v) = 0 (1.4) 

for both Dirichlet and periodic boundary conditions, which is extremely 
important for the global existence of solutions and for the study of the 
dimensions of the attractors, and 

(B(u, u), -Au) = 0 (1 .5 )  

for the periodic boundary condition only, which is used to improve the 
estimate of Hausdorff and fractal dimensions of the attractors. Yet for 
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directly discretizing B(u, u) of the continuous version by using the finite 
difference method, we have neither (1.4) not (1.5), due to the lack of a 
"product rule" for finite differences. For this reason, we make a "shift" of 
B(u, u) so that the discretized version of (1.4) is true, which enables us to 
prove the global existence of the solutions of our discretized Navier-Stokes 
equations. Throughout this paper, we actually work on the "shifted" 
version of the discretized Navier-Stokes equations. We prove in Section 3 
that the solutions have discretized L2-absorbing properties, which implies 
the existence of attractors in the discretized L 2 sense. In the continuous 
version, since the spaces are of infinite dimension, both L 2- and H 1- 
absorbing properties are necessary to obtain the existence of L2-attractors. 
In our finite dimensional discretized version, we need only the discretized 
LZ-absorbing property to obtain the global attractors in the discretized 
L2-norm. 

In Section 4 we give upper bounds for the Hausdorff and fractal 
dimensions of the discretized L2-attractors. In Section 4.1, different versions 
of discretized Sobolev embedding inequalities are developed, which are 
used to study the dimensions. In Section 4.2, we prove the discretized 
version (in the sense of finite difference method) of the Lieb-Thirring 
inequality, the continuous version of which improves the bounds of 
Hausdorff and fractal dimensions of the attractors from exponential in G to 
polynomial in G [ G  is as in (1.3)]. In Section 4.3, we obtain a bound of 
the Hausdorff dimension 

D' <~ c'G' (1.6) 

where G' is the discretized analogue of G in (1.3). This corresponds to 
(1.2), the estimate for the continuous version in the case of the Dirichlet 
boundary conditions. Due to lack of the discretized version of (1.5), we do 
not have (1.1) in the discretized version. However, our bounds for the 
discretized version are very close to those for the continuous version, and 
more importantly, there is limit of the mesh size beyond which the finer 
discretization does not give more valuable information of the dynamics. 

In other words, by taking formal finite difference discretization for the 
2-D incompressible Navier-Stokes equations, with a modification of the 
nonlinear term, we obtain attractors similar to those of the classical 
Navier-Stokes equations. Improving the mesh size does not change the 
estimate for the dimensions of these attractors. 

We also prove the existence of the discretized Ha-attractors in the 
Appendix. We study the discrete 2-D Fourier transform in Section A.1, and 
we prove a discretized interpolation inequality in Sections A.1 and A.2, 
which plays an important role for discretized HI-absorbing property. The 
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discretized HI-attractors are proved in Section A.3. In Section A.4, a 
simplified proof of the results discussed in the Appendix is given. 

It is worth pointing out that the discretized L2-attractor and the 
discretized HI-attractor are geometrically the same. 

2. PRELIMINARIES 

Consider the 2-D incompressible Navier-Stokes equations, 

div U = 0 

fa U dx=O 

where 

(2.1) 

s = (0, 1) x (0, 1), U(x, t) = (U~(x, t), U2(x, t)): s x (0, 1) -~ R 2, 
P(x, t): O x (0, 1)--. R, f e  LZ(f2) 2, v>0 ,  and N ( - A )  = H2p~r(s 2. 

Note that in (2.1) the unknowns are U(x,t)ER 2 and P(x, t )eR,  
which stand for the velocity of the particle and the pressure at the position 
x and at the time t, respectively, p is the density, and v is the kinematic 
viscosity. For details, see, for example, [T3 ]. 

Remark 2.1. We may assume without loss of generality that p = 1. If 
this is the case, Eq. (2.1) is called the nondimensionalform of the Navier- 
Stokes equation. Throughout this paper, we always assume that p = 1. [3 

In this section, we first discretize the spatial variables of (2.1) and 
differential operators by using the finite difference method. Then we study 
the preliminary properties of the discretized - 3  and various norms in R k. 

2.1. Discretization for the Navier-Stokes Equations 

Let rn sN ,  h= 1/m. We approximate a function U(x)=(Ul(xl,x2), 
U2(Xl,  x2)):  O --+R 2 by U=Uk, o: 

uk'o=Uk(ih'jh)=Uk m' ( k = l ,  2, l<.i,j<~m) (2.2) 

For a fixed k, we can think of Uk,... as a matrix of size m x m or a vector 
in R m2. 

For convenience, we reorder the subscripts of components of any 
v ~ R m2 row by row: 

V=(Vll,V12,' ' ' ,Vl,, ,V2t, V22,' ' ' ,V2m,'' ' ,V,~l,Vm2,' ' ' ,Vmm) 'r (2.3) 
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where "tr" is the transpose operation for matrixes, so that v is a column 
vector. 

To distinguish such an ordering from that of vectors in the 2-D 
Euclidean spaces, we define 

M = {v ~ Rm=[ subscripts of components of v are 
ordered as in (2.3)} (2.4) 

Remark 2.2. The only difference between M and R m2 is the order of 
subscripts of components. Elements in M can be treated as vectors in R m2. 
Globally, M has the induced linear structure, inner product, and so forth. 
An element v s M h  can be treated as an approximation of a function 
V: t2 - .  R as shown in (2.2), in which the subscript (i, j )  corresponds to the 
space position ( ih, jh ). 

Remark 2.3. Since we consider periodic boundary conditions only, 
we extend the indexes of any v ~ M by periodicity: 

Vij=V(imod+ m), (jmod+ m) (i, j +  Z) (2,5) 

where 

m 
k m o d + m =  k m o d m  

if k is a multiple of m 
0 (2.6) 

otherwise 

We define the operators D1, D2, A, DIV, and D as the finite difference 
discretizations of 0/3Xl, O/~x2, -A,  div, and V of the continuous version as 
follows. 

For any z ~ M, we denote by z~(1 ~ i, j ~< m) the (i, j)-th component of 
z, whose order of subscripts is given by (2.3). Then, for v ~ M, we define the 
linear operators D1, D2, A:  M --+ M by 

(Olv)ij=m(vo,-vi_l.j) (l ~i,j<~m) (2.7) 

(D=v)o=m(vij-vi, j_l) (1 <~i,j<~m) (2.8) 

and 

(Ao)o.=m2(4vo.-Vi+l,j-vi_l,j-vi, j+l-Vi, j_l) (1 <~i,j<~m) (2.9) 

We define the linear operator DIV: M • M--+ M for any w = (%,  w2)tr~ 
M •  by 

DIVw=DlwI +D=w 2 (l <~i,j<~m) (2.10) 

865/4/2-4 
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and we define the linear operator  D: M --* M x M for any v e M by 

D v = ( D x v ~  (2.11) 
\ D 2 v /  

Remark  2.4. Equat ions  (2.7)-(2.11) define the operators  D1, D2, A, 
DIV,  and D in components .  By (2.3) and Remark  2.2, any v e M  can still 
be considered as a usual vector in R m2. So the above operators can be 
expressed as matrixes under  the natural  basis of M. D 

Without  any confusion, we use the same symbol for a linear operator  
as well as its matrix representation�9 Then D~, D2, A, are matrixes of size 
m 2 x  m 2, which are given as follows. (di~ 

0 1  = m dl - ' -  
�9 . . .  " 

0 " " " dl m 2 x m 2 

(2.12) 

here D1 is expressed by m x m blocks of size m x m, the blocks on the main 
diagonal  are all dl ,  all other  blocks are 0, where, in (2.12), dl is a block 
of size m x m given by (0 ....... 

- 1  1 . . . . . .  

d I = " " ". " ' .  " (2.13) 

" " " , 1 

0 . . . . . . .  1 1 m x m  

where the entries of d I on the main diagonal  are all 1, the entries on the 
diagonal  below the main diagonal  and the entry in the upper-right corner 
are - 1 ,  and 0 elsewhere; (i0 . . . . . . .  i 

- I  I . . . . . .  

D 2 = m  �9 . . .  . . .  

�9 � 9  I 

0 . . . . . . .  I I m 2 x m 2 

(2.14) 

where I is the unit matrix of  size m x m; here D 2 is expressed by rn x m 
blocks of size m x m, the blocks of  D2 on the main diagonal  are a l l / ,  the 
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blocks on the diagonal below the main diagonal and the block in the 
upper-right corner are - / ,  and 0 blocks elsewhere; 

a - - I  0 . . . . . . . . .  

I a - - I  . . . . . . . . .  

- - I  a " ' .  

= m Z  ' � 9  a - ]  A . . . " , . " , , 

O . . . . . . . . . .  I a 

I . . . . . . . . .  0 - I  

- I ~  

0 

0 

- I  
a 

m 2 • m 2 

(2.15) 

Here A is expressed by m x m blocks of size m x m, the blocks on the main 
diagonal are all a, the blocks on the diagonals above and below the main 
diagonal and that in the upper-right and lower-left corners are all - / ,  and 
all other blocks are 0 matrix, where, in (2.15), a is a block of size m x m 
given by 

4 - 1  0 . . . . . . . . . .  1 ~ 

- 1  4 - 1  0 

0 - 1  4 
a =  " �9 � 9  

4 - 1  0 

0 - 1  4 - 1  

- 1  0 - 1  4 ]  
/ 

(2.16) 

where the entries on the main diagonal are all 4, the entries on the 
diagonals above and below the main diagonal are all - 1 ,  the entries in the 
upper-right and lower-left corners are - 1 ,  and all other entries are 0. 

DIV is a matrix of size m 2 x 2m 2, which is defined by 

D I V =  (D 1 De) (2.17) 

D is a matrix of size 2m2x m 2, which is defined by 

( D ~ )  (2.18) 
D =  D2 

where (2.18) is understood as 

Dlv'] 
Dv = \ D 2 v ]  ( V v e M )  (2.19) 
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As an easy consequence of the definitions of A and D, one can check 
that 

D'rD = A (2.20) 

Now we turn to the discretization of the Navier-Stokes equations 
(2.1). We consider diseretizations in M x M. If we treat any v e M x M as 
a step function approximating a function V: O--+ R 2 as in (2.2), then the 
integral of V over O is naturally discretized by 

fQ V dx--  - ~  " 1 vl,o ~ R  2 (2.21) 

i , j = l  

Hence we define the average of v e M x M by 

1 k ( e )  1 k (Oe) = ~-7 v*'e 0 + ~ v2'iJ e M x M (2.22) 
i,j=l i,j=l 

where e =  (1, 1,..., l ) t reM.  
We define the weighted norm I]" )1o in M x M by 

[[V[io = 1 ~ [vk, o 2 (2.23) 
k = l  i , j = l  

for any v E M x M, which corresponds to the discretized L2-norm. 
Similarly, we define the weighted norm ]J. JJo in M by 

i , j = l  

for any w e M. 
As indicated in (2.2), we sample the function U: I2 - ~  R 2 by 

(2.24) 

u=uk, o (k=  1, 2, l<.i , j<~m) 

and similarly we sample the other unknown P: Q--+ R by 

(2.25) 

P=P~i (l<<.i,j<~m) 

Finally, we sample the known function f :  ~ --+ R 2 by 

(2.26) 

F =/'k.~j (k=  1, 2, l<~i,j<~m) (2.27) 
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To characterize the fact that f e  L 2 ( ~ 2 )  2 in the continuous version (2.1), we 
make the following hypothesis 

1 ~ ~ 
rlr l l  o2 = ~ f , , , , j  i ~ ~< C 2 (H) 

k = l  i , j = l  

where C is a constant independent of m. 

Remark 2.5. The hypothesis (H) indicates that the discretized 
L2-norm of F is uniformly bounded with respect to m. D 

as 
With the above definitions, we rewrite the discretized version of (2.1) 

{ ~ t + ( u ' D )  

DIVu = 0 

~ = 0  

u+ vAu+ D p = F  
(2.28) 

u = . ( t ) =  \u2(t) j E M • M, uk(t) = (Uk, ij(t)) ~ M (k : 1, 2), where 

p=(pi / ( t ) )EM, F =  (Fk,+/)~M xM,  and 

(u D). (U,Dl +.2V2)u=( �9 = e M x M  (2.29) 
\Ul Di u2 + u2Deu2/ 

A u = ( A u l ~ e M x M  (2.30) 
\Au2J 

DIVu = D lu~ + D2 u2 ~ M (2.31 ) 

and ~7 is the average of u defined as in (2.22). 
Before we start to study the discretized Navier-Stokes equation (2.28), 

we define some more metric structures in M. 
In M, define the first-order difference seminorm I" r l by 

Ivl, = IlDvllo = ( l%-ve_l , j l2+ Iv,j- vi, j_ iI 2) (2.32) 
i, = 1 

the second-order difference semi norm I" 12 by 

Ivl2=llAvllo=(m 2 ~ (4vi j -vi+14-vi_l ,s-ve,  j+l -v i ,  i_l)2) u2 (2.33) 
i , j = i  

and the max norm I1" 11 co by 

Ilvll~= max IvuI (2,34) 
1 ~i , j<~m 
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For any v = vo, w = w~ �9 M, the usual Euclidean inner product (., �9 ) is 

w e M ,  

(Dr, Dw)= (v, Aw) = (Av, w), 

and 

Remark 2.6. 

(Dr, Dw) = (v, Aw)  = (Av, w) (2.38) 

IIDvll~ = <Dr, Dr)  = (v, Av) (2.39) 

Equations (2.32)-(2.39) can be standardly extended to 
the product space as in (2.23), i.e., for v, w e M x M .  

2.2. Eigenvalues of A 

To study the dynamical behaviors of (2.28), we study the eigenvalues 
of the linear operator A: M --* M as in (2.9), or, equivalently, of the matrix 
A of size m 2 • m 2 as in (2.15). 

Lemma 2.1. A is a symmetric matrix, so it can be diagonalized. 0 is an 
eigenvalue of A with the corresponding eigenvector 

e = (eij) �9 M, where e U = 1 (1 <~ i, j <~ m) (2.40) 

Proof. It is a direct consequence of (2.15) and (2.16). [q 

In I-Y], the eigenvalues of discretized one-dimensional - A  are solved. 
By separating variables, we can also find the eigenvalues of the discretized 
high-dimensional - A. 

given by 

(v, w)= ~ vijwij (2.35) 
i , j= l  

We define the weighted inner product ( . ,  �9 ) in M by 

1 1 
(v, w) = - ~  (v, w ) = - ~  ~ vijw o. (2.36) 

i , j=l  

If v and w are interpreted as approximations of V, W: 12 ~ R, then (v, w)  
can be interpreted as the discretized inner product in LZ(g'2), i.e., 

I V W d x -  (v, w) (2.37) 

We can rewrite (2.20) in terms of inner products. We have, for v, 
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Lemma 2.2. For any 0 <<. k, 1 <~ m - 1 and 1 <<. i, j ~ m, define 

if  k=O 

g(k; i )= sin .i if l~<k~< 

~ c o s ( 2 ( m m k ) n . i  ) i f  I 2 j + l  ~ < k ~ < m - t  

(2.41) 

where L s] is the largest integer not greater than s, and define e(k, l) ~ M by 

e(k, l)~j = g(k; i) . g(l; j )  (2.42) 

Then for 0 <~ k, l <<. m - 1, we have 

Ae(k' l )=4m2 (sin2 kn+ sin2 l~) e(k' (2.43) 

Proofi First we see that for all 0 ~< k, l ~< m - 1, 

e(k, l)ij = e(k, l)(imoa + m), (jrnoa+ m) (Vi, j ~ Z) 

Hence we can use (i, j )  in (2.42) as their natural indexes for e( . , . ) .  The 
definition of e(k, l) obeys (2.5). 

We consider the case 1 ~< k, l ~< Lm/2] only. In other cases, the lemma 
can be proved similarly. 

Denote by e=2kn /m and fl=2lTc/m. Then by (2.9), for any 1 ~<k, 
l<~m-1 ,  

1 
m--- i Ae(k, l)ij = 4 sin ic~ sin jfl - sin(i + 1 ) ~ sin jfi - s in ( i -  1 ) cr sin jfl 

- s i n  i• s in ( j+  1 ) /~ -  sin i~ s i n ( j -  1) fl 

= 4 (sin 2 

= 4 (sin 2 

+ sin 2 sin ic~ sin jfl 

kn+ sin2 ~ )  e(k' 

Therefore (2.43) is true in 

Combining Lemmas 
about the eigenvalues and 

the case 1 <~ k, l <<. L m/2 ]. 

2.1 and 2.2, we obtain complete 
eigenvectors of A. 

information 
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Theorem 2.1. 
and (2.41), and the corresponding eigenvalues are 

'~(k'l)=4m2(sin2krC+sin2l~)m 

Corollary 2.2. Denote by 

e= = {v~MI (v, e )  = 0 =  (v, e)} 

where e ~ M is as in (2.40). Then 

Av=O (Vv ~ span{e}) 

and if m >~ 2, we have 

The eigenvectors of A are given by e(k, I) as in (2.42) 

(k, l = 0 ,  1, 2 ..... m - l ) .  D 

(2.44) 

(2.45) 

( a v ,  v ~ : II Dv I[ o 2 >/4m2 sin2 rc LI v LI o 2 >~ 16 [I v II 2 
m 

(Vv s e ' )  (2.46) 

Proof. Since sin x/x is decreasing on (0,~/2), we know that 
4m 2 sinZ(rc/m) ~> 16. 

Remark 2.7. Note that A is the discretization of - A  on the square 
f2 = (0, 1)2 with periodic boundary condition, In this section we found all 
eigenvalues and eigenvectors of A. We can discretize - A  on any cube 
1--[7= 1 (ai, bl) of any size and of any dimension n, with periodic boundary 
condition in a similar way. Following the arguments in this section, we can 
also find the eigenvalues and eigenvectors of discretized n-dimensional - A. 
Furthermore, our arguments can also be used to find the eigenvalues and 
eigenvectors of the discretized - A  (of any dimension n) with Dirichlet 
boundary condition. [q 

3. GLOBAL EXISTENCE AND GLOBAL ATTRACTORS 

Consider the discretized Navier-Stokes equation given in Section 2 
[see (2.28)]: 

{~t 
+ (u'D) u+ v~lu+ Dp= V 

DIVu = 0 (3.1) 

f i = 0  

where u ~ M x M and p e M are unknowns, and F e M x M is fixed and 
satisfies (H). 
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To study the discretized Navier-Stokes equation, this setting has some 
technical problems. In this section, we first modify our discretized model 
(3.1) so that the new model is essentially the same as the original one 
(in an infinitesimal sense). Then we prove that the weighted norm of the 
solution of our new model is bounded, which implies the global existence 
of solutions and the existence of the [[.[[0-attractors. We prove in the 
Appendix that the first-order difference seminorm of the solution also has 
the absorbing property, which implies the existence of the I[' Ill-attractors. 

3.1. Shifted Version of the Discretized Navier-Stokes Equations 

Let us first define some shifting operators in M and M x M. 
Define z l: M ~ M by 

('clv)O=vi_l, ] (l <~i,j~m) 

and "c2: M--* M by 

(z2v)0 = vi,/_ 1 (l<~i,j<~m) 

for v e Mh, and define z: M x M ~ M x M by 

~CW = Z" = w2 \z2w2/ 

for w=(Wl~MxM.  
\wu 

The operators ~1, T2, and r have inverses given by 

(z~lv)o.=vi+l,: (l <~i,j<~m) 

(zSlv)ij=vi./+l (l <~i,j<~rn) 
and 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

-lw='c-a (wl)-(zalwl~ (3.7) 
w2 - \~;lw2] 

With the above definitions, we can compose, associate, and commute 
linear operators in the standard way: 

%(Dkv) = (zlDk) v = (Dkrl) v = Dk(z+v) (k, l =  1, 2, Vv ~ M) 

We also use the following composition and commutation of linear 
operators: 

(.c-ID) v=(D.c-1)v :DI"Cl- 1"~ v = (D~ TI-Iv ~ 
=\D=~21 ] \D2z[lv] (VvsM)  (3.8) 
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and for any w e M x M, we define 

(("(W)" D ) W = (  [-('cl W1) O1 .3/-(,~2W2 ) DE ] W1 ~ ~M x M 
[(271Wl) D1 + (z2w2) D2] w 2 /  

//[0)1(O12711) "~- w2(O2272 1)] Wl~ E M X M 
( w .  (D27-1)) w = ~ [ w l ( n l , r l l  ) + w2(n:27~_l) ] w2 / 

(3.9) 

In all of the above definitions, indexes are always treated periodically 
as in (2.5). The shifted model for (3.1) is defined by 

f 
clu 1 -~+~ ((27u). 

DIVu -= 0 

f i=0  

D +  u.  (D'c- 1)) u-t- v A u q -  (D27 -1 )  p =  F 

(3.10) 

where u e M x M and p e M are unknowns, and F s  M x M is fixed and 
satisfies (H). 

Remark 3.1. If we recall approximation (2.2), then modification 
(3.10) is the same as (3.1) in an infinitesimal sense. D 

One of the advantages of such a modification is stated in Lemma 2.4. 

Lemma 3.1. For  any  v, w ~ M, we have 

D k ( v w )  = ( O k v )  w + (27kv)(Dw) 

Proof. 

( k =  1, 2) (3 .11)  

(Dx(vw) )~ = rn(vo w, : -  v,_ 1,:wi_ 1,:) 

= rn(v U - v i_  1,j) wij + m v i _  1,:(wij - w i _  1,j) 

= [(Dlv)  w + (ZlV)(D1w)] O 

This proves (3.1 1) for k = 1. The case k = 2 can be proved similarly. 

Lemma 3.2. 

Proof. 
in (2.5). D 

For  any  v ~ M, we have 

D k v  • = 0 (k = 1, 2) (3 .12)  
i , j= 1 

This is true because the indexes are treated periodically as 
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Lemma 3.3. 
have 

ProoL 

By (3.11), 

289 

For any v ~ M •  with DIVv=0  and any w s M ,  we 

(Dz- lw,  v ) = ~ ( D ~  lw, v)=O (3.13) 

1 ~ ~ ((Dkz~lw) vk)O. (Dz- lw,  v) =~-i  ~=I /.j=l 

(Ok ~klw) V k = Dk(VZIWVk) - -  'lTk(Tk lw) Dkvk = Dk(V ~ lWVk) -- wDkVk 

Hence 

(DT lw, v} = - ~  (Dk(z[lwv~))ij 
k = l  i , j = l  

m 2  i , j = l  k = l  / / 0"  

1 ~ ~ o~(~-'wv~)=o 
m2 k = l  i , j = l  

By (3.12), 

Moreover, since DIVv = 0, then 

m-- 5 w D~ V k = -~ (wDIVv)i j = 0 
i , j = l  =1 i , j = l  

Therefore, 

This completes the proof. 

and 

(Dr- lw,  v)  = 0 

Now we turn to the nonlinear term of (3.10). 
Denote, for every u, v, w ~ M • M, by 

B(u, v)= ((zu) . O + u. (Dr-l))  v (3.14) 

b(u, v, w)= (B(u, v), w) (3.15) 
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L e m m a  3.4. For any u, v e M ,  i f  u satisfies D I V  = 0, then 

b(u, v, v) = 0 

Proof. By (3.12), 

But by (3.11), 

m2 i , ]=  [ k , t=  l 
(Dk(UkVlVl)), j = 0 

Dk(ukVtVt) = D~,u k v,vl  + ('CkUk) Dk(VzVz) 
k , ,=,  =1 ~ ,=1 ~ k . = ,  

Since DIYu = ~ 2  = a D k u k  = 0, we have 

m2 ( (ZkUk) Dk(VtVt) )i~ = 0 
i , j = l  k , l = l  

Together with (3 . l l ) ,  we have 

2 

nz2 i , j ~ l  k , l = l  

i , ] ~ t  k , l ~ l  

2 

ol 2 
i , j ~ l  l=1  

m2 u2, i , j -  l vt, i , j -  l (D2v t ) i j  
i , j = l  l = 1  

m 2 ~ Y', u l , : l , u ( D l v 3 ~ + l , j  
i , j = l  l=1  

1 rn 2 

-mY u2,ov,,o(D:,),,,+l 
i , j = l  / = 1  

2 

_ 1 ~ ~'. (ukv,(Dh'c'~'v,)) i j  
012 

i , j = l  k , l = l  

or 

( ( (~u)  �9 D + u. (DT-  ~)) v, v ) = 0 

This proves the Lemma. 
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3.2. Global Existence and Global IF'll o -Attractors 

Recall (3.10), 

I - - ~ + ~ ( ( z u ) . D + u . ( D z  1 ) ) u + v A u + ( D z - 1 )  p = F  

}DIVu = 0 

( ~ = 0  

where u ~ M • M and p e M are unknowns, and F e  M • M is fixed and 
satisfies (H). 

The last two equations of (3.10) can be absorbed in the space expres- 
sion of M x M. To do so, we define two subspaces V and W of M x M: 

and 

V =  ( v e M x M [ D I V v = 0 }  (3.16) 

W =  { v e V l f = 0 }  (3.17) 

where ~ is the average of v defined as in (2.22). 
Note that we have the inclusion relation W c V c M x M. Note also 

that we have the dimensions d i m ( M x M ) = 2 m  2, d im(V)=m 2, and 
dim(W) = m R - 2. 

Lemma 3.5. 11"[Iv, 11"11o, ['11, and 1"12 are norms on W. 

Proof.  This can be verified from the definitions (2.34), (2.23), (2.32), 
(2.33) together with remark 2.6, and the nondegeneracy property of A 
shown in (2.46). 

Lemma 3.6. The operators A and D defined by (2.9) and (2.11) com- 
mute, i.e., 

DiA = ADi (i = 1, 2) (3.18) 

Proof.  One can check (3.18) by considering expressions (Z9) and 
(2.11) or their matrix forms (2.15) and (2.18). Iq 

Corollary 3.1. V and W are invariant subspaces of A. D 

Let 

P : M x M ~ W  (3.19) 

be the orthogonal projection with respect to the inner product ( - , . >  
defined in (2.36) and remark 2.6. 
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By applying P to the first equation in (3.10), we obtain 

dPu 1 
dt ~-~ PB(u, u) + vPAu + P(Dz-1) p =  PF (3.20) 

where B(u, u) is as in (3.14). 
By Corollary 3.1, we have PA = A P = A  on W. By Lemma 3.3, we 

have P(DT-~) p = 0. Since u satisfies the last two equations in (3.10), which 
is equivalent to the fact that u ~ W, we have Pu = u. Hence (3.20) yields 

du 1 
--~+~PB(u, u ) + v A u = P F  ( u = u ( t ) e W )  (3.21) 

If we take into account the initial data, we obtain 

-~ + -~ PB(u, u) + vAu = PF (u = u(t) ~ W) (3.22) 

u ( 0 )  = u (~ ~ W 

Remark 3.2. In solving for u, (3.22) is equivalent to the initial value 
problem of (3.10). In the former case, we ignore the term p. 

Note that W is an (m 2 -  2)-dimensional subspace of M x M and the 
first equation of (3.22) is also of dimension (m 2 -  2). Furthermore, since 
PB(u, u) and Au can be expressed as (quadratic and linear) polynomials of 
u, it is certainly Lipschitz continuous with respect to u. So we can solve for 
u = u ( t ) e W  on some interval t e [ 0 ,  T) with u ( 0 ) = u  (~ This is sum- 
marized as 

Theorem 3.1. For any u (~  there is a unique u=u( t )  e W  
satisfying (3.10) and/or (3.22) on t ~ [0, T) with u(0) = u (~ D 

The main purpose of this section is to show global existence for 
solutions of (3.10). We consider only for u =  u ( t ) e W .  

To show the global existence, we prove an a priori estimate of the 
weighted norm II" [I o of u = u(t) on the existence interval. 

Theorem 3.2. There exists a constant 

C 
P0 = 16v 

which is independent of  m, where C is as in (H) and v>O is as in (3.22), 
such that for any constants P'o > Po and Ro > 0 independent of  m, there exists 
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a constant T O > 0 independent of  m, such that as long as the initial data 
u ~~ ~ W satisfies 

then 

Proof .  

tlu(~ ~< Ro 

Nu(t)[Io ~ p6 (u ~> To) (3.23) 

By taking the inner product ( -, �9 ) o f  u and (3.21), we have 

l d  1 
ds Ifufl~ +2 (eB(u, u), u) + v(Au, u) = ( e r ,  u) (3.24) 

Since u e W, then u=Pu ,  so 

By Lemma 3.4, 

( PB(u, u), u )  = ( B(u, u), u )  = b(u, u, u) 

(PB(u,  u), u )  = 0 

so Lemma 3.4 yields 

l d  
2 dt 

Since u ~ W, by (2.46), 

- - l lul lg  + v(Au, u> = ( e r ,  u) 

(Au, u> >i ~6 llull~o 

Then (3.25) yields 

l d  
2 dt Ilull~ + 16v [lul/~ ~< (PF ,  u )  ~< [IPFllo ]lUllo ~<~2v II/'l[~ + 8v IlulJ2o 

By combining this with (H), we have 

d el6vt) C 2 
at (l[ulJ ~ "~'/16re 16v, 

Integrating from 0 to t, we obtain 

C 2 
ilu(t)[loZ< ,,z --16vt-- (1 - - e  -16vt) ~Xoe - t - ~  

(3.25) 

(3.26) 
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Choosing po=C/16v and To=l /8v logRo/ (p~2-p2) ,  we complete the 
proof of the Theorem. [3 

Remark 3.3. The absorbing constant Po (of IL'llo-norm) tends to 0 as 
C Ethe uniform bound of IIFllo as in (H)] tends to 0. [1 

Remark 3.4. Theorem 3.2 shows that if p~ > Po is arbitrarily chosen, 
then for any initial data u<~ the solution u=u( t )  to (3.22) [-or 
equivalently, (3.10)] has the property [lu(t)tlo ~< p~) for t large enough. This 
is the same as to say that 

limsup Ilu(t)[[o<~Po (Vu<~ [3 (3.27) 
t --~ c ~  

Since 

luk,~(t)l<<.m21[u(t)llo (k=  1, 2, l<~i,j<~m) 

we know that 

l imsupluk, ij(t)[<<,m2po<~ (k=  1, 2, l<~i,j<~m) 
1 ~ o 0  

That is to say, u=u(t) ,  the solution to (3.22) [or equivalently, (3.10)] 
does not blow up in finite time. So we have proved the following global 
existence. 

Theorem 3.3. For any initial data u ~~ ~ W, the solution, u = u(t) ~ W, 
to (3.22) [or equivalently, (3.10)] exists for tE [0, + ~ ) .  [3 

As an immediate consequence of Theorems 3.2 and 3.3, we have the 
following theorem. 

Theorem 3.4. The solution, u = u(t) ~ W, to (3.22) [or equivalently, 
(3.10)] has a global attractor d = dm in W in the norm [l'l[o. I1 

4. D I S C R E T I Z E D  I N E Q U A L I T I E S  A N D  THE D I M E N S I O N S  OF 
THE ATTRACTORS 

In this section, we first prove a discretized Sobolev embedding 
inequality. Then we prove the discretized Lieb-Thirring inequality, which 
plays an important role in proving the exponential decay of the wedge 
product of the solutions of the linearized equation of (3.10). Finally, from 
the exponential decay property, we infer an estimate of the Hausdorff 
dimension of the attractor obtained in Theorem A.3. 
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4.1. Discretized Sobolev Embedding Inequalities 

It is well-known that if kp = n and f2 c R n is bounded and satisfies the 
cone property, then the continuous embedding 

wk'p(o)~tq(ff2) (Vq~ [1, ~ ) )  (4.1) 

is true (see, e.g., [A]).  
In this section we prove a special case of (4.1) (k = 1, p = 2, n = 2, and 

E2 = (0, 1) 2) in the discretized version. 
Recall that functions in M are our "discretized" functions. We tem- 

porarily define the following norms in M for any p, p E [1, or): 

IVlq= ~ i , j = t  

II) 1 1,p = - ~  i , j= l 

= - ' ~  i , j = l  

The following lemma is 
embedding. 

\ l/q 

l V/j] q) (4.2) 

\ ~/p 
(Iv/JIP + I(Dv)/JIP)) 

\ Vp 
(Iv,jlp + I(Dlv)/JIP+ I(D2v)/jIP)) (4.3) 

the key point of the discretized Sobolev 

Lemma 4.1. I f  1 <~ p < 2 and q = 2p/(2 - p), then there is a constant 

Kl=Kl(p)=2(p+l)/p.3(p-1)/p.3(p 1)/p. P 
2 - - p  

independent of  m such that 

IV[q~Ka Ivll, p 

Proof. Let y = 1)/(2 - p). Then 
7/>1. 

For  i >~ m/2, 

(Vv ~ M) 

7 - 1 = 2 . [ ( p - 1 ) / ( 2 - p ) ] > O ,  or, 

hence 

i - 1  

Ivol ~= Ivljl~ + ~ (IVk+l,jl ~ -  Jvkjl ~) 
k = l  

1 

m i = [-m/2q 

1 izl 
Iv/jl~=~ ~- Ivljl~+ (Ivk+l,il~--]vkjl ~) 

m i =  /2q k =  1 

865/4/2-5 
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So 

I%l' 

1 iv,y[~_l Z ([Vk§ 7) 
m i=Fm/2 7 m i=Frn/2] k = l  

~<-- Iv01'+ ~" ( m - i ) I l v i + l , j l ' - l v , j l ' l  
m /=1  m i = l  

By the mean value theorem, for any a, b>~0, there is a 0e (0, 1) such that 
la~ - b'L -- 7( Oa + (1 - O ) b ) ' -  ~ la - b[ <~ 7( a ~- ' + b ' -1 )  [ a - h i  

SO 

~lvul'~< [v~l'+Z ~ (IVi+l,jl'-l+lvO.le-l) l(Dav)i+l,jl (4.4) 
i = l  m i = 1  

Note that the right-hand side of (4.4) is independent of the first index 
of v, and the indexes of v are arranged periodically as in (2.5). Thus we can 
replace the index "1" on the left-hand side of (4.4) by any index "i." Hence 
we have 

max [vol'~<2 ~ i v o l r + ~  ~ ([vi+a.jl,_l+ ivij[,-l)[(Dv)e+l,j[ 
l<~i<~m i=1  i=1  

By taking the sum over the index j, we have 

1 ~ (max  Iv~l')~< 2 ~ Iv01' 
m j =  1 l<<.i<~m m 2  i , j = l  

27 +~--~ (Iv,.,~.jl'-I + Iv~l '-~) I(av)i+l,j[ 
i , j = l  

By applying H61der's inequality, we have 

1 ~ (max Iv/j[ ~) 
m j= 1 l<~i<~m 

( 1 ~ (iuij.,p_l_2,(Dtt))i+l,j[p)) 1/p 
<~ 2 y  -'~ i,j= l 

. --~ ([vo.l(~-l)p'+lvi+l,jl(~'-l)p'+lv~l (w-1)p) 
i , j=  1 

1 ~ (ivglp + i(Dv)i+~,jlp 

�9 ( 5  i , j = l  
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Note that p ' = p / ( p -  1) and Y-  1= [ 2 ( p -  1) ] / (2-p) ,  so ( 7 -  1 ) p ' =  
[2p/ (2-p) ]  = q. Hence 

1 m 
( m a x  Ivij]7)~2(p+l)/p.3 (p-1)/p .y .  ivll, p. ]Vl~ - 1  

m j = l  l<~i<~m 

By the same procedure, we can prove 

. . . .  1 ~ ( m a x  Ivijlr)<~2 (p+I)/p 3(P-1)/P]: [vll,p-lv[qV-1 
m i=1  l<~j<~m 

Hence, since q = [2p/(2-  p)] = 27, we have 

1 ~ (ivulr)2 I v l q = ~  
i , j = l  

' i  
~<~-7 (max ]Vij[Y)'( m a x  [v~l ~) 

i , j = l  l<~i<~m l<~j<~m 

= ( 1  ~ (max  [vejl~))-( 1 ~ (max [vijl~)) 
i = l  l<~j<~m j = l  l<~i<~m 

<~ 22(p+ l)/p "32(p-1) /P '~  )2 �9 Iv121,p" Ivl~ (~-1) 

If IVlq = 0 then v = 0, so the lemma is trivial in this case. Otherwise we have 

Ivl ~- 2(~- 1) ~ 22(P+ 1)/p. 32(P - 1)/p~ 2 Ivl ff, p 

But q -  2 (y -  1 ) = q - 2 q / p '  = 2 p / 2 - p .  (1 - 2 ( p -  1)/p) = 2. Therefore 

[Vlq~ 2(p+I)/p'3(p-1)/p" P ,Ivll,p 
2 - p  

This proves the lemma with K1 = 2 (p+ ~)/P. 3 (p- 1)/p. [ p / ( 2 - p ) ] .  [] 

With the lemma above, we can prove the following discretized 
embedding Theorem. 

Theorem 4.1. For any q ~ [ 1, oo), the following embedding 

(M, 1"1~.2)~ (M, I']q) 

is true. In other words, there exists a constant K2 independent of  m such that 

IVlq<~g2 Ivl,,2 (Vv ~ M )  

Proof. If q~<2, by H61der's inequality, [V[q<~lv[2. Hence we need 
only to prove the Lemma for q t> 2. 
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Assume q >~ 2, and take s = 2q/(2 + q), then we have 1 ~< s < 2. Apply 
H61der's inequality again, 

1 ~. (Iv~l s+l(Dv)01 s) Ivl~,~=m--~ 

i , j ~ l  

1 2/(2 -- s))  �9 ~-~ (12/r 
i , j =  1 

= 2r Ivl'i,2 

Since q= 2s/(2- s), by Lemma 4.1, IVlq<~K1 IVll,s. Hence 

Now take 

IVlq ~ 2(2-s)/S2Kl Ivl ~.= 

_~2(2q2+3q+2)/qZ.3(q-2)/2q.q if q~>2 

K 2 -  ~32 if l~<q<2 

which completes the proof. D 

Corollary 4.1. For any q e l l ,  ~) ,  there 
K 2 independent of m such that 

Ivl~<K3 Ilvll~ (We W) 

Proof. By Corollary 2.2, 

is a constant K~-_ 

1v[~2=~-52, ~ Ivg[2+ 1-~ ~ ](Dv)ol2<<. 17]~llvll~ 
i , j  = 1 i , j =  1 

Hence by Theorem 4.1, 

IVlq ~ K2 Ivll, z~---~ Kz Ilvllx B 

We are particularly interested in the norm 1"14 in M or W. By 
Corollary 4.1, we have the embedding inequality Iv14 ~ K3 Itvlll (Vv e W). 
We prove the following discretized interpolation inequality, which is a 
special case of the discretized Lieb-Thirring inequality, and which will be 
used to simplify the proof of the discretized HI-absorbing property of the 
discretized Navier-Stokes equations. 
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Lemma 4.2. 

where K4 = 4. 

Proof. By 
v e M x M ,  

[ u 1 4 ~ g 4  Ilul[ 1/2 Ilull{/2 (Vv~ W )  (4.5) 

Lemma 4.1, with p = l  and q = 2 ,  

[vl2 ~<K~ ]D[ 1,1 

we have, for any 

(4.6) 

where K 1 = 4 .  For  any u e W ,  we define u 2 ~ W  by (U2)k,O.=(Uk, u) 2. Then 
(4,6) yields lu212 ~< K1 l u2[ 1,1, or 

( _ ~  ~ 4 )1/2 
Uk, ij 

k = l  i,j=l 

k = l  i,j=l 
Since 

(IDlu~,u[ + [D2u2,0[)) 

- -  u,, ,jl) rn 2 ( ]DlU2, / /+  IO2 2 
k = l  i,j=l 

-- m 2 (I (D1U)k,//I �9 lUk,/j + uk, i -  1,j[ 
k = l  i,j=l 

+ I(D2u)~,uI �9 lu~,,j + u~,e,s- 11) 

by the Cauchy-Schwarz inequality, 

--m 2 ([D1 uk, o.12 + iD2u~,o.l)<~R~f~" Ilullo �9 Ilullx 
k = l  i,j=l 

Hence, by (4.7), 

2 Uk, zy4 ~<K1 �9 lu12 + 2 v/2 gl ' I l u l l o l l u l [ 1  
k = l  i,j=l 

But u ~ W, so (2.46) gives 

[ul ~ = I[u/I ~ ~< 1.  Ilu[Io-Ilull 1 

Thus, (4.8) gives 

k = l  i,j=l 
1/2 1 + 8  ~/-2K1 "NUl]o " tlU]ll 4 

uk'~ <~ 4 

~< (1 + 8 x//2). NulJ o �9 J[ul] l 

(4.7) 

(4.8) 
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or  

lul4~<#1-4-8 ~/2.  Itull~/2. Ilu11]/2~<4 �9 Ilull~/2- Ilull]/2 [3 

In the continuous case, this is equivalent to 

IfIL4<~C If l  1/2 I f l ~  (Vf �9  HI(12)) 

where 12 c R 2. This is a special case of Nirenberg's inequality, which gives 
flexible indexes of order of differentiation and interpolation (see [N] ,  IF] ,  
and [L1 ]). It is also a special case of the Lieb-Thirring inequality, which 
applies to a family of orthonormal functions (see [L-T],  [T3]). 

4.2. Diseretized Lieb-Thirring Inequality 

Define a norm I1" II in M x M by 

Ilull = ([lull = 2)1/2 1+  Ilull = (llUlll~ + Ilu211~ + Iluall2o + Ilu211o2) xn 

(Vu �9 M x M) (4.9) 

For a fixed g �9 M x M, consider the discretized Schr6dinger-type linear 
operator A + 1 + g: M x M ~ M x M defined by 

((A-k- l-i- g) U)k,o.=(AU)k, ij+ Uk, ij+ gk, qUk, ij ( V u e M x M )  (4.10) 

This operator induces a bilinear form on M x M 

t g ( U ,  I ) )=  <u, (24 + 1 + g) v> 

= ( u , ( A + l ) v > +  1 ~ - ~  gk, ijUk, ijl)k, ij (4.11) 
k = l  i , j=l  

which in turn induces a quadratic form on M • M 

Og(u) = Lg(u, u) (4.12) 

From (4.11), one sees that A +  1 + g  is a symmetric operator on 
M x M, so it has 2m real eigenvalues. The eigenvalues of A + 1 + g can be 
obtained by the rain-max method 

/~j (g) = min 
u(l),...,u(J- lJ e M x M 

with 

max Q~(v) (4.13) 
veMxM 
<v,u(i)> =0 

i=l,. . . , j--1 

# l ( g )  ~ /22 (g )  ~ "'" ~/~2,~(g) (4.14) 
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In this section, we give an estimate (for any ~ > 0) of 

[&(g)l 7 
ltj( g ) "< O 

in terms of g and ~. 
If g, h ~ M • M satisfy g ~< h, i.e., 

gk.o.<-..hk.o (k=  1, 2, l<~i,j<~m) 

then, by (4.13), 

#j(g)<~#j(h) (1 ~j<~2m) 

For g ~ M x M, define g +, g_ e M • M by 

(g+)o = max(g0, 0), 

Then - g _  ~< g yields 

I~j(--g_ ) <~ #j(g) 

(4.15) 

(4.16) 

(4.17) 

For every r~R,  define Nr(g) to be the number of #j(g)~<r (counting 
the multiplicity). 

Lemma 4.3. For any y >~ O, 

f? ]#j(g)]' =7  r ' - l N - r ( g )  dr (4.20) 
/zj(g) < 0 

Proof. Let fl = No(g). Then 

;? 7 r ~- 1N_r(g ) dr 

~,(flq(g)_4_f--~21((g)) ~ : # f l - l ( g ) f : # f l ( g ) )  - + "'" +0  #p(g) + r r - l N _ r ( g  )dr 

(foo ~ f-~l,g) r ~- .Odr r r - l . l d r + . . .  
= Y -re(g) + ~ re(g) 

~-,e-~(g) _, + ~-,e(g) fldr) r r - ( f l - 1 ) d r  ~o rr-1 + ~_ ~,~(g) 

= ~ I&(g)l ~. 0 
,a/(g) < 0 

Hence, in order to estimate (4.15), we need to estimate N_,(g) .  

(1 <~j<~2m) (4.19) 

(g_)~j = max( - g u ,  0) (4.18) 
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Lemma 4.4. I f  g e M x M  satisfies g<~O (i.e., gk./j~<0 for all k, i, 
and j )  but not identically equal to zero (i.e., there are k, i, and j such that 
gk, o < O) and r <<. O, then for any f ixed j with 1 <<.j ~ 2m, #j(xg) is continuous 
and strictly decreasing with respect to to. 

Proof. [ K ]  proved the same result for the continuous version. In the 
discretized version, since the global space is of finite dimension, we can 
prove this Lemma quickly. 

Since #j(xg) is the j th  eigenvalue of the operator A + 1 + g, i.e., &(xg) 
is the j t h  root of the characteristic polynomial fl(A + 1 + xg) of the 
operator A + 1 + xg. But fl(A + 1 + tog) is continuous with respect to ~c, so 
&(tog) is continuous with respect to x. 

By the min-max method (4.13), 

#j(g)  = min max Q~g(V) 
u(l) , . . . ,u(J-l)eMxM v ~ M x M  

<v,u(i)> = 0  
i = 1 , . . . , j -  1 

= min max 
U{I),...,U (j I ) e M •  v e M •  

<v,u(O>=O 
i = l , . . . , j - 1  

<v, (A + 1) v> -4- ~c<v, gv> 

Since ( . ,  (A + 1). > is positive and ( . ,  g. > is nonpositive and not identi- 
cally 0, so &(xg)  is strictly decreasing when x is strictly increasing. 

This proves the lemma. 

Lemma 4.5. With the same assumptions as in Lemma 4.4, Nr(g) is 
equal to the number of  x's in (0, t ]  such that #j(~cg)=r for some j. 

Proof. Consider I~j(xg). 

If ~c = 0, then #j(xg) are the eigenvalues of A + 1 = A + idM • M, which 
are positive since the eigenvalues of A are nonnegative. 

If ~c = 1, then/~j(s:g) are the eigenvalues of A + 1 + g. 
Hence by Lemma 4.4, for any &(g)  ~< r(~<0), we can find one and only 

one tcj~ (0, 1] such that p j ( x j g ) = r .  On the other hand, for any & ( g ) > r  
there is no s:s(0,  1] such that & ( x g ) = r .  This proves the lemma. [3 

For  any r ~ 0, A + 1 - r is a symmetric linear operator, and its eigen- 
values are all positive. Hence the inverse 

(A + 1 - r )  -1 

exists, and its eigenvalues are also positive. 
For  any h e M x M, define the multiplicative operator 

h: M x M - - * M x M  
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by 

(hv)k, ij=hk, uVk, o. ( g v ~ M x M )  (4.21) 

Let us also define for every r ~< 0 

Gr= Igl 1/2 (A + 1 - r )  -~ [gl 1/2 (4.22) 

where [g11/2 is an element of M x M defined by 

(Iglm)k,,7= ~k,0" 1/2 (4.23) 

One sees that Gr is a positive operator since r ~< 0 and A + 1 -  r is 
positive. 

Lemma 4.6. We make the same assumptions as in Lemma 4.4. We also 
assume that xr  (0, 1]. Then A + 1 + xg has r as an eigenvalue o f  multiplicity 
l i f  and only i f  1/~: is an eigenvalue o f  Gr o f  multiplicity l. 

Proof. If ~c E (0, 1 ] and 

(A + 1 + ~cg) v =rv  

for some v ~ M •  with v # 0 .  Let u =  -]gl~/2v,  then u # 0  and 

G r u = [ g ] l / 2 ( A + l _ r ) _ l l g ] l / 2 ( _ ] g [ 1 / 2 v ) = l g ] l / 2  ( 1 ) 1 - - ~ / )  =--UIs 

Assume that v (~), / ) ( 2 ) . . . ,  /)(l) are linearly independent eigenvectors 
of A + 1 + ~cg, then the corresponding eigenvectors of G r are 
{u(i)= -Igl l /zv( i)}~= 1. Let E~=lkiU(i)=O. Then Igll/2E~=lkiV(')=0, 
or g ~2~=1 ki v(i) = 0. But (A + 1 + xg) ~ = ~  kiv (i) = r Y'.~=l ki v(i), or 
(A + 1)Z~=~ kiv Ig)= r Z~=l kgv (~). Since A + 1 is a positive operator and 
r~<0, we have ZI=~ k~ v(i)=O, or kl =k2 . . . . .  k ,=0 .  Hence {u(~ 1 are 
linearly independent. 

Conversely, if u ~ M x M with u ~ 0 and k ~ (0, 1 ] satisfy 

1 
G r u = - u  

K 

Then 

~cg(A + 1 - r )  -~ Igl 1/2 u 

= _ _  ]g] 1/2 U = (A -~ 1 - -  r)(A + 1 -- r ) - I  ( _ [g[ 1/2 u) 
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If we take v = (A + 1 -  r) -1 ( - I g [  1/2 U), we have v ~ 0 and 

(A + 1+tog) v = r v  

Assume that U (1), U(2),..., U (/) are linearly independent eigenvectors of 
Gr, then the corresponding eigenvectors of ( A + I + K g )  are {v(~ 
( A + l - r ) - l ( - l g l l / 2 u ( i ) ) } ~ i = ~ .  Let Y'.~ ~ k~v(~ then Igll/ZZti= ~ k~u(~ =0. 
But Gr 32~=1 kiu  (~ = (i /x)  EI=I  k~ u(~ or (I/x) E~=I k~ u(~ = 0. Hence 
Zt~=l ki u(~ = 0 or kl = k2 . . . . .  k, = 0. So {v(~ 1 are linearly 
independent. 

This proves the lemma. D 

Lemma 4.7. Assumptions are as in L e m m a  4.4. We also assume that 
t ~ [0, 1 ] and k >>. 1. Then 

Nr (g )  <~ Tr((g  - (1 - t) r) 1/2 - (A + 1 - rt) 1 (g _ (1 - t) r)~2) k 

where "Tr" /s the trace o f  a linear operator. 

Proof. By Lemmas 4.5 and 4.6, Nr(g)  is equal to the number of 
eigenvalues of G, which are ~> 1. Moreover, G~ is positive. Then, denoting 
by aj the eigenvalues of G,, we have 

N A g ) =  Z 1~  Z ~ff~Tr(G~) 
aj>~ l aj>~ l 

This proves the Lemma for t = 1. 
For t ~ [0 ,1 ) ,  note that ( A + l + g )  u = r u  if and only if 

(A + 1 + ( g -  (1 - t) r)) u = rtu. Hence by Lemmas 4.5 and 4.6 and the fact 
that Ns(h)  is decreasing with respect to h [-which is implied by that fact 
that/~j(h) is increasing with respect to h], we have 

Nr(g)  = Nr t (g  - (1 - t) r) <~ Nr,( - (g - (1 - t) r)_ ) 

Using the result of this Lemma for the case t = 1 completes the proof. D 

To estimate (4.15) by means of the estimate for N A g ) ,  we need to 
consider the eigenvectors of the operator A: M ~ M. The eigenvectors 
e(k, l) of A are given by Theorem 2.1. 

Lemma 4.8. Let  e(k, l) ~ M( 
Then the only possible values that 
(1/2). 

l<~k , l<~m)  be given by Theorem2.1.  
He(k, l)Uo can take are 1 or (1/x/~) or 



Dimensions of Attractors for Discretizations for NS Equations 305 

P r o o f .  

follows that 
Since by Theorem 2.l, e(k, l) = r(k)~, s(l) i (0 <~ k, l ~< m - 1), it 

i , j = l  

= i=1~ r(k)~" mj~ls( l)~ 

But by Theorem 2.1, for a fixed k, r(k)~ is of the form 

I 
1 

~ cos ( j .2(m ~mk ) 

(k=O) 

(4.24) 

1 ~ (4.26) 

m j = l  

Thus, (4.24), together with (4.25) and (4.26), shows that the lemma 
holds. [7 

We reorder (e(k, l ~ ' - I  rl (~), rl ('=) fJk, t=O a s  ~](2),..., SO that the corresponding 
eigenvalues of A satisfy 0 = 21 < 22 ~< -." ~< 2,~=. By Lemma 4.8, [Ir/(")l[ o ~> �89 
Since le(k,/)~1 = Ir(k)i]" Is(l)sl ~< 1, so 

Iq~")[~l  (l<~i,j~m, l~<n~<m 2) (4.27) 

Hence the normalized family 

= i lq ( . ) l l oJ .=  1 ( 4 . 2 8 )  

(4.25) 

Similarly, 

1 m r 2 the second case, (I/m) Z'~=lr(k)~ = �89 ( /m)  Z i=1 (0)j = 1; in 
1/2m E~-=I cos ( j .  (4nn/m)) = �89 in the third case, (I /m) ~Sj~ 1 r(k)~ = �89 + 

1 m ( /2m) ~:= 1 c o s [ j .  (4nn/m)] = �89 Hence we have 
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satisfies [by Lemma 4.8 and (4.27)] 

[~p~)l ~< 2 (4.29) 

Proposition 4.1. The assumptions are as in Lemma 4.4. We also 
assume that y > 0  and l < k < 7 + l .  Then there is a constant K > 0  inde- 
pendent of m such that 

S', I/~j(g)l~<K'(1 2 ~ ) ,j(u)<o ~-7 k : ,  ~' ,,:':1 (gk'~:)7--+l (4.30) 

Proof. By Lemma 4.7, 
Nr(g) <<. T r ( ( g -  (1 - t) r)~ 2 (A + 1 - rt) -1 ( g -  (1 - t) r)~2) ' 

But (A + 1 - r t )  and the multiplicative operator ( g - ( 1 -  t ) r )U 2 a r e  both 
positive and symmetric, and the result of [L-T]  (Appendix B) implies that 
for any fl ~ [1, + ~ ) ,  

T r ( ( g -  (1- t) r)~ 2 (A + 1 - r t )  -1 ( g -  (l--t) r)1/2) ' 

~< T r ( ( g -  (1- t) r)~ 2 ( A +  1 - r t )  -p ( g -  ( l - t )  r)~ 2) 

By taking t = �89 so for any r >/0, 

rk~12 / (4.31) N-r(g)<~Tr((g+-2)  t A + l + 2 ) - n (  g+r~/2~2}_ ] 

Consider the orthonormal and complete family {g0(")}]m21 of M x M, as in 
(4.28), consisting of the eigenfunctions of A. We have, for any v e M x M, 

-' ( r'~ ~12 (g r\S~12( 2)tg+2)_ 
+ i ) _  + + 

~2 ( r) ,/{ r. nl2 >(r.]nl2(o(..) 
= 2 , + 1 + ~  \ t g + - 2 ) _  v'4~ g + 2 } _  

n = l  

So the kernel of [ g +  (r/2)]n9 [A + 1 + (r/2)] -n [ g +  (r/2)]n_/2 is 

G(k, i, j; k', i', j ')  

2m2 ( 2)--'( 2)~2 ( _ :,~ (,,) r']/712 ,,~(n) 
= ~ 2 . + 1 +  gk,,+ ~'k,, gk',i'j'+2} - "ek',iT' n=l 
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and its trace is 

1 ~ ~ G(k,i,j;k,i,j) 
m2 k = l  i,j=l 

2 . +  1 + gk,~+g 
~ m 2 

k = l  i,j=l n = l  

Hence 

r'~/2(A+l+2)-~(g+2)~ 2) 

1 ~, ~ ~2 ( ~t')-B(gk, U +2)b'_ /r,~(n),2 - m  2 2 n + l +  z ~,ek,/jl 
k = l  i,j=l n = l  

By (4.29), 

k~l 1 ' "(2m2( ~n'q'-~- N-r(g)<~4"( -~5 ~ i,~'= (gkiJ+2) ~-) ",n~=t 1 2) -[~) 

By Theorem 2.1, )~(p, q) = 4m2[sin2(pr~/m) + sin2(qrc/m)] (1 ~< p, q ~< m). 
Hence 

~2 f i n + l +  
~t=l 

= 2 .  ~ 
p,q= 1 

= 2 .  ~ 
p,q= 1 

If we choose/~ > 1, then 

f? S = 2 a _ s r  c tdt 2/~-6X 
( t 2+1)  a -  /3 <oo  (4.32) 

Since (sin x)/x 1> 2/~ (u  [0, (~/2)]), we have 

Z /~n + 1 + ~< 2" (16(p2 + q2) + 1 + (r/2)) ~ 
n = l  p,q=l 

<<.2. (16(x2 + y2)+ (r/2))~ 

=2e_S~.rt_~ f ~ tdt 
( t z+  1) ~ 
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Hence 

N_r(g)<~4Sr I " - ~  E gk, ijq-~ ( 4 . 3 3 )  
k = l  i,j=l 

Now (4.20) yields 

Z 
,uj(g) < 0 

I~j(g)l~< ~ r~-lN_r(g)dr 

=4ST"(--~ k~=l i,~.__, (forr-B(gk,*J+ 2)e dr)) 

For fixed k, i, and j, consider ~r~-~[gk, ij+(r/2)]~_ dr. We need to 
consider only those (k, i, j )  such that gk, o.+ (r/2)< 0 or gk, O.< --(r/2)<0. 
The change of variables r = 2(gk,0)-P gives 

fo r~-' (gk, u + 2) p_ dr= 2r-'+ l .(fj p~-t~(1-p)P dp) .(gk, ij)~_ + l 

Since 1 < fl < 7 + 1, we know that 

S~ = 2r-#+~ .(f~ pr r  p ) '  dp) < oo 

Hence 

1 E (gk, O ")~-+ 1 E II#(g)lr<~4SS~7" -~ k=, i,j=, 
/zj(g) < 0 

This completes the proof of the proposition for K =  4SS17. [q 

Corollary 4.2. 
we have 

Assumptions are as in Lemma 4.4. Then for 0 < 7 ~< 1, 

1 ~ (g~,iY -+1 1/7 (4.34) 2 I#j(g)l<<-K l/'" ~k=~ ,.j=~ 
#j (g)<o  

P r o o f .  L e t  #1~,~/.~2 ~ - . .  ~ # N ~ 0 < / - L N + I ~  " ' ' .  T h e n  

5-'. I~ j l< I~,.I ~' I~ IL ' - ' ~  < 5-'. I#j l '  
,uj<O . 0 # j<0 

By Proposition 4.1, we obtain (4.34). 
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With the estimate shown in Proposition 4.1 (especially in 
Corollary 4.2), we can prove the following theorem, which is a generaliza- 
tion of Lemma 4.2. 

Theorem 4.2. (Discretized Lieb-Thkring Inequality). Let ~p(t), 1 ~< l <  
N ( < 2 m  2) be a family in M x M  which is orthonormal with respect to the 
inner product ( . ,  �9 ). Let p ~ M • M defined by 

N 
pk,~j= ~ r ( k = l ,  2, l<~i,j<~m) (4.35) k~j 

/ = 1  

Then for every p with 

l < p ~ < 2  

there exists a constant tr > 0 independent o f  m such that 

k = l  i,j=l 
P r o o f .  Define the 

o~pU(p- 1). Then 
N N 

2 
l = 1  

D p/(p-1)~p-1 (~= ) k,e } ~ x  (ll~o(nll~ + 1) 
l 1 

(4.36) 

operator B : M x M ~ M x M  by B = A + I -  

N 

<<o('), B~o(')> = ~ (11~o(')11~+ I1~(')11~)-~ Z @('), pl/(~-'~o(')> 
/ = 1  l = 1  

Since 
2 ((P(I)' pl/(p-1)~(l)) =__~ Z pl/(p-l))2k, ij 

1 i o,,,, 1, 
m 2 ~-" k,~/ 

k = l  i,j=1 
we have 

1 2 N 

k = l  i,j=l l = 1  

N 

= Z (~ ~ Bq ~(t)) 
/ = 1  

Since ~o ~ ..... q~(U) are orthonormal in M x M, a well-known wedge-product 
argument shows that 

N 

(gO(l), Be( l ) )  = #i,( __~pl/(p- 1)) + #i2( --o~P I/(p- 1)) 
l = 1  

+ "'" + #is( -- aP 1/(p - 1)) 
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Hence 

N 

E 
/=1 

Qp (t), Bop(O) . U(p ~ l ( _ O ~ p  1 ) ) + # 2 ( _ ~ p l / ( p  1)).q_ . . .  

+ flN(--O~P 1/(p- 1)) > E ~lJ(--o~P 1/(pl-) ) 
IAj( apl/(p- l)) < O 

By Corollary 4.2 (take 7 = P -  1), we have 

E 12J(-O~pl/(p-1)) 
,us. ( ~ptl(p- ~)) < O (2 

>7 _ K 1 / ( p _ l ) .  1 

k=l  i , j=l 

( m'~ 1/(p- 1) ) l/(p- 1) 
~Vk, O. )P 

Thus 

( 1 2 ~ ) i f ( p - - l ) ( ~ 2  
- K~P ~-i s ,,p/{p-') �9 Vkjj +(x .  

k=l  i,j=l 
N 

~< 2 (ll#~176 2) 
/=1 

2 

k=l  i,j=l 

pp/(p 1)~ 
k,o" ) 

Let 

(21 ~ =  2-(p 1)K-1. 
k=l  i,j=l 

pp/(p_ 1)'~ p - 2  
k,/j J 

we have 

1 pp/(p-  1) 
�9 &0" ,=, (IIC')II~+ IIC')tlg)>2-<'-')K-' m-~ k = l  i , j = l  

This completes the proof for 

K =  
2 p - * . 4 S S , ~  22p- Sr~ J'o* sp-  1- e(1 - s)a ds 

where f le  (1, p). [3 

CoroIlary 4.3. Let q)(1) . . . ,  ~0(N) be as in Theorem 4.2. Then 

1 2 m--7 Pk, i j~  K (h[@(l)[[ 2 + 1) 
k=l  i,j=l l 1 

(4.37) 
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where tc can be chosen as 

tc = lim 2fl 4 
B~l+ g 5l sl-13(1--s)13 ds g 

Proof. By taking p = 2 in Theorem 4.2, we obtain (4.37). 

311 

4.3. The Hausdorff and Fractal Dimensions of the Global Attractor 

In this section, we consider the shifted version of the discretized 
Navier-Stokes equation (3.22) or, equivalently, (3.10), 

du 1 
--~ + -~ ((~u) . D + u.  ( D z - * ) )  u + vAu + ( D z - ' )  p = F 

DIVu = 0 (4.38) 

with the initial condition 

u(O) = u(~ = { w ~ M  x M ] D I V w = 0 ,  # = 0 }  (4.39) 

where u e M x M  and p e M  are unknowns, and F e M x M  is fixed and 
satisfies (H). 

By taking the formal derivative of the solution u to (4.38), for u 
starting from the attractor ag,~ as in Theorem 3.4, i.e., u(0) = u (~ e rim, with 
respect to the time variable t, we obtain the following equation 

dr 1 1 
- ~ t + v A v + ~ ( ( z v ) . D + v . ( D z  1)). +~ (('~U) "D + u 

�9 (DT-1))  v +  (Dz -1)  q = 0  (4,40) 

DIVv = 0 

~ = 0  

where v6 M • M and u = u(t) is the solution of (4.38). 
Equation (4.40) is equivalent to 

dv 1 1 
+ ~ P((zv).  D + v u -~+vAv .(O~ ')1 +~?((~u) 

�9 D + u . ( D r  1)) v=O (4.41) 

where P: M • M ~ W is the orthogonal projection with respect to the inner 
product ( . , . ) .  

865/4/2-6 
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Equation (4.41) is associated, as usual, with the initial condition 

v(0) = ~ ~ W (4.42) 

Since by (4.41), dv/dt is equal to a (quadratic) polynomial in v with 
smooth coefficients (depending on t), the local existence of the solutions to 
(4.41) and (4.42) is evident. 

In this section, we estimate the Hausdorff dimension of the attractor 
d = ~r obtained in Theorem 3.4, i.e., the attractor ~r = Zgm under the 
norm II" II0. 

We first prove the following result. 

Lemma 4.9. For any bounded set B c W,  we have 

l f~ C 2 
lim sup sup t Ilu(s)ll~ dt<<. 16v2 (4.43) 

t--* +~.~ u(O)~B 

where C is as in (H).  

Proof. By (3.25), 

l d  
2 dt Ilu[I 2 + v Ilull 2 = < P r ,  u> ~ Ilull ~ 

l < v  IlFllg 
" [ I r l l o ' ~  tlull2+ 32v 

Hence 

1 1 r" 
Ilu(t)ll~+ vt t Jo 

This proves the lemma. [~ 

C 2 1 ilu<0)ll ~ Ilu(s)ll ~ as ~ ~ + vt 

Proposition 4.2. There exist constants d> 0 and ~ > 0 independent of  
m such that i f  l >>. d, then there is an ~ > 0 such that 

Iv(1)(t) ^ vCE)(t) A ... A v(l)(t)lA,w 

1~(1) A ~(2) A ' ' '  A ~(I)[AIw e -~'t (4.44) 

Proof. Fix a number l with 1 ~< l ~< m 2 - 2. Let v(J)(t) be the solution 
to (4.41) with v(Y)(0)=~(Y)~W. Then a standard procedure gives (see 
I T 3 ] )  

Iv(l)(t) A V(2)(t) A . . .  ^ v(t)(t)lA,W 

=,r  Ar ... A~(OIA,weX p ( ~ o T r F , ( S ( s )  u(o))oQ,(s)ds)  (4.45) 
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where S(s) u (~ = u(s) and F' is the operator given by 

F ' ( S ( s )  u (~ w = - y A w  - l ( (zw) .D + w. (Dz-1)) u 

- � 8 9  b )  w (4.46) 

and Qt(s) is the orthogonal projection of W to the space spanned by 
v(t)(s), v(21(s) ..... vU)(s). Equation(4.45) implies that if ~(1), ~(2),..., ~(t) 
are linearly dependent, then v~ v(2)(t) ..... vU)(t) are always linearly 
dependent [in this case (4.44) is trivial]; otherwise, if ff(~), ~(2),..., ~(t) 
are linearly independent, then v(~)(t), v(2)(t),..., v(Z)(t) are never linearly 
dependent. We shall always assume that r ~(2) ..... r are linearly 
independent. Therefore 

dim(Qt(s) W) = l 

for any s~>0. Hence we can find an orthonormal basis {q0(")}~=l of 
Q~(s) W, where (p(i)= qr ) depends on the time s. We have 

l 

Tr F'(S(s) u(~ Ql(s) = 
n = l  

t 

=2 
n = l  

( F'(u(s) ) o Q t(s) q/")(s), qr ) 

( F'(u(s) ) q)(")(s), (p("l(s) ) 

l 1 l 
= - v  ~ II~o{"~ll~-~ ~ b(u(s),q)(")) (4.47) 

n = l  n = l  

where 

b(u(s), q)(")) = (~cp(")Du(s), q/")) + ( q/")(Dz -1) u(s), ~p(")) 

+ ( ( ( z u ( s ) ) . a  + u(s). (a'~- 1)) q~(n), (p(n)) 

= bl(n) + bz(n) + b3(n) (4.48) 

By Lemma 3.4, b3(n)= 0. Hence we need to estimate 

b(u(s), q/")) = bl(n) + b2(n) (4.49) 

Define p e M x M by 

l 

n = l  
(4.50) 
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Since 
l l 

b l ( n  ) = __~ <T~o(n)DU(s), q){n)> 
n 1 n 1 

m- ~,j=l .=1 k=l k~Ok'o'(DkU(S))h~Oh'~ 

i,]=1 h ,k=l  n = l  

i , j= l  h ,k=l  n = l  

by the Cauchy-Schwarz inequality, 

t t /_<1/1 2 \li2 
n = l  i,j= 1 h,k= t 

�9 ~ Z (,k~",~.) ~ 
i , j= l  h ,k=l  1 

i , j= l  h,k~t  

i , j = t  h ,k=l  1 

= x / 2  Ilu(s)lll" IlPllo 

Similarly, 

' I b=(n) ~ - 2  llu(s)ll,, llPllo 
n 1 

Thus (4.49) yields 

L b(u, q/")) ~<2x/~ Ilu(s)ll, Ilpllo 
n = l  

By Corollary 4.3, 
l ) 1/2 

llpllo~ ~ Z I14~ 
n = l  
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where x is a constant which can be taken by tc = 4/re. Hence 

l 1 
n~=l b(u, ~0 (n)) ~ 2  N/r2 g 1/2 Hu(s)lll.(n~= 1 Hq? (n) 1 - 1 - / )  1/2 

Thus, (4.47) yields 

Tr  F'(S(s) um))o Qt(s) 

- -1 )  n q~(n'H 2 -"]- HU(S)II 1 " E ]t~0(n)ll 2 ..If. l j  1/2 
n = l  n 1 

Since {qg/~ are orthonormal, by using (3.26), we have 

' 

n = l  n = l  

Hence 

TrF'(S(s) uml)o Qt(s) 
1 

~ <- v  
n = l  

By Young's inequality, we have 

1 
TrF'(S(s) u (~ o Qt(s) <~ - v  

n = l  

l 

ii~0(.~lr ~ + , j ~  ~1/2 Ilu(s)lll " - 7 -  .=1 

1 

n = l  

17x 

v 17 
2 ~ II~~ Ilu(s)ll~ (4.51) 

n = l  

But a standard wedge product argument shows that 

l 
]lq~(n)l12~21-q-22-q - ... +2 ,  (4.52) 

n = l  

where 21 ~< 22 ~< .. .  ~< 2t are the l smallest eigenvalues of A: W ~ W. We 
need a lower bound for 2~ in terms of / .  

By Theorem 2.1, the eigenvalues of A: M ~ M are 

2(k' j)=4m2 (sin2 k~+ sin2 

(sin2(kn/m). sin2(jn/m) (jn)2) 
= 4 \ (~:r~/m) 2 (kr0 2 + (jrc/m)2 . 

/> 16(k 2 + j2) (4.53) 
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with O<~k, j ~ m - 1 ,  where we used the fact that (sinx)/x>~2/n 
(Vx~ (0, ~/2]). 

All eigenvalues 0 = 0 < 2'1 ~< 2~ ~< ...  ~< 2~M2_ 2 of A: M x M ~ M x M 
are obtained by doubling the 2(k, j)'s. Hence 

>_ t m 2 2k~.k k (1 ~<k~< - 2 )  (4.54) 

Let "1 ~< '2 <~ "'" < ~'m 2- 1 be an ordering of 

{16(k 2+ j2 )  10<~k , j<~m-  1, k+j--#0} (4.55) 

and let 01 ~<02~< ... ~<02m2 2 be defined by 

02l_1=02l=rl (1 < l ~ < m 2 -  1) (4.56) 

Then 

Let 

Then 

Hence 

o r  

2k>~2'k>~Ok (1 <~k<~m2-2) 

Then 

# B ( N ) =  #{ (k , j ) lO<~k , j<~m- l , k+ j : / :O ,  k2+j2<~N 2} 

# B(N) <~ 2(N + 1)2 _ 2 

0#B~N)+ 1 >t 16N 2 

/~2N2+4N+ 1 ~ 16N 2 (N>~ 1) 

For any l >t 7, there exists an N>~ 1 such that 

2N2 + 4 N +  1 ~< I < 2 ( N +  1)2 + 4 (N+  1)+ 1 

Ot >>- Ozm +4N +1 >~ 16N z 

= ~ ( 2 ( N +  1) 2 + 4 (U+  1) + 1) + ~(240N 2 -  128N-  112) 

By elementary algebra, 

240N 2 -  t 2 8 N -  112>~0 (VN>~ 1) 

(4.57) 
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So for any 1 >/7, 

16 16 0z~> T~(2(N+ 1)2 + 4 (N+  1)+ 1 ) > 7 1  (4.58) 

Since 01 = 02 = 03 = 04 = 16, 05 = 06 = 32, we know that (4.58) is still 
true for 1~<l<~6. Thus 0z>(16/17)I (W~>I). By (4.57), we have 
2t> (16/17) l (Vl>~ 1). Hence 

7:16 /(/+i)>8/2 (V/>~l) 
+ 2 t > 1 7 "  2 17 

J I I 

Then (4.52) gives 

t1 o ">11  / = (vt  1) 
n = l  

Combining this with (4.51), we have 

Thus 

4v 17 
TrF'(S(s) u(~ o a t(s) ~< -~-~ l 2 + 4z~---v [I u(s)ll~ 

l f ]  4Vl2 17 l f~  t TrF'(S(s)ul~176 + - ~ v ' t  Ilu(s)ll~ds 

By Lemma 4.9, for any G1 such that 

C 2 
G1 > 16v2 

we have 

1 Ilu(s)tl~ds<~G1 
t 

for t large enough. Hence (4.59) yields 

4v( 
rr F'( S(s) u(~ Q t(s) ds <~ --i-7 12- ~ 

for t large enough. Let 

17 
d=24- -c 

172 .G1) 
247cl) 2 

(4.59) 

(4.60) 

(4.61) 

(4.62) 

(4.63) 
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where 
C 

G=v~ (4.64) 

then if l>  d and t is large enough, (4.62) yields 

f2 1 TrF'(S(s) u(~ - ~ t < O  
t 

with 
4v 

~ = 1 5  (12 - d2)  > 0 

(4.65) 

(4.66) 

Therefore, by (4.45), the Proposition holds. 

Corollary 4.4. There exist global solutions to (4.40) for any initial 
value ~ ~ W. 

Proof. Take l=  1. Then (4.45) and (4.65) guarantee that v(t) = v(t; 4) 
does not blow up in finite time. 0 

Let V(t; u ~~ be the operator with 

v( t; u ~~ ~ = v( O 

where v(t) is the solution to (4.41) and (4.42). Then, by Proposition4.2, 
the global Lyapunov exponents #~=#t(t), for u<~ d =rim and t large 
enough, satisfy 

/ ~ 1 " ] - ] ~ 2 " ~ -  ' ' "  " ~ l ~ O ~  l (4.67) 

By applying Theorem V.3.3 of IT3], we obtain 

Theorem 4.3. Let d =dm be the attractor given by Theorem 3.4, i.e., 
the attractor under the norm II'lLo. Then there is a constant d, which is 
independent of m, such that the Hausdorff dimension of d = dm satisfies 

17 17C 
dH(d  ) = dH(AJm) ~< d = ~ "  G - 247c 1/2v 2 (4.68) 

In other words, the Hausdorff dimension of the attractor d = dm of the 
semiflow of (4.38) is bounded by a constant which is independent of m. 0 

The fractal dimension dr(B) (or capacity) gives another measure of 
the complexity of a geometric set B. It is always true that 

dF(B)>dH(B) 
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for any set B. Hence the fractal dimension gives an upper bound for the 
dimension information. 

To estimate the fraetal dimension of d = ~r we need Lemma VI.2.2 
of ET3J. 

Lemma VL2.2. 
satisfies the following inequalities: 

]~1 ~ -~2"~  - "'" "~ ~.lj ~ --o~jO'~- fi, 

where ~, fl, 0 > O. Let J 6 N be defined as 

J - l <  ~<J 

Then #1 + # 2 +  "'" + # j < O  and 

We assume that the sequence of  numbers #j, j>~ 1 

V j ~ I  

(~1-] -~2-  ~ .- .-]-  ~j)_+ 

l U l + m +  - -  
( j =  1, 2,..., J) 

By this lemma, together with Theorem V.3.3 of [T3] and (4.67), we 
have the following. 

Theorem 4.4. Let ~r = dm be the attractor given by Theorem 3.4, i.e., 
the attractor under the norm []. [lo. Then the fractal dimension o f  d = ~r 
satisfies 

d r ( d )  = dr(din) ~ 2 w/2 d =  17G 17C D 
4v2,/  

Remark 4.1. Theorems 4.3 and 4.4 show that improving the mesh 
size h = 1/m (or increasing m) does not change the estimate for the dimen- 
sion of the attractor d = rim. In other words, there is a limit for the mesh 
size beyond which the discretized system does not give more valuable 
information of the dynamical behavior. 

APPENDIX: EXISTENCE OF II" l[ ~-Attraetors 

In the continuous version of the Navier-Stokes equations, to prove the 
existence of the global L2-attractor, it is necessary to prove both L 2- and 
HLabsorbing properties. In our discretized model, the phase space is finite 
dimensional, so all bounded sets are compact. This leads to the direct proof 
of the existence of the global [l'[I -attractors once the [l'tlo-absorbing 
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property is proved. In Section 4, the estimates of Hausdorff and fractal 
dimensions of the attractors are established. 

We shall prove the existence of the global II. II ~-attractors. We do this 
by proving the discretized [l-lib-absorbing property. In the proof, a dis- 
cretized interpolation inequality plays an important role. This inequality 
can be proved by using discrete Fourier transform. 

At the end of this section, we prove a discrete interpolated inequality 
directly rather than using the discrete Fourier transform, which con- 
siderably shortens the proof of the existence of the ll Ill-attractors. 

A.1. Discrete Fourier Transform and an Interpolated Inequality 

In this section, we first discuss the two-dimensional discrete Fourier 
transform; we then apply this theory to our model M set in Section 2.2 to 
obtain an interpolated inequality, which plays an important role in 
studying the dynamical behaviors of (3.22). 

Fourier analysis is a well-developed theory which is a powerful tool in 
the research of partial differential equations. [S-W] gives an introduction 
to this beautiful theory. 

In (3.22), the "space" variable (i, j )  is discrete. So the Fourier trans- 
form of the continuous version is not applicable to our model. Discrete 
Fourier analysis is developed in numerical analysis. In [V-B], there is a 
discussion of discrete Fourier analysis of one-dimension. 

In the first part of this section we list some properties of the two- 
dimensional Fourier transform. 

Let h > 0  be fixed. Temporarily we use symbols n = ( n l , n 2 ) ,  

m = (m~, m 2 )  , k = ( k l ,  k2 )  G Z 2, w = (Wl ,  W2) , t = (tl, t2) ~ R 2. We denote by 

And we assume that v: Z 2 ~ R, i.e., 

v = v ( n )  = v ( n l ,  n2) e R (Vn e Z 2) (A.2) 

We say that v e L ~ 1 7 6  2) o r  v E L  1 (Z 2) o r  v E L  2 (Z 2) o r  v E H  2 (Z 2) if 
the following corresponding condition is true: 

sup Iv(n)[ < ~ (v ~ z~ (g2 ) )  (A.3) 
n ~ Z  2 

o r  

h 2 ~ Iv(n)l<c~ (v~Ll(Z2))  (A.4) 
n ~ Z  2 
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o r  

h 2 ~ [v(n)l 2 < ~  (veL2(Z2)) 
n ~ Z  2 

(A.5) 

o r  

1 
,~z2__ 14v(nl, n2) - v(n~ + 1, n2) - -  v(ni -- 1, n2) h--- 5 

- v ( n l , n 2 + l ) - v ( n l , n 2 - 1 ) 1 2 < o o  (v 6 H2(Z2)) (A.6) 

If v f f L l ( Z 2 ) ,  w e  define its d&crete Fourier transform as a function 
~: R 2 --* C, which is defined for every w e R 2 by 

= ~(w) = ~(Wl, w2) 

=h 2 ~ v(n) e -ihw" 
n ~ Z  2 

+ o o  

= h2 2 v(nl, n2) e ih(,,lnl +,~2n2) 
nl ,  n 2 ~  --oo 

(A.7) 

One can check that the series is convergent in this case. 
In the continuous version, the existence of the inverse Fourier trans- 

form is a difficult problem, especially the pointwise existence. But in 
discrete version, it is surprisingly simple to prove the pointwise existence 
of the inverse Fourier transform. 

Lemma A.1. I f  v ~ L 1 ( Z 2 ) ,  then the inverse Fourier transform is given 
by 

v(n)=~l--~'2 fQh ~(w)e'hnw (A.8) 

ProoL 

(2~) 2 ~ ~(w) e ih"'w dw 

_ h2 w) eihn.w 
(2~)2 fQh (k~z2 V(k)e--ihk" dw 

(fO ) - (2 re )  2 ~'2 e ih~"-k)'w v(k)=v(n)  
k ~ Z  h 
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For  v�9 we define its L2-norm by 

ILvll2=h 2 ~ Iv(n)l = (A.9) 
n ~ Z  2 

Note that this is an extension of (2.24). 
For  the discrete Fourier transform z3 of v, we define the L2-norm by 

1 
I1~112= = (-~)2 Iah I~(w)l 2 dw (A.lO) 

It is well-known that the continuous Fourier transform is a unitary 
operator in L 2. We claim that the discrete Fourier transform also preserves 
the L2-norm. We prove this by using the results of the continuous version. 

We want to extend u: Z 2 --* R to u*: R 2 --, R. 
We construct a function 

~Un(X ) = 
sin[rc(x I -- hnl)/h ] sin[~(x2 - hn2)/h ] 

[rC(Xl -- hnl) /h]  [~(x2 - hn2)/h] 

(Vx �9 R 2, Vn �9 Z 2) (A.11) 

Note that (0, x2) and (xl,  0) are removable singular points of ~u, 
Also, we have the following shifting formula 

~ , ( x )  = ~Po(X - hn) 

Now we define for x �9 R 2, 

(A.12) 

V$(X) = ~ I[]n(X ) v(n) ( A . 1 3 )  
nEZ  2 

v* is not a direct extension of v, but it is an extension in the following 
sense: 

v*(hn) = v(n) (Vn �9 Z 2) (A.14) 

Since in (A.11) and (A.13), the spatial variable x of g t  and v* is con- 
tinuous, we can apply the continuous Fourier transform to g t  and v*. 

Let ~ ,  be the continuous Fourier transform of ~u n. 

Lemma A.2. For t �9 R 2, we have 

{~ 2 t �9 Q h 
~Po( t ) = elsewhere 

(A.15) 
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and 

Proof.  

have 

323 

~tn( t ) = e--ih "To(t) ( A.16) 

By (1.68) of IV-B] (actually it is from [P]), for any seR,  we 

foo_oo sin(~x/h) e-iSX dx = se  [ - (~ /h) ,  (~/h)] 
elsewhere 

then 

~to(t) = fR 2 ~o(X ) e-it .x dx 

= (f-~oo sin(Tzx]/h)e-U~xt(~Xl/h) dXl)'(f~-oo sin(~zx2/h)e-U2XZdx2)(Tcx2/h ) 

elsewhere 

This proves (A.15). 
To prove (A.16), by using (A.12), we have 

r fR ~,~(x)e-"X dX= fR ~O(X-hn)e-~"~ dx 

= e - i h t  . n  [ ~to(X) e-it.x dx = e -ih''" ~o(t) 
JR 2 

This proves (A.16). B 

Lemma A3. I f  yeLl(Z2), then 
1 

f*(t) = ~  ~o(t) f(t) 

and 

II~IIL2= IIv*llL2 

Proof. Again, by (A.12), 

= ~ ~'o(t) e(t) 

This proves (A.17). 

(A.17) 

(A.18) 
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Hence by (A.15), 

r3,(t) = {~(t) teQh 
elsewhere 

But by Parseval's equation, 

1 

So (A.19) yields 

IIv*ll~==(-~-~)~ hle(w)12dw = Ilftl~ 

This proves (A.18). [q 

Lemma A.4. If  yELl(Z2), then 

(A.19) 

This proves (A.20). I1 

Proof. Since the continuous Fourier transform is a unitary operator 
on L2(R2), we have 

1 
( ~-Im, ~-#n)L2: I .  2 ~Jm(X) ~ln(X) d X :  (-~--~)2 IR 2 ~-#m(')+n(t) d' 

Hence 

1 
-- (2n) 2 fll2 ~'m(t) ~"( -- t) dt 

By (A.16) and (A.15), we have 

�9 eiht2(n2 - m2) h4 (r =/h e ihtl(nl ml) dtl) (r n/h dt2) 
( ~-Im' ~-#n)L2 ~" ~ \~'=.lh k,"--rclh 

=h2sin[(n,-ml)rc]  s in [ (n l -  ml) rc ] {h02 n=m 
[(nl--ma) n ] I-(nl--ml) n] n#m 

IIv*ll ~ : ~ Z v(n) v(m)(~'., ~m)~: 
m, n E Z  2 

= ~ Iv(n)lZ(~'. ,~' .)L2+ 
n E Z  2 n,m~Z 

n~m 

= h  2 ~ Iv(n)l 2=llvllo 2 
n E E  2 

Ilvllo = IIv*ll~ (A.20) 
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From Lemmas A.3 and A.4, we know that the discrete Fourier trans- 
form preserves the L2-norm. 

Theorem A.1. I f  v~L t (Z2) ,  then 

1161!L2= tlvllo l] (A.21) 

We now extend the definition of the operator A in (2.9). For any 
v: Z 2 --+ R, define Av: Z 2 -+ R by 

1 
(Av)(n) = ~ (4v(nl, n2) - v(nl + i, n2) - v(nl - 1, n2) 

- v ( n l , n 2 + l ) - v ( n l , n z - 1 ) )  ( V n = ( n l , n 2 ) ~ Z  2) (A.22) 

In the rest of this section, we prove an interpolated formula by using 
the discrete Fourier transform discussed above. 

Theorem A.2. I f  v ~ L ~ 1 7 6  ~) as defined 
in (A.3)-(A.6) ,  then 

9 i lv l l~/Z(l lv l to]+ llAvllZo) TM Itvll oo ~< 47z3/----7 

9 _ _  i/2 ~<47z3/2 Ilvllo (llvll0+llAvll0) 112 (A.23) 

where Ilvlloo is deft'ned by 

Itvll~ = sup Iv(n)t (A.24) 
nEZ 2 

Proof. For  v as in the statement of the Theorem, we can define its 
discrete Fourier transform as above, we have 

~v(w) = h ~ ~ (A~)(n) e - " " ~  
n~Z 2 

: (  ~Zn 2 v ( n l ' n 2 ) e - i h n w )  " ( 4 - e i h w l - e - i h w l - e i h w 2 - e - i h w 2 )  

[ ' 4  - -  e ihwl - -  e ihwl - -  e ihw2 - -  e-ih~:~l g ).e(w) 
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Define 

Then we have 

Yah 

4- e ihwl - -  e - i h w l  - -  e ihw2 - -  e ihw2 

K(w; h) = h2 (A.25) 

~v(w) = K(w; h) ~(w) (A.26) 

If Av ~ L 1 (Z 2) c~ L2(Z 2) [see (A.4) and (A.5) for the definitions], then 

r2 IAv(w)I 2 dw 
h 

= (2re) 2 h Ig(w; h)l a 16(w)l 2 dw (A.27) 

Now by (A.8), for any n e Z 2, we have 

Iv(n)l I~(w)l dw 
JQh '"-'~J(2rc) oh 

= (2re) 2 h~{h~l<~} 1~3(w)l dw+ ]f(w)l dw 
hc~ {Iwl/>~} 

= 11 + 12 

where e is a positive parameter to be determined. 
By the Cauchy-Schwarz inequality, 

Ix = (~-~ ;Qh~ {,w, <~,} [~(w)' dw 

~< ((2rc)~ feh~{Iwl<~,lZdw)V2"((~-~ieh~{l~l<~,} 

1 
~< (--~)2 (rc~2) 1/2" Ilfll L2 

and combining this with (A.21), we have 

11 ~< 4- -~  Ilvllo 

(A.28) 

I ~(w)l 2 dw) 1/2 

(A.29) 
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Again, by the Cauchy-Schwarz inequality, 

1 re(w)( dw 
[2 = ( 2 n ) 2  fQh~, {/wl > a} 

= I fQ 1 . ~ l + K ( w i h ) 2 l e ( w ) l d  w 
(2~) 2 h~ ~w~ ~ ~ ~ + g(w; h) 2 

(2re) \ e ~  ~>~ ~> ~ 1 + ~ ;  h) 2} 

"(fo (l+K(w;h)2) It~(w)l 2 dwf/2 
he', {Iwl ~> ~} 

1 
= ( 2 a ; ) ; "  I~72" 114/2 

Since 

Ia = fo (l + K(w; h) 2) [~J(w)[ 2 dw 
h ~  {Iwl ~>c~} 

<" fo ,, ! e(~))'- dw+ fo, K(w; h)' l~(w)l' d~ 

by (A.10), (A.27), and (A.21), 

i4 ~ (2rc)~ (ll~ll 2 "" L=+ )lAvll ~2)= (2re) 2 (ltvlt2 + tlAvllao) 

We need to estimate 

fe dw 13 = h~ fl.,I >1 ~,} 1 + K(w; h) 2 

By (A.25), 

hence 

K0v; h) = 

. 2 {hw~\ ) 

(A,30) 

(A.31) 

865/4/2-7 
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Since w e  Oh, then fwil ~ re~h, or Ihwi/2[ ~<~/2, we have 

sin 2 (hw2/2) 4 
(hw2/2)2 >/7z--- 7 (i = 1, 2) 

Therefore, 

4 (w 2 K(w; h) >>. -~ a + w~) 

Now 

fQ dw 4 f~= f ~ r 16 
13~< h~{Iwl~>~} l + K(w;h)2 <~n2 jo dO -~dr=--~e2 

By substituting (A.31) and (A.32) back in (A.30), we obtain 

1 (16"~ ~/2 
I2~<(--~)2'\zca2] .((2~) 2 (llvllo2+ ItAvllo2)) v2 

2 
~3/2--""~" (llvllg + IIAvl[g) 1/2 

By using this, together with (A.29) and (A.28), we have 

Iv(n)l ~< 4- -~  IIv[Io + (llvllo2 + IIAvllg) 1/2 ( vr/e z2) 

If IlVllo=0, then (A.23) is trivial. Otherwise, we take 

(llvll~+ IIAvll~) 1/4 
= i lv l lo  m 

so that 
c )  

[v(n)l < 4 ~  Iiv111/2 (llvl12~ + [11v[1~)1/4 

9 
~< 47Z3/----- ~ Ilvll~/2 (llvlto+ IIAvllo) 1/= 

This proves (A.23). lq 

A.2. The Interpolation Inequality in M 

(Vr/~ Z 2 ) 

(A.32) 

In the last section, we proved the interpolation inequality (A.23), This 
inequality holds for v : Z 2 ~ R .  But in our discretized model (2.28), 
elements in M are not defined on whole Z 2. So we need to modify (A.23). 
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First, we need to extend a v e M to a ~: Z 2 ~  R. Since M is the dis- 
cretization for periodic functions, one may try to use (2.5) as a natural 
extension of any veM.  Unfortunately, such an extension causes the 
blowing up of the discretized Hi-norm defined in (A.6). In other words, 
using (2.5) will ruin the well-definedness of the operator A defined in 
(A.22). To get around this, we multiply the periodic extension of v by a 
cutoff function. 

Consider the following polynomial 

p(s) = - 1 0 ( s -  2) 3 - 15(s-  2) 4 - 6 ( s -  2) 5 (A.33) 

defined on the interval s ~ El, 2]. One may check that 

p(1)= 1, p ' (1 )=p" (1 )=p(2 )=p ' (2 )=p" (2 )=O (A.34) 

10 10 
O<<.p(s)<~ 1, ,-<<.p"(s)<~--~_ (Vs~ [1, 2]) (A.35) 

4 3 4 3  

and 

We define a 2-D cutoff function 0 by 

O(x) = O(xl, x2) = 01(xl). 02(x2) (Vx = (xl, xz) s R 2) (A.36) 

where 

I i  - o e  <s~< -1  

l - s )  - l < s ~ < 0  

Oi(s)= 0<s~<l  

~ ( s )  s>21<s~<2 

(i = 1, 2) (A.37) 

Elementary calculus shows that the following is true. 

Lemma A.5. 0~CZ(R 2) and 

0 ~< 10(x)l ~< 1 (Vx ~ R 2) 

O(x) = O(xl ,  x2)  = 1 (0 <<. x l ,  x2 <~ 1 ) 

O(x)=O(xl ,x2)=O (Xl~< -1  or x2~< -1  orxl>~2orxz~>2 ) 

40(x~, x2) - O(xl + h, x2) - O(xl - h, x2) 

- O ( x l ,  x2  + h )  - O ( x l ,  x2  - h )  40 
<<. - -  ( Z x  = (x~ ,  x 2 )  e 112) 
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Proof. The first three statements are trivial. 
For the last inequality, according to the definition of 0 in (A.36) and 

(A.37), we can rearrange the left-hand side as 

40(X1, X 2 )  - -  O(x 1 "~- h, x2) - O(Xl - h, x2) 

- -  O ( X l ,  X 2 "~ h) - O(xl, x2 - h) 
h 2 

+ h) -- p ( x l  -- h) 
<~ 2 p ( x l ) - p ( x x h 2  " Ip(xz)l 

+ h) - p(x2 - h) 
+lp(x l ) l "  2 p ( N 2 ) -  p(x2h2 

By the mean value theorem, there exist e;, ~,  ~ (x~ -h ,  x i +  h) such that 

2p(xi) - p(xi  + h) - p ( x ~ -  h) ~ -  ~i 
h 2 = - P " ( C i )  h ( i=  1, 2) 

But by (A.35) and the fact that [ ~ -  ~,-I ~< 2h ( i=  1, 2), we have 

2p(x i ) -  p(x~ + h) - p ( x i -  h) 20 
~ < - -  (i = 1, 2) 

h 2 , / 3  

Hence the lemma is proved. [3 

Define the extension of any v E M by 

~(n)~--V(nlmod+m),(n2mod+m)'O(~-'m,~-m) 

(V/'/= (n l ,  n2) ~ Z 2) (A.38) 

We can prove that this extension preserves the various norms of M. 

L e m m a  A.6. For any v ~ M ,  ~ ~ L ~ (Z 2) n Z 1 (2 2) ~ L 2 (Z 2) c~ H 2 (Z 2) 

and 

Ilvll o~ = II~ll oo (A.39) 

II v II o ~< II ~11 o ~ 3 [I v II o (A.40) 

l i a r  II o ~< II a~ll  o ~< (4800  II v II 2 + 9 liar II ~)x/2 (A.41) 

where II~llo and IlA~llo are as in (A.9)  and h = 1/m 

Proof. Let v ~ M. By Lemma A.5 and the definition of ~, 

~7(n) = O(nl, n2) = 0 



Dimensions of Attractors for Diseretizations for NS Equations 331 

i fnl~< --m or n2~< --m or nl>~2m or n2>/2m. So , T e L ~ ( Z 2 ) n L l ( Z 2 ) n  
L2(Z  2) n H2(Z2).  Moreover,  since 

if 1 ~< na, n2 ~< m, and 

SO 

and 

,7(n) = ,7(nl, n2) = v~l, ~2 

1,7(n)l ~ IV(n1 mod+ m), (n2mod+ m)l 

Ilvll oo = 11,711 oo 

Ilvllo ~ < 11,711o, IlAvllo ~ < IIA~llo 

For  the other inequalities, note that  by Lemma A.5, 

rlell~ =h2 X 
n e Z  2 

=h 2 y, 
n ~ Z  2 

<~ h 2 

I~(n)[ 2 

2 [V(nlmod+m),(nzmod+m) ]2 
-m <~ nl, n2 <~ 2m 

=~-~ IvuI2=9 Ilvl[20 
i,j=l 

Furthermore,  by using Lemma A.5, we have 

1 
[]A~7[t~] =h2 ~ [(AO)(n)[2=rn---5 ~ [(A~)(i,J)[ 2 

n ~ Z  2 --m<~i,j<.2m 

1 ~ (Al))(imod+m),(jmod+m) 0 ( j )  2 i  
<~m2 -m<~i,j~<2m 

1 
+ m--5 ~ [V(imoa+ m), (jmoa+ m)l 2 

--m<<.i,j<~2m 

�9 

, / 3  

This completes the proof of Lemma A.6. [] 
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NOW we can state the modified version of the interpolation inequality 
(Theorem A. 1 ) in M. 

Proposition A.1. For any v E M,  

II v II co ~< ~ II v II ~/2 IIAv II 0 ~/2 (A.42) 

Proof. Extend v ~ M to a g: Z :  --* R as in (A.38), then by Lemma A.6, 

Theorem A.2 yields 

9 
Ilvll ~ = II~ll co ~< 47Z3/---~ I1~11 ~/2 (11~11 ~ + IIA~II~) 1/4 

Using Lemma A.6 and Corollary 2.2, 

9 3 t[vl[ ~o = 47z3/2" X//~" l[v[[ 1/2. (9 tlvl[ 2 + 4800 [[vl[ ~ + 9 [[Av[[ 02) 1/4 

9 
~<~-57~'11vllo ~/2llAvll~ 12" rl 

A.3. Global I1"[]1 -Attractors 

In this section, we prove the existence of global attractors of the 
shifted Navier-Stokes equation (3.22) under the norm II "ll,. We actually 
prove the II. II 1 -norm absorbing property, which implies the existence of 
global attractors in the sense of the I[" II 1-norm. 

First, by Lemma 3.5, 1]. ]l ~,  II'llo, I'11, and [-12 are norms in W. We 
change the symbols in (2.32) and (2.33). Denote by 

Ilvl[1 = IIDvllo = IIDkv, ll~ (Vv ~ W )  (A.43)  
k, =1 

and 

(• Ilvll2 = It /vllo = IlAvkllo 2 ( w e  w )  (A.44)  
k ~ l  

We want to prove an a priori estimate for II-II1 as in Theorem 32. We 
begin with the following lemma. 
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Lemma A.7. For any f ixed r > O, there exists a constant 

[ r C  2 p,2\~/2 

with arbitrarily f ixed P'o > Po such that for Ro, To, and the initial data 
u (~ ~ W described in Theorem 3.2, we have 

f*+r Ilu(s)H2ds<~P~/2 (Vt >~ To) 1 

Proofi (3.25) yields 

l d  1 
2 dt [[u[[~ + v [lu[[ 12 ~< (PF,  u)  <<. HPFI[ o [lU[[o ~< ~ ][PFIIo 2 + 8v [lUl[o 2 

By (3.26) and (H), we have 

V !t t+r Ilu(s)ll ~ ds<~ rC2 - i~v+ Elu(t)l[~-Hu(t+r)Hg<~ re2 -i-~v + Ilu(t)ll 2 

Now for Ro, To, and u ~~ as in Theorem 3.2, by the conclusion of 
Theorem 3.2, we have 

Ilu(s)llo <~ p'o (Vs ~ To) 
Hence 

ft '+r rC2 + P62 (Vt ~> To) 
Ilu(s)tl2 ds<" i-6vSv2 v 

This completes the proof. 

R e m a r k  A.1.  P~/2 ~ 0 as C --* 0. 

To prove the absorbing property for II H~, we need a lemma stated in 
[T3]  (Lemma III.l.1). 

Lemma [The Uniform Gronwall Lemma]. Let g, h, y be three positive 
locally integrable functions on t e (to, + oo) such that y'  is locally integrable 
on (to, + oo), and which satisfy 

~ t<~gy+h  (Vt~> to) 

ft (}  ft t+r ft t+r '+rg.s ds<<.al, h(s) ds<~a2, y(s) ds<~a3 (Vt~>to) 
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where r, al, a2, a3 are positive constants. Then 

y ( t + r ) < < . ( ~ + a 2 ) e  a~ (Vt~>to) D 

With this lemma, we can prove the following HI-absorbing property. 

Theorem A.3. There exists a constant 

C exp f 311C4 
P l -  16v3/2 \ ~ / /  

which is independent of m, such that for any constant P'I > Pl arbitrarily 
f ixed and R~ > 0 independent of  m, there exists a constant T~ > 0 independent 
of  m, such that as long as the initial data u(~ ~ W satisfy 

Ilu(~ 4 R1 

ProoL 

then 

Since 

S O  

Ilu(t)lll <.p'~ (vt>~ T1) (A.45) 

By taking the inner product ( . ,  �9 ) of Au and (3.21), we have 

l d  1 
5 dt Ilull~ +~ (PB(u, u), A u ) +  v llAullg = (PF,  A u )  

(PF,  Au ) <~ [[PF[[o I[Au[Io < ~v []PF][~ + 2 []Au[[~ 

d 
D dt Ilulll~ + (PB(u, u ) , A u ) + v  IIAull'~ ~< vl ii,r, llo~ 

By Corollary 3.1, Au e W. Thus Au = PAu, therefore 

( PB(u, u), Au ) = ( B(u, u), Au ) 

1 

i , j = l  k , l = l  

2 

+-~ 
i , j = l  k , l = l  

(A.46) 

(A.47) 
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Hence 

( j  2 
[(PB(u, u), Au)l  ~ Ilull~" 1 ~ i((Oku,)(Au,))ui 

i,j=l k,l=l 

+ - ~  ~ ]((DkZ;luz)(Auz))~J 
i,j=l k,l=l 

~<2 xf2 Ilull~ IlOullo IIAujlo 

by (A.42), we have 

[(PB(bl, b l , ,Ab l ) , : lS~ l [b l t l l / 2 ] l l~ lHl ' (~ )  3/2 (A.48) 

By using Young's inequality 

a 4 b4/3 

ab <. -~ ~ 4/3 (Va, b ~> 0) 

we obtain 

](PB(u, u), Au)l  ~ (t8 ./2~/4 tlulI 2 tlull 4 
4g 4 

4 324/3 
648211ulto 2424 tlulll+--.47z2 I[Aullo 2 

Set 394/3/47z2 = v, then 2 4~-- (4V~Z2/3) 3. Hence 

311 
] ( PB(u, u), Au)l  <~4--~g-~ 6 I[utl~ Ilull4 + v [IAu[j~ (A.49) 

Together with (A.46), we obtain 

311 C 2 
d , 2 _ _  [lul[o 2 I lu l l~- I lu l l~+--  (m,50) dt II ul112 + v hAull o ~< 4v37c6 v 

Set y(s)= Ilu(s)ll~, h(s)= (l/v) Ilrllo ~ and g(s)= (3al/4u37c6)llu(s)l]~ 
Ilu(s)tl~. Let R I > 0  be as in the assumption. Then, by Theorem 3.2 and 
Lemma A.7, there is a t o > 0  such that tlu(s)lJo~<p~) and S't +r Ilu(s)lt~ds<~ 
Pl/2 if t >~ t o. Then there are positive constants al, a2, and a 3 such that 

ft t+r ft t+r ft t+r g(s) ds <~ al, h(s) ds <~ a2, y(s) ds <~ a 3 (Vt ~> to) 



336 Yan 

where 

311 
p 2 2 

a l  --4y37c6 (Po) /91/2, 

Choose (p])2 = (a 3 q_ a2) e a' 

Gronwell lemma, we obtain 

Ilu(t)l] ~ ~< p~ 

with 

r 
a2 = - C 2, a3 = P~/2 (A.51) 

and T~ = to + r. Using the uniform 

(Vt ~> T 1) 

(P'l)2 : ~I---~V 2-t-//rC2 rC2+v (P'~ / \i--~v 2 --~,]/(P'~ 

for arbitrarily chosen r > 0 and p;  > Po = C/16v. 
Let r-~ 0, p;  ~ Po, we have, for any u(~ W, 

C ( 311C4 '~ 
lim sup <~ ~ exp ~ /  
I ---~ q-oO 

This completes the proof. [3 

Remark A.2. The absorbing radius pj (of II.lll-norm) tends to 0 as 
C, the uniform bound of IlFII0 as in (H), tends to 0. [3 

As an immediate consequence of Theorem A.3, we have the following. 

Theorem  A.4.  The solut ion u = u( t )  to (3 .22)  [or  equivalent ly ,  ( 3 .10 ) ]  

has a g lobal  a t t rac tor  s r  = d m  in W under the norm I1" Ilx. [3 

Remark A.3. Since W is finite dimensional, by the fact that all norms 
in a finite dimensional space are equivalent to each other, we know that 
d = d m  in Theorems 3.4 and A.4 are geometrically the same. Moreover, by 
the proofs of Theorems 3.4 and A.4, the rates of convergence T O and Tj 
differ only by a fixed constant r. [3 

A.4. Another Proof of the Existence of the Global II" l] l-Attractors 

One sees that in the proof of the existence of the II'b[1-attractors in 
Section A.3, the following inequality shown as in (A.48) plays a key role: 

I ( e B ( u ,  u), A u ) l  < c Ilull 1/2 �9 ~. IJAull3o/2 (A.52) 

where c is a constant independent of u and the mesh number m. 
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In this additional section, we give a very short proof of (A.52) by 
using the inequality (4.5) proved in Lemma 4.2. The new proof avoids the 
long argument by the discrete Fourier transform. By the proof of 
Theorem A.3, we know that as long as (A.52) is holds, all other arguments 
of the proof of Theorem A.3 can be applied without any change. 

By (A.47), 

I ( PB(u, u), Au }] = ] ( B(u, u), Au }] 

--~ ~, 2 (rkuk(DkU,)(Au,))~ 2 
i,j= l k,l= l 

~ 2 lul)(AUl))iJ + ~ (Uk(Dk(Dkz; 
i,j=l k , l = l  

Using the generalized HSlder's inequality 

\ 1/4 1/4 \ I/2 
~a~b~c~<<.(~a4i) . ( ~ b  4) . ( ~  c~) 

we have 

(A.53) 

[(PB(u, u), Au}[ 

1 2 ~/4 1 Z (Dku,)~ 
2 ("~kuk) " - ~  i,j=l k , / = l  i,j=l k , l = l  

( _ ~  ~, 2 )  ( ~ 2(Uk)0.)1/4 2 1\ 1/2 1 ~ 4 

. 1 ~ (Au,) + -~ i,j=l k,l=l i,j=l k , l = l  

1 2 [ \ i / 4  1 2 

" - ~  i,j=l k,l=lE (Dk~;lul) 4" " - ~  i,j=l k, l=l (; )1 4 
=27/4. 1 ~ (Uk) 4 " Z (Dku,) 

i,j=l k,l=l i,j=l k,l=l 

�9 -~7 E (Au,)~ 
i,j=l k,l=l 

We need the following lemmas. 

Lemma A.& Let D1, D2, and A be as in (2.12), (2.14), and (2.15). 
tr tr Then they commute with each other, and D1D~, D2D2, and A are all 

positive in BW, and 
tr tr Dx DI +D2D2 = A (A.54) 
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Furthermore, define 

Yan 

{DI = aD1 + bD2 
(A.SS) 

D2 = cD1 + dDz 

where a, b, e, d ~ R  and (~ ha) is an orthonormaI matrix. Then D1 and D2 
commute, and - t r~ - - t r - -  - - t r  ~ - - t r - -  D 1 D1, and + are over DzD2, DzD2 D a D 1 all positive R. 
Moreover, 

- - t r  - -  - - t r  - -  t r  t r  D 1D1 + D2 D2 = DID1 + D2 D2 (A.56) 

Proof. The first part of this lemma follows from the definitions and 
Theorem 2.1. The second part can be checked directly by the basic proper- 
ties of orthogonal matrixes. [3 

Lemma A.9. For any u ~ W, we have 

IlOeDjullo <<. IIAullo (i, j =  1, 2) 

Proof. If i = j = 1 or 2, then for any u ~ W, by Lemma A.8, 

IlOiOiul[ 2 :  (D,Diu, D~O,u) = (u, DIrDiDI~Diu) 

<. (u, AAu)  = (Au, Au)  = IIAullo 2 

(A.57) 

Otherwise let 

in (A.55). Then for any u e W ,  

[[DI D2UI[o = [[D2Dl Ul]o = [[Dt Dl u -  D2D2u[[o 

<~ IlDiDlUl[o + IlD2D2ul[o 

In a similar way, we can prove that 

11/3k/Skull 0 ~ II (/3~/31 u +/3Nr/32) ullo 

By Lemma A.8, 

IlD1O2ullo = [[O2OlUllo <~ IIAullo [3 

Now we can prove the following. 

Proposition A.2. 

I(eB(u, u), Au)L ~<28. Itullo ~/2. Ilulll- IlZu[13o/2 

_ _ ( 1 / ~  - (1/x/~)'~, 
(~ bd) \ i / x / ~  1/xf~ , ] and let / ~ 1  and /32 be as 

( k =  1, 2) 

(A.S8) 
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Proof. By Lemmas 4.2 and A.9, we have 

1/2 I ~1 1/2 
I ( P B ( u , u ) , A u > ] < . 2  TM'4 Ilullo I1u1Ill/2"4"4 - 1 Ilul[~/2" Ilull2 

~< 28. Ilullo v2. Itulll" Ilull ~/2 

This proves the proposition. [3 

Remark. The proof of (A.52) depends heavily on the fact that 
PA = A. It is true only in the periodic boundary condition case. [3 
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