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Dimensions of Attractors for Discretizations
for Navier-Stokes Equations

Yin Yan!

In this paper, we discretize the 2-D incompressible Navier-Stokes equations
with the periodic boundary condition by the finite difference method. We prove
that with a shift for discretization, the global solutions exist. After proving some
discrete Sobolev inequalities in the sense of finite differences, we prove the
existence of the global attractors of the discretized system, and we estimate the
upper bounds for the Hausdorfl and the fractal dimensions of the attractors.
These bounds are indepent of the mesh sizes and are considerably close to those
of the continuous version.

KEY WORDS: Navier-Stokes equation; finite difference; attractor; Hausdorff
dimension.

1. INTRODUCTION

In recent decades, great progress has been made in the research of the
Navier-Stokes equations, especially in the 2-D case. Significant theory of
dynamical properties of the 2-D incompressible Navier-Stokes equations
can be found in [L2], [C-F1], [C-F27, [C-F-T], [T3], and the references
listed therein. It is proved that there exist global attractors of finite
Hausdorff and fractal dimensions. The bounds for the Hausdorff
dimensions D of the global attractor of the 2-D incompressible Navier-
Stokes equations have been improved to

D<c¢G**((log G)'?+1) in the periodic boundary condition case  (1.1)
and

D<eG in the Dirichlet boundary condition case, (1.2)
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where G is the Grashof number defined by
_ /e

G
v,

(1.3)

where fis the volume force, v is the viscosity constant and 1, is the smallest
eigenvalue of the Stokes operator (see [T3]).

In this paper, we consider the discretization of the 2-D incompressible
Navier-Stokes equations. We use the finite difference method. After dis-
cretizing all functions and differential operators involved in the Navier-
Stokes equations by following the standard finite difference scheme, we
obtain a system of finite dimensional ordinary differential equations
simulating the continuous version of the Navier-Stokes equations on
appropriate grids.

We concentrate on the long-time dynamical behavior of our dis-
cretized system, particularly on the existence of attractors and the estimates
of their Hausdorff and fractal dimensions.

For this purpose, we follow the outline of arguments used for the
study of continuous version of the Navier-Stokes equations. Technicaily,
difficulties arise due to the discretized version of inequalities in the sense of
finite difference.

Throughout this paper, we consider the discretizations for the 2-D
incompressible Navier-Stokes equations with the periodic boundary condi-
tion only.

In Section 2, we discuss the basic properties of the discretization by
using the finite difference method. Section 2.1 describes the discretization
of the objects involved in the Navier-Stokes equations, such as functions,
differential operators, integrals, norms, etc. In Section 2.2, we solve the
spectrum of the discretized — 4 by using the finite difference method.

The existence of global solutions and global attractors are discussed in
detail in Section 3. In the continuous version, the nonlinear term B(u, #) of
the Navier-Stokes equations satisfies

(B(u, v), v)=0 (1.4)

for both Dirichlet and periodic boundary conditions, which is extremely
important for the global existence of solutions and for the study of the
dimensions of the attractors, and

(B(u, u), —Au)=0 (1.5)

for the periodic boundary condition only, which is used to improve the
estimate of Hausdorff and fractal dimensions of the attractors. Yet for
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directly discretizing B(u, u) of the continuous version by using the finite
difference method, we have neither (1.4) not {1.5), due to the lack of a
“product rule” for finite differences. For this reason, we make a “shift” of
B(u, u) so that the discretized version of (1.4) is true, which enables us to
prove the global existence of the solutions of our discretized Navier-Stokes
equations. Throughout this paper, we actually work on the “shifted”
version of the discretized Navier-Stokes equations. We prove in Section 3
that the solutions have discretized LZ-absorbing properties, which implies
the existence of attractors in the discretized L? sense. In the continuous
version, since the spaces are of infinite dimension, both L% and H'-
absorbing properties are necessary to obtain the existence of L2-attractors.
In our finite dimensional discretized version, we need only the discretized
L*-absorbing property to obtain the global attractors in the discretized
L?-norm.

In Section4 we give upper bounds for the Hausdorff and fractal
dimensions of the discretized L2-attractors. In Section 4.1, different versions
of discretized Sobolev embedding inequalities are developed, which are
used to study the dimensions. In Section 4.2, we prove the discretized
version (in the sense of finite difference method) of the Lieb-Thirring
inequality, the continuous version of which improves the bounds of
Hausdorff and fractal dimensions of the attractors from exponential in G to
polynomial in G [G is as in (1.3)]. In Section 4.3, we obtain a bound of
the Hausdorff dimension

D'<c'G (1.6)

where G’ is the discretized analogue of G in (1.3). This corresponds to
(1.2), the estimate for the continuous version in the case of the Dirichlet
boundary conditions. Due to lack of the discretized version of (1.5), we do
not have (1.1) in the discretized version. However, our bounds for the
discretized version are very close to those for the continuous version, and
more importantly, there is limit of the mesh size beyond which the finer
discretization does not give more valuable information of the dynamics.

In other words, by taking formal finite difference discretization for the
2-D incompressible Navier-Stokes equations, with a modification of the
nonlinear term, we obtain attractors similar to those of the classical
Navier-Stokes equations. Improving the mesh size does not change the
estimate for the dimensions of these attractors.

We also prove the existence of the discretized H '-attractors in the
Appendix. We study the discrete 2-D Fourier transform in Section A.1, and
we prove a discretized interpolation inequality in Sections A.l and A.2,
which plays an important role for discretized H'-absorbing property. The
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discretized H'-attractors are proved in Section A.3. In Section A4, a
simplified proof of the results discussed in the Appendix is given.

It is worth pointing out that the discretized L’-attractor and the
discretized H'-attractor are geometrically the same.

2. PRELIMINARIES

Consider the 2-D incompressible Navier-Stokes equations,

p (%—?%—(U-V) U)—vAU+VP=f
divU=0 (2.1)

ngdx:O

where Q= (0,1)x (0,1), Ulx, t) = (U,(x, 1), Us(x,1)): 2 x (0,1) > R,
P(x,1):2%x(0,1) >R, fe L*(Q)*,v>0, and Z(—4)=H? (2).

Note that in (2.1) the unknowns are U(x, t)eR? and P(x, t)eR,
which stand for the velocity of the particle and the pressure at the position
x and at the time ¢, respectively, p is the density, and v is the kinematic

viscosity. For details, see, for example, [T3].

Remark 2.1. We may assume without loss of generality that p=1. If
this is the case, Eq. (2.1) is called the nondimensional form of the Navier-
Stokes equation. Throughout this paper, we always assume that p=1. [

In this section, we first discretize the spatial variables of (2.1) and
differential operators by using the finite difference method. Then we study
the preliminary properties of the discretized — 4 and various norms in R,

2.1. Discretization for the Navier-Stokes Equations

Let meN, h=1/m. We approximate a function U(x)= (U,(x, x,),
Uy(xy, x,)): 2 > R* by u=u, ;:
P
o= Uslin 1) =Us (£ L) (k=12 1<ij<m)  @2)
’ m’ m
For a fixed k, we can think of u, _ as a matrix of size m xm or a vector
in R™.
For convenience, we reorder the subscripts of components of any
veR™ row by row:

r
U=(Ull, Vizs =5 Utms U1y V225 5 Uzpys * 5 Upt s U5 * 0 5 Umm) (23)
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where “tr” is the transpose operation for matrixes, so that v is a column
vector.

To distinguish such an ordering from that of vectors in the 2-D
Euclidean spaces, we define

M= {ve R”’ZI subscripts of components of v are
ordered as in (2.3)} (2.4)

Remark 2.2. The only difference between M and R™ is the order of
subscripts of components. Elements in M can be treated as vectors in R™.
Globally, M has the induced linear structure, inner product, and so forth.
An element veM, can be treated as an approximation of a function
V: 2 — R as shown in (2.2), in which the subscript (i, /) corresponds to the
space position (ih, jh). [

Remark 2.3. Since we consider periodic boundary conditions only,
we extend the indexes of any ve M by periodicity:

Vi = Utimod., m), (j mod, m) (i,jeZ) (2.5)
where
m if £ is a multiple of m
kmod., m= {k modm  otherwise d (26)

We define the operators D, D,, 4, DIV, and D as the finite difference
discretizations of 0/0x,, 0/0x,, —4, div, and V of the continuous version as
follows.

For any ze M, we denote by z,(1 <i, j < m) the (i, j)-th component of
z, whose order of subscripts is given by (2.3). Then, for v € M, we define the
linear operators D,, D,, A:M — M by

(Dyv)y=mv;—v;_, ;) (I<i, j<m) (2.7)
(D2U)ij:m(uij_vi,j—1) (1<i, j<m) (2.8)
and
(Av)yzm2(4vij—Ui+1,j_vi—1,j—Ui,j+1—'Ui,jal) (I<ij<m) (2.9)

We define the linear operator DIV: M xM — M for any w=(w,, w,)*¢
MxM by

865/4/2-4
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and we define the linear operator D: M —-» M x M for any ve M by

D.v
Dv:(Dzv> (2.11)

Remark 2.4. Equations (2.7)~(2.11) define the operators D,, D,, A,
DIV, and D in components. By (2.3) and Remark 2.2, any ve M can still
be considered as a usual vector in R™. So the above operators can be
expressed as matrixes under the natural basis of M. [I

Without any confusion, we use the same symbol for a linear operator
as well as its matrix representation. Then D, D,, A, are matrixes of size
m?*x m?, which are given as follows.

d 0 - 0
0 d - 0

Dy=m| > 0 (212)
0 0 - dyfoume

here D, is expressed by m x m blocks of size m x m, the blocks on the main
diagonal are all d,, all other blocks are 0, where, in (2.12), d, is a block
of size m xm given by

1 0 -1
1 1 0
d=| . (2.13)
; ' T
0 1 1)

where the entries of d, on the main diagonal are all 1, the entries on the
diagonal below the main diagonal and the entry in the upper-right corner
are —1, and O elsewhere;

Dy=m| : . . . (2.14)

0 o o =1 I] a0

where I is the unit matrix of size m xm; here D, is expressed by mxm
blocks of size m x m, the blocks of D, on the main diagonal are all I, the
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blocks on the diagonal below the main diagonal and the block in the
upper-right corner are — I, and 0 blocks elsewhere;

a ~I 0 i e . 7
~T a —I v e 0
o ~-I a . -
A=m*| N : (2.15)
. - . a =1 0
0 -+ cer e —T a4 I
—7 e e e 0 =T a/ e

Here A is expressed by m x m blocks of size m x m, the blocks on the main
diagonal are all 4, the blocks on the diagonals above and below the main
diagonal and that in the upper-right and lower-left corners are all —/, and
all other blocks are 0 matrix, where, in (2.15), a is a block of size m xm
given by

0 -1 4 . . . :
a=| . el el el : (2.16)
S .4 -1 0
0 vr e e —1 4 -1
—1 . 0 —1 4

mxm

where the entries on the main diagonal are all 4, the entries on the

diagonals above and below the main diagonal are all —1, the entries in the

upper-right and lower-left corners are —1, and all other entries are 0.
DIV is a matrix of size m?* x 2m?, which is defined by

DIV=(D, D,) (2.17)

D is a matrix of size 2m?* x m?, which is defined by

Dz(g:) (2.18)

where (2.18) is understood as

Dv=<giz> (Yoe M) (2.19)
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As an easy consequence of the definitions of 4 and D, one can check
that

D'D=A (2.20)

Now we turn to the discretization of the Navier-Stokes equations
(2.1). We consider discretizations in M x M. If we treat any ve M xM as
a step function approximating a function V:Q — R? as in (2.2), then the
integral of V" over Q is naturally discretized by

1 m
- Z Ui

j yax=|" =3 eR (2.21)
Q

1 m
> V2,4

Wi,j:l
Hence we define the average of ve M x M by
_ “ e ) S 0
5= Z-Z=10Uj 0 +Wi,j§102’ij . eMxM (2.22)

where e= (1, 1,.., 1)"e M.
We define the weighted norm |||, in M xM by
1 2 m 1/2
ho=(7 T % Ionol?) 2.23)

k=1ij=1

for any v e M x M, which corresponds to the discretized L>-norm.
Similarly, we define the weighted norm | -||o in M by

1 m 1/2
o=z 5 1wil?) (2:24)

Lj=1

for any we M.
As indicated in (2.2), we sample the function U: Q — R? by

u=wu; (k=12 1<ij<m) (2.25)
and similarly we sample the other unknown P: @ — R by
p=p; (I<ij<m) (2.26)
Finally, we sample the known function f: 2 - R? by

I'=Iy; (k=1,2,1<i,j<m) (227)
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To characterize the fact that fe L*()? in the continuous version (2.1), we

make the following hypothesis
1 2 m
HFH3=-5 Z Z [T y?<C?
=1ij=1

where C is a constant independent of m

(H)
Remark 2.5. The hypothesis (H) indicates that the discretized
L?norm of I is uniformly bounded with respect to m. [1

With the above definitions, we rewrite the discretized version of (2.1)
as

dt+(u-D)u+vAu+Dp=

2.28
DIVu=0 (228)
=0

where u = u(t) = (ul(t)

y (0) EMxM, ult) = (up ;(1)) e M (k =1, 2)
=(p;(t))eM, F=(13k!,-j)eM><M and

D D
(U'D)u=(u1D1+uzDz)u=<ul ity up Doy

eMxM (229
u1D1u2+“2D2u2) ( )
Au=<Aul>eMxM

Au,

(2.30)
DIVu=D1u1 +D2”2€M

(2.31)
and # is the average of u defined as in (2.22)
Before we start to study the discretized Navier-Stokes equation {2.28)
we define some more metric structures in M

In M, define the first-order difference seminorm |-|; by

el =1D0l=( % (1o, -

1/2
ol ) 232)
Lj=1

the second-order difference semi norm |-|, by

ol = ||Auno—< S (v,

1/2

Uivr,; 7 Vi1, Ui,j+1‘"”i,j—1)2) (2.33)
Lji=1

and the max norm | -|

Ioll = max

[Uij|
1<ij<

(2.34)
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For any v=v
given by

i» w=w; €M, the usual Euclidean inner product (-, -) is

(v, w)= i VW (2.35)

<u,w>=;11—2(v,w)= 2.’211: VW (2.36)

If v and w are interpreted as approximations of V, W: 2 — R, then (v, w)
can be interpreted as the discretized inner product in L*(Q), i.e.,

L) VW dx= (o, w) (237)
We can rewrite (2.20) in terms of inner products. We have, for v,
weM,
(Dv, Dw)= (v, Aw) = (Av, w), {Dv,Dw> = v, Aw)={Av,w)> (2.38)
and
| Dv||3 = {Dv, Dv) = {v, Av) (2.39)

Remark 2.6. Equations (2.32)-(2.39) can be standardly extended to
the product space as in (2.23), i.e, for v, we MxM. [

2.2, Eigenvalues of A4

To study the dynamical behaviors of (2.28), we study the eigenvalues
of the linear operator 4: M — M as in (2.9), or, equivalently, of the matrix
A of size m*x m? as in (2.15).

Lemma 2.1. A is a symmetric matrix, so it can be diagonalized. 0 is an
eigenvalue of A with the corresponding eigenvector

e=(e;)eM, where e;=1 (1<, j<m) (2.40)

Proof. 1t is a direct consequence of (2.15) and (2.16). 1[I

In [Y], the eigenvalues of discretized one-dimensional — 4 are solved.
By separating variables, we can also find the eigenvalues of the discretized
high-dimensional — 4.
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Lemma 2.2. For any 0<k, I<m—~1 and 1 <i, j<m, define

1 if k=0

. (2kn . m
gk i) = s‘“(’m‘") volsk SbJ (241)
os<—2—@—;k——)—”-i) if L%J—i—lékSm——l

where | s | is the largest integer not greater than s, and define e(k, 1) e M by
elk, 1);=g(k;i)- (L J) (242)

Then for 0<k, I<m—1, we have

k
Ae(k, 1) = 4m? (sin2 =L 4 sin? 5’5> e(k, 1) (2.43)
m m

Proof. First we see that for all 0<k, /<m—1,
e(k9 l)ij=e(k> l)(imod+ m), (jmod . m) (Vla]EZ)

Hence we can use (4, j) in (2.42) as their natural indexes for e(-, -). The
definition of e(k, I) obeys (2.5).

We consider the case 1<k, /< | m/2 | only. In other cases, the lemma
can be proved similarly.

Denote by o=2kn/m and f=2in/m. Then by (2.9), for any 1<k,
I<m—1,

1
p Ae(k, 1),;= 4 sin ia sin jf —sin(i+ 1) a sin j§ —sin(i— 1) & sin jf
—siniosin(j+ 1) f—siniosin(j— 1)
=4 (sin2 % + sin? g) sin i sin jf
k
=4 (sin2 _7:+ sin? E) e(k, 1),
m m

Therefore (2.43) is true in the case 1<k, I< | m/2]) [

Combining Lemmas 2.1 and 2.2, we obtain complete information
about the eigenvalues and eigenvectors of A.
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Theorem 2.1. The eigenvectors of A are given by e(k, ) as in (2.42)
and (241), and the corresponding eigenvalues are

Mk, [)=4m? (sin2 k_n+ sin? l_n:> (k,1=0,1,2,..,m—1). 0
m m

Corollary 2.2. Denote by
et={veM|{v,ed=0=(v,e)} (2.44)
where ec M is as in (2.40). Then
Av=0  (Yvespan{e}) (245)

and if m=2, we have
(v, vy = Dol 4m*sin? T (o3> 16 [0]F  (Voeel) (246)

Proof. Since sinx/x is decreasing on (0, 7/2), we know that
4m? sin*(n/m) > 16. [

Remark 2.7. Note that A4 is the discretization of —4 on the square
Q= (0, 1)? with periodic boundary condition. In this section we found all
eigenvalues and eigenvectors of 4. We can discretize —4 on any cube

*_y (a;, b;) of any size and of any dimension n, with periodic boundary
condition in a similar way. Following the arguments in this section, we can
also find the eigenvalues and eigenvectors of discretized n-dimensional — 4.
Furthermore, our arguments can also be used to find the eigenvalues and
eigenvectors of the discretized — A4 (of any dimension n) with Dirichlet
boundary condition. [

3. GLOBAL EXISTENCE AND GLOBAL ATTRACTORS

Consider the discretized Navier-Stokes equation given in Section 2
[see (2.28)]:

El,z+(u-D)u+vAu+Dp=F
dt
(3.1)
DiVu=0
u=0

where ue M xM and peM are unknowns, and 'e M xM is fixed and
satisfies (H).



Dimensions of Attractors for Discretizations for NS Equations 287

To study the discretized Navier-Stokes equation, this setting has some
technical problems. In this section, we first modify our discretized modet
(3.1) so that the new model is essentially the same as the original one
(in an infinitesimal sense). Then we prove that the weighted norm of the
solution of our new model is bounded, which implies the global existence
of solutions and the existence of the ||-|j-attractors. We prove in the
Appendix that the first-order difference seminorm of the solution also has
the absorbing property, which implies the existence of the ||| ,-attractors.

3.1. Shifted Version of the Discretized Navier-Stokes Equations

Let us first define some shifting operators in M and M x M.
Define 7,: M - M by

(T1U)ij=Ui—1,j (I1<i, j<m) (32)

and 7,: M - M by
(T20)y=v,; 4 (1<i, j<m) (3.3)

for veM,,, and define :: MxM - M xM by
'cw=r(w1>=<rlwl> (3.4)
) ToW;
for w=<w1)eMxM.
W,

The operators 7, 17,, and 7 have inverses given by
(ti'w)yy=v,4, (<ij<m) (3.5)

(t17')y=v,,,1 (1<i,j<m) (3.6)

-1
w tlw
r‘1w=r"1< 1):( - 1) (3.7)
w2 T2 WZ
With the above definitions, we can compose, associate, and commute
linear operators in the standard way:

and

T(Dyv) = (1,D;) v= (D7) v=D(7,0) (k,1=1,2, VveM)

We also use the following composition and commutation of linear
operators:

(T"ID)U=(DT_1)U=(DIT;1>D=<DITI_IU> (VoeM) (3.8)

2.—1 —1
D1, Dyt5 7
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and for any we M x M, we define
[(cywy) Dy +(t2w;) D] wy
[(zyw1) Dy +(t,wy) Dy]w,y

[oi(Dy7; ) +wy(Dyt )Wy
[W1(lef1)+wz(pzfz—l)] Wy

((rw)-D)w=( )eMxM

(39)
(w-(Dr“))w=< )eMxM

In all of the above definitions, indexes are always treated periodically
as in (2.5). The shifted model for (3.1) is defined by

du 1
ZJ%+§((w)-D+u-(Dr‘1))u+vAu+(DT_I)P=F

DIVy =0 19
ii=0

where ue M xM and peM are unknowns, and I'e M xM is fixed and
satisfies (H).

Remark 3.1. If we recall approximation (2.2), then modification
(3.10) is the same as (3.1) in an infinitesimal sense. [
One of the advantages of such a modification is stated in Lemma 2.4.

Lemma 3.1. For any v, we M, we have
D, (vw)= (D v) w+ (t,0)(Dw) (k=1,2) (3.11)
Proof.
(Dy(vw))y=mlvywy— v,y W,y ;)
=m(v;—v;_y ;) wy+mv; . (Wy—w;_y ;)

=[(D,v)w+ (Tlv)(DﬂV)]ij
This proves (3.11) for k=1. The case k=2 can be proved similarly. [I

Lemma 3.2, For any ve M, we have

Y D,v,=0 (k=1,2) (3.12)
Lj=1
Proof. This is true because the indexes are treated periodically as
in (2.5). O
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Lemma 3.3. For any ve MxM with DIVo=0 and any weM, we
have

_ 1 _
(Dt 'w, ”>:;‘2(DT 'w,v)=0

(3.13)
Proof.

((Dk‘fk_lw) Uk)ij
By (3.11),

(Dt 'w) v = Dy (- woy) = 14(t 'w) Dyevge = Dyl 'wor) — wD vy
Hence

1 &
(Drtwody=—5 3 3 (Dilri'wo)y
M 211
{ i (i
—— w D Uk))
m2 ij=1 ( k=1 ¢ ¥
By (3.12),
|
_2 Z 2 ‘Dk(TK lWUk):O
m> 1=t

3
N
i D13
=
TN
Me
!
o
<
x
N’
I
‘.-
T D13

Therefore,

(Dt 'w, 0> =0
This completes the proof. [I

Now we turn to the nonlinear term of (3.10).
Denote, for every u, v, we M x M, by

B(u, v)=((tu)-D+u- (Dt~ ")) v

(3.14)
and

b(u, v, w)= {Bu, v), w) (3.15)
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Lemma 34. For any u, ve M, if u satisfies DIV =0, then
b(u,v,0)=0
Proof. By (3.12),

1
2
me,

2
Z (D (ugv,0,)),;=0

k=1

s

But by (3.11),

2 2 2 2
Z D, (uev,v;) =( Z Dkuk)( Z v ) Z (T ttx) Dyp(v,0))

k=1 k=1

Since DIVu=Y%_, D,u, =0, we have

1 m 2
o Z Z ((teue) Di(v0))y=0
Lj=1ki=1

Together with (3.11), we have

,_.
[
i1

—

(v )(Dyv,) Ul)ij

3

|
FNgE

,_.
x

3

1 m 2
2";2_2 Z Z ((Tkuk)(fkvz)(DkW))ij
Li=1 kl=1
1 m 2
= T Z Z ul,i—l,jul,i—-lﬁj(Dlvl)ij
hj=11=1
1 m 2
_;1_2 Z 2 u2,i,j~1vl,i,j-1(D2Ul)ij
ij=11=1
1 m 2
=3 Z Z Uy 0, ;D1 v1)isn,;
me s
1 m 2
*‘nﬁ z 2 uZ,ijvl,ij(Dzvl)i,j+1
hi=11=1
1 m 2 .
= -3 Z Z (v, Dyt 0)y
j=

1 ki=1

or
{((ru) -D+u- (Dt ")) v,0)=0

This proves the Lemma. [
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3.2. Global Existence and Global | - | ,-Attractors
Recali (3.10),

du 1
71:+§((ru)-D+u-(Dr’1))u+vAu+(DT‘1)P=F
DIVu=0

u=0

where ue M xM and peM are unknowns, and I'e M xM is fixed and
satisfies (H).
The last two equations of (3.10) can be absorbed in the space expres-
sion of M x M. To do so, we define two subspaces V and W of M x M:
V={veMxM|DIVy=0} (3.16)
and
W= {veV|5=0} (3.17)

where 7 is the average of v defined as in (2.22).

Note that we have the inclusion relation W< Vc M x M. Note also
that we have the dimensions dim(MxM)=2m? dim(V)=m? and
dim(W)=m?-2.

Lemma 3.5. ||-|o, II-llo, |11, and |-|, are norms on W.

Proof. This can be verified from the definitions (2.34), (2.23), (2.32),
(2.33) together with remark 2.6, and the nondegeneracy property of A
shown in (2.46). [

Lemma 3.6. The operators A and D defined by (2.9) and (2.11) com-
mute, i.e.,
D,A=AD, (i=1,2) (3.18)
Proof. One can check (3.18) by considering expressions (2.9) and
(2.11) or their matrix forms (2.15) and (2.18). [
Corollary 3.1. 'V and W are invariant subspaces of A. [
Let
P-MxM->W (3.19)

be the orthogonal projection with respect to the inner product (-, -)
defined in (2.36) and remark 2.6.
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By applying P to the first equation in (3.10), we obtain

dPu 1
—a,-t-“-Jr5 PB(u, u)+ vPAu+ P(Dt~!) p=PI (3.20)

where B(u, u) is as in (3.14).
By Corollary 3.1, we have PA=AP=A4 on W. By Lemma 3.3, we

have P(Dt ') p=0. Since u satisfies the last two equations in (3.10), which
is equivalent to the fact that ue W, we have Pu=u. Hence (3.20) yields

du 1
71:+§PB(14, u)+vAu=PI'  (u=u(t)e W) (3.21)

If we take into account the initial data, we obtain

du 1
£+—2—PB(u,u)+vAu=PF (u=u(t)e W)

u(0)=u@ew

(3.22)

Remark 3.2. In solving for u, (3.22) is equivalent to the initial value
problem of (3.10). In the former case, we ignore the term p. [

Note that W is an (m?®— 2)-dimensional subspace of M x M and the
first equation of (3.22) is also of dimension (m?—2). Furthermore, since
PB(u, u) and Au can be expressed as (quadratic and linear) polynomials of
u, it is certainly Lipschitz continuous with respect to u. So we can solve for
u=u(t)e W on some interval te[0, T) with u(0)=u'". This is sum-
marized as

Theorem 3.1. For any u®eW, there is a unique u=u(t)e W
satisfying (3.10) andjor (3.22) on te [0, T) with u(0)=u®. 0

The main purpose of this section is to show global existence for
solutions of (3.10). We consider only for u=u(t)e W.

To show the global existence, we prove an a priori estimate of the
weighted norm || -], of u=wu(?) on the existence interval.

Theorem 3.2. There exists a constant

which is independent of m, where C is as in (H) and v>0 is as in (3.22),
such that for any constants py> p, and Ry > 0 independent of m, there exists
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a constant Ty>0 independent of m, such that as long as the initial data
u'® € W satisfies

@< R,
then

lu@llo<po  (Vi2To) (3.23)

Proof. By taking the inner product {-,.) of u and (3.21), we have
1d ., 1
5-65|[u||0+-2—<PB(u, u),uy +v{Au,uy=<{Pr,u) (3.24)

Since ue W, then u = Pu, so
{PB(u, u), uy=<Blu,u), u)=>b(u, u, u)
By Lemma 3.4,
{PB(u,u),u>=0

so Lemma 3.4 yields

1d
o lull§+v{Au, uy = {PT,u) (3.25)

Since ue W, by (2.46),
(Au, uy > 16 Jullg (3.26)
Then (3.25) yields

1d 1
EEIIMII§+16V l|u|!§<<PF,u><IIPFIIOHMHOSEHFIIH??V el

By combining this with (H), we have
2

d
:1; Ilu“gel6v1)<i616vr

16v

Integrating from 0 to 7, we obtain
2

lu(1)5 < RGe™ 1" + 160)?

(1 ___e—16vt)
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Choosing p,=C/16v and T,=1/8vlog Ry/(pi*>— p}), we complete the
proof of the Theorem. [

Remark 3.3. The absorbing constant p, (of ||-||,-norm) tends to 0 as
C [the uniform bound of | I'||, as in (H)] tends to 0. [

Remark 3.4. Theorem 3.2 shows that if p( > p, is arbitrarily chosen,
then for any initial data u@eW, the solution u=u(t) to (3.22) [or
equivalently, (3.10)] has the property [u(z)l, < p, for ¢ large enough. This
is the same as to say that

Lmsup |u(r)o<po, (Vu@eW) O (3.27)
t— 0

Since
lug (O <m? Ju(e)le  (k=1,2, 1<, j<m)
we know that

lim sup |u (1) <KmPpo<c0  (k=1,2, 1<i, j<m)

—

That is to say, u=u(t), the solution to (3.22) [or equivalently, (3.10)]
does not blow up in finite time. So we have proved the following global
existence.

Theorem 3.3. For any initial data u'® € W, the solution, u=u(t)eW,
to (3.22) [or equivalently, (3.10)] exists for t€ [0, + o). [

As an immediate consequence of Theorems 3.2 and 3.3, we have the
following theorem.

Theorem 34. The solution, u=u(t)e W, to (3.22) [or equivalently,
(3.10)] has a global attractor of = <f,, in W in the norm | -||y. [

4. DISCRETIZED INEQUALITIES AND THE DIMENSIONS OF
THE ATTRACTORS

In this section, we first prove a discretized Sobolev embedding
inequality. Then we prove the discretized Lieb-Thirring inequality, which
plays an important role in proving the exponential decay of the wedge
product of the solutions of the linearized equation of (3.10). Finally, from
the exponential decay property, we infer an estimate of the Hausdorff
dimension of the attractor obtained in Theorem A.3.
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4.1. Discretized Sobolev Embedding Inequalities

It is well-known that if kp =» and Q2 = R” is bounded and satisfies the
cone property, then the continuous embedding

Whr(Q)o LYR)  (Yge[l, o)) (4.1)

is true (see, e.g., [A]).

In this section we prove a special case of (4.1} (k=1,p=2, n=2, and
Q= (0, 1)?) in the discretized version.

Recall that functions in M are our “discretized” functions. We tem-
porarily define the following norms in M for any p, pe[1, «0):

1 m i/q
|U|q=<; 2 v I") (42)
ij=1
1 m i/p
IU]1p~ (;ﬁ E ('Uij|p+ |(Dv)ij|p)>
1 Z ip
=(? Z (lvij|p+|(D1U)ij|p+|(D2”),7|p)> (4.3)
ij=1

The following lemma is the key point of the discretized Sobolev
embedding.

Lemma 4.1. If 1< p<2 and qg=2p/(2— p), then there is a constant

2+, 3p—Lip 3r—1yp . P

K, =K(p)= -

independent of m such that

|Ulq<K1 |U|1,p (VveM)

Proof. Let y=p/(2—p). Then y—1=2-[(p—1)/(2—p)]1 =0, or,
y= 1
For iz mj/2,
—1
Ivul + Z (Ivk+11!

k=1

vy|” = v l7)

865/4/2-5

< 1 m 1
Y vy y:;[g—’ ’Ulj|y+;

5T

i={m27 k=1

Ivk+11

— [vg]7)
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So

1 m 1 m i—1
D ML = S Y T P 0
m w2 A i=Tm/2] k§1 e Y

m—1

1 .
S;igl Iv,.j|7+; Z (m— i) [|v;4 1,17 — lv,"|

i=1
By the mean value theorem, for any a, b= 0, there is a 8 € (0, 1) such that
la" — b =y(Ba+(1—-8) b)Y~ |a—b| <y(@ '+ b 1) |a—bl
SO
m ,y m—1 3 B
Z g|y+a 2 (|Di+1,j|v Y4 |vij|y 1) l(Dlv)i+1,j| (4.4)

oyl <
L ek
277 m, i=1

Note that the right-hand side of (4.4) is independent of the first index
of v, and the indexes of v are arranged periodically as in (2.5). Thus we can
replace the index “1” on the left-hand side of (4.4) by any index “.” Hence

we have
2 Z 2 -
max o)’y L 07+ S (a7 + 10l 1),

1<gism i=1

By taking the sum over the index j, we have

— Z (max [v;17) Z

I<ig<m

2y _ _
nT z z+1,j!v 1‘|’|l7ij|y l)'(Dv)i+1,j|

hi=1

By applying Holder’s inequality, we have

— z ( max |v,]")

J 1 I1<ism

m Lp
<a(s £ (i e2i001n)

1 ™ . o o p
(Zﬁ Y (gl 07 o 10707 4+ oy ”’)>

Lj=1

1/p
<2 21/p 31/17 ))(ni Z (]Uglp‘*‘l(pv)z-i»ljlp)

Lj=1

1 m - 1/p’
<W z |Uij|(v— )p>

ij=1
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Note that p'=p/(p—1) and y—1=[2(p—1)1/2—p), so (y—1)p'=
[2p/(2—-p)]=q. Hence

1 _
- Z ( max |v,|” Y2+ p 3 =1p. 'ivh,p'll’lz 1
m

j=1 1<ism

By the same procedure, we can prove

1
Z Z ( max |v Iy)<2(p+1)/p 3p—1p, “y. |v| |UIZ~1

-1 1<jsm

Hence, since ¢ =[2p/(2 — p)] =2y, we have

1 m
wli== Y (o)
m =1
1 n
<= ( max |vy|”)-( max |v;|")
m* 2y i<ism 1< sm

:(—’% rznl ( max Ivyly)> ( Z (max IUUIY))

i=1 lg<jsm I<is<m

\22(p+1)/p 32(p p , 2‘[U|ip‘i”|5(y 1)

If |v], =0 then v =0, so the lemma is trivial in this case. Otherwise we have

|v|g—2(v—1)<22(p+1)/p . 32(p~1)/py2 |U|ip

But g—2(y—1)=qg—2q/p'=2p/2—p-(1—2(p—1)/p)=2. Therefore

_ p
!v|q<2‘1’+”/”-3(" Dy/p -2-p . |U|1 »

This proves the lemma with K, =27+ .3 -1r. [p/2—p)]. 1

With the lemma above, we can prove the following discretized
embedding Theorem.

Theorem 4.1. For any qe [1, o), the following embedding
(M’ I'!I,Z)q (M) ilq)

is true. In other words, there exists a constant K, independent of m such that
<Ky lvly,  (YveM)

Proof. If g<2, by Holder’s inequality, |v],<]|v|,. Hence we need
only to prove the Lemma for ¢ > 2.
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Assume ¢>2, and take s=2¢/(2+ ¢), then we have 1<s<2. Apply
Hoélder’s inequality again,

(]

vl Z |vy|* + 1(Dv)41°)

L

m
1 m s/2

<_i PRCEILOT)

(2—s)/s
(;;2 Z (12/(2*&)+12/(2~s))>

Lj=1
2
= 2 s)/s |U|i,2

N

Since g =2s/(2~s), by Lemma 4.1, |v|, <K, |v], ,. Hence
0l <20797K, ol

Now take
K- 2(242+3q+2)/qz,3(q—2)/2q,q if ¢g=2
27132 if 1<g<2

which completes the proof. [

Corollary 4.1. For any qe[l, ), there is a constant K;=
/(17/4) K, independent of m such that

[v], < K; vl (Voe W)

Proof. By Corollary 2.2,

1z Lo 17
|U|12=;1‘2i,jz=1 \0y|2+Wi’jZ=l |(DU)U|2<RHU||%

Hence by Theorem 4.1,
17
[v], < K, |U|1,2<‘4_K2 loll, O

We are particularly interested in the norm |.], in M or W. By
Corollary 4.1, we have the embedding inequality |v|,< K, vl (YveW).
We prove the following discretized interpolation inequality, which is a
special case of the discretized Lieb-Thirring inequality, and which will be
used to simplify the proof of the discretized H !-absorbing property of the
discretized Navier-Stokes equations.
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Lemma 4.2.
Ul s <K, ull§? ulli?  (YoeW) (4.5)
where K, =4.

Proof. By Lemma 4.1, with p=1 and ¢g=2, we have, for any
veMxM,

lv], <K, '”[1,1 (4.6)

where K, =4. For any ue W, we define u’e W by (4?), ;= (1, ;)*. Then
(4.6) yields |u?|, <K, [u?],,, or

1 2 m 1/2
4
E=11ij=1

2

1 m
<Kol +Ke(53 T % (D, +Dad,))  (47)

k=1 ij=1

Since
1
32

>IIT[\/JN

Z (|D1“/2c,ij| + |D2u/2c,ij|)

14,
1 2
i)

k=1

+ 1(Dyte)g il - g+ tp i j—1l)

m

—_

I

m
Z (D w0 il - i i+ i 51,5
i=1

4

by the Cauchy-Schwarz inequality,

1 2 m

o Y Y (Dl +1D0ud <22 fullo- flull,
k=11ij=1

Hence, by (4.7),

1 2 m 172
(—22 > “i,ij) <K U2 +22 K, ulo- lull, (4.8)

Mmoo =1
But ue'W, so (2.46) gives
lul 3= Nl 5 < 5+ Nlutllo - Nuel

Thus, (4.8) gives

| 2 1+8,/2

(55 3 ) <202k,
<(1+8./2) - llullo-ull,
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or
Jula <N/ 14 8/2- Jull § -l > <4+ Null§2 - ull ¥ 0
In the continuous case, this is equivalent to
flu<CIAIZIflIE (VeH(Q)

where 2 = R? This is a special case of Nirenberg’s inequality, which gives
flexible indexes of order of differentiation and interpolation (see [N, [F1],
and [L1]). It is also a special case of the Lieb-Thirring inequality, which
applies to a family of orthonormal functions (see [L-T], [T3]).

4.2. Discretized Lieb-Thirring Inequality
Define a norm ||-|| in M x M by

laell = (lleell T + 12l 3) > = Qa1 + el T + Ny G + Nusall )2
(Vue M xM) (4.9)

For a fixed ge M x M, consider the discretized Schrédinger-type linear
operator A+ 1+ g: MxM - M xM defined by

(A+1+g)u)yy=(Au) y+up s+ 8rytte,y  (VueMxM) (4.10)
This operator induces a bilinear form on M xM

L,(u,v)=<u,(A+1+g)v)

1 2 m
=<1, (A+1)v>+;§ Y X gtV (4.11)
k=t ij=1

which in turn induces a quadratic form on M xM
Q. (u)=L,(u, u) (4.12)

From (4.11), one sees that A+ 1+ g is a symmetric operator on
M x M, so it has 2m real eigenvalues. The eigenvalues of 4+ 1+ g can be
obtained by the min-max method

max  Q,(v) (4.13)

v,ud> =0
=1 i

“j(g)=u ,

with
pi(g) S ux(g) < - S paml(g) (4.14)
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In this section, we give an estimate (for any y >0) of

Y lu()l

ni(g)<0

in terms of g and 7.
If g, he M x M satisfy g < h, ie,

gk,l_'ighk,ij (k=1, 25 1<h]<m)
then, by (4.13),
w(g)spu(h)  (1<j<2m)
For geMxM, define g,, g_cMxM by
(g4);=max(g,,0), (g_);=max(—g,0)
Then —g_ < g yields

wi—g-)suy(g) (1<j<2m)

301

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

For every reR, define N,(g) to be the number of u;(g) <r (counting

the multiplicity).

Lemma 4.3. For any y=0,

S lm(el=y [ PN (g dr

pi(g) <0

Proof. Let f= Ny(g). Then

v [N (g)dr
0

(4.20)

-y (yoo +J—;41(g)+ +J~—uﬁ—1(g)+J-0—#ﬂ(g)> r"_’N_,(g) dr

—ni(g) —u2lg) —np(g)

w0 —u(g)
=y<f ry“l-Odr+f P ldr -
—p1(g)

—mAg)

—pp-1(8) —uplg)
e pnar | "”rv-l.ﬁdr>

—up(g)

= Y lu(g). O

#(g)<0

Hence, in order to estimate (4.15), we need to estimate N _,(g).
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Lemma 44. If ge M xM satisfies g<0 (ie., g ;<0 for all k, i,
and j) but not identically equal to zero (i.e., there are k, i, and j such that
8.y <0) and r <0, then for any fixed j with 1 < j<2m, p;(xg) is continuous
and strictly decreasing with respect fo K.

Proof. [K] proved the same result for the continuous version. In the
discretized version, since the global space is of finite dimension, we can
prove this Lemma quickly.

Since y;(xg) is the jth eigenvalue of the operator A + 1+ g, ie., p;(xg)
is the jth root of the characteristic polynomial A(A4+ 1+ xg) of the
operator A+ 1+ xg. But A(4+1+xg) is continuous with respect to x, so
u;(xg) is continuous with respect to .

By the min-max method (4.13),

min max Q. (v)
D ,ui—DeMxM veMxM
Kv,uy =0
i=1,., 71

uj(g)=u(

= min max (v, (A+1)v)+x<v, gv)

D) i~ DeMxM veMxM

.....

Since (-, (4 +1)-> is positive and <, g- > is nonpositive and not identi-
cally 0, so u;{xg) is strictly decreasing when x is strictly increasing.
This proves the lemma. [

Lemma 4.5. With the same assumptions as in Lemma 4.4, N,(g) is
equal to the number of ¥’s in (0, 1] such that p,(xg)=r for some j.

Proof. Consider p;(xg).

If k =0, then y;(xg) are the eigenvalues of 4 + 1= A4 +idy . m, Which
are positive since the eigenvalues of 4 are nonnegative.

If k=1, then y;(xg) are the eigenvalues of A+ 1+ g.

Hence by Lemma 4.4, for any p,(g) <r(<0), we can find one and only
one k€ (0, 1] such that p,(x; g) =r. On the other hand, for any u;(g)>r
there is no k € (0, 1] such that pu,;(xg)=r. This proves the lemma. [l

For any r<0, 4+ 1—r is a symmetric linear operator, and its eigen-
values are all positive. Hence the inverse

(A+1—r)7!

exists, and its eigenvalues are also positive.
For any he M x M, define the multiplicative operator

AMxM->MxM
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by
(o) 5=hp gy (Y0EeMxM) (4.21)

Let us also define for every r <0

G,=lg" (A+1-r)""|g|"? (4.22)

where |g|"? is an element of M x M defined by
(|g|1/2)k,ij:|gk,ij|1/2 (4~23)

One sees that G, is a positive operator since r<0 and 4+ 1—r is
positive.

Lemma 4.6. We make the same assumptions as in Lemma 4.4. We also
assume that k€ (0, 1]. Then A+ 1+ kg has r as an eigenvalue of multiplicity
L if and only if 1/x is an eigenvalue of G, of multiplicity 1.

Proof. If xe(0,1] and
(A+14+xg)vo=rv

for some ve M x M with v#0. Let u= —|g|"? v, then u#0 and
— 1/2 -1 1/2 1/2 1/2 1 1
Gru=|gl" (A+1=r)""[g " (el P v)=|g| " — v |="u

Assume that v, v@,.. v are linearly independent eigenvectors
of A+ 1+ kg, then the corresponding eigenvectors of G, are
(uD= —|g| oD} _,. Let ¥!_ ku®=0. Then [g|"*¥i_ k;v?=0,
or g _kv® =0. But (A+1+xkg) X ko =r3i_ kp® or
A+ ko =r3!_ kv®. Since 4+1 is a positive operator and
r<0, wehave 3_ k;o0=0,0r k,=k,= --- =k,=0. Hence {u"}!_, are
linearly independent.

Conversely, if ue M x M with u#0 and ke (0, 1] satisfy

1
Gu=—-u
K

Then
kg(A+1—r)""g|u
=—|gl"Pu=A+1-r)(A+1—r)"  (—|g|"*u)



304 Yan

If we take v=(4+1—r)"' (—]|g|"*u), we have v #0 and
(A+1+kg)v=rv

Assume that u'V, «®,.., 4" are linearly independent eigenvectors of
G,, then the corresponding eigenvectors of (4+1+«kg) are {v¥=
(A+1—r)"H(—|gl"?u)}_, . Lety, ., kw®=0,then |g| > ¥!_, ku®=0.
But G, ¥!_, ku' = (1/x) X, ku® or (k) Xi_, ku® = 0. Hence
I ku® =0 or ky =k, ==k, =0. So {vV}_, are linearly
independent.
This proves the lemma. [

Lemma 4.7. Assumptions are as in Lemma 4.4. We also assume that
te[0,1] and k= 1. Then

N(g)<Tr((g—(1—0)r)'"? = (A+1—rt) " (g—(L=1) 1) ?)
where “Tr” is the trace of a linear operator.

Proof. By Lemmas 4.5 and 4.6, N,(g) is equal to the number of
eigenvalues of G, which are >1. Moreover, G, is positive. Then, denoting
by o; the eigenvalues of G,, we have

N(g)= Y 1< Y of<Tr(Gy)

gzl gzl

This proves the Lemma for = 1.

For te[0,1), note that (A+1+g)u=ru if and only if
(A+1+(g— (1 —1)r)) u=rmu. Hence by Lemmas 4.5 and 4.6 and the fact
that N,(h) is decreasing with respect to h [which is implied by that fact
that u,(h) is increasing with respect to /], we have

N,(g)=N.(g—(1-0)r)<N.(—(g—-(1-1)r)_)

Using the result of this Lemma for the case =1 completes the proof. [

To estimate (4.15) by means of the estimate for N,(g), we need to
consider the eigenvectors of the operator A: M — M. The eigenvectors
e(k, ) of A are given by Theorem 2.1.

Lemma 4.8. Let e(k,1)eM(1<k,/<m) be given by Theorem2.1.
Then the only possible values that ||le(k,l)|lo can take are 1 or (1/\/5) or

(1/2).
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Proof. Since by Theorem 2.1, e(k, [)=r(k),-s(1), (0<k, ISm—1), it
follows that

le(k, )13 = elk, 1)

et
=(;11_ r(k)g>.(%§l s(z)i) (4.24)

But by Theorem 2.1, for a fixed k&, #(k), is of the form

1
m?

))Ms ‘HME

1 (k=0)

a,={ 3 0) (1=<|3])
cos( g’_”_mi)__) <[§J<k<m——l)

(1/m) L7, r(0); = 1; in the second case, (I/m)z r(k) = 5
12m¥7_ cos(j-(4nm/m))=4%; in the third case, (1/m) (k) =i+
(1/2m) X7 cos[j - (4nm/m)] = 5. Hence we have

1
1 Z - (4.25)
7 8 pe
2
Similarly,
. 1
1 S sy2=41 (4.26)
m = 5

Thus, (4.24), together with (4.25) and (4.26), shows that the lemma
holds. {1

We reorder {e(k, I)}7 'y as n"), 11(2’ ., 1 50 that the corresponding
eigenvalues of A4 satisfy 0=14; <4,< - </1 2. By Lemma 4.8, 7] >1
Since |e(k, 1), = [r(k)| - |s(]);/ <1, so

<1 (1<i, j<m, 1<n<m?) (4.27)

Hence the normalized family

(n) m
{go(”) =~L~} (4.28)

n=1
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satisfies [by Lemma 4.8 and (4.27)]

i <2 (4.29)

Proposition 4.1. The assumptions are as in Lemma 44. We also
assume that y>0 and 1 <k <y+ 1. Then there is a constant K>0 inde-
pendent of m such that

) Iu,-(g)|7<K-<izZ 3

1(2)<0 My =1

(gk,,-,-)y_“) (430)

Proof. By Lemma 4.7,
N(g)<Tr((g—(1=0) )2 (A+1—rt)" ! (g=(1—1) 1))

But (4 + 1—rt) and the multiplicative operator (g— (1 —¢) r)"? are both
positive and symmetric, and the result of [L-T] (Appendix B) implies that
for any fe[1, + ),

Tr((g— (1= (A+1-r)" ' (g=(1-1)r)!?)’

< Tr((g— (1= (A+1-rt)™" (g— (1=1) 1))

By taking =1, so for any r >0,

B/2 -8 B2
N_r(g)STr<(g+%>/ <A+1+%> <g+%>_/) (4.31)

Consider the orthonormal and complete family {¢}>” of M x M, as in
(4.28), consisting of the eigenfunctions of 4. We have, for any ve M x M,

\A2 P\ B P\ B2
(g+§>_ <A+1+§> <g+§>_ v
2m? r\—F r\#? ™ r\#2 -
= £ (rreg) (s3] mo)(s43) e
So the kernel of [g+ (r/2)]172 [A+ 1+ (/2)]1 % [g+ (r/2)1%* is
Gk, i, s k.7, )

2m? r -8 r B/2 r B/2
=Z <1n+1+'2“> (gk,ij+§) _qu,lz?j(gk’,i’j’"{'E) ‘P;:,)i'j'

n=1
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and its trace is

M v lyij=1n
Hence
r\ P2 —B B/2
N <T = A+1+= -
An<t(e+5) (45145) (e+5) )
1 2 m 2m? r — B r B (2
=— A 14— L n
m2 k§1 i,jz=1 = ( nt +2> (gk,l]+2>_ (‘Pk,lj)
By (4.29),

N_,(g)<4< ki i(gk,, r)i)(i (/1,,+1+12‘.>~ﬂ>

By Theorem 2.1, i(p, q)=4m’[sin’(pr/m)+sin*(gn/m)] (1< p, g<m).
Hence

2m? r\F
Y (,1,,+1+~>
n=1 2
m L, qn B
2. [1/(4m <sm P2 sin? )+1+ )]
pg=1 2
)
a=

1 F (o ) )|

Since (sin x)/x>2/n (Vxe [0, (7/2)]), we have

i

2m? —B m
r 1
A+ 1 +—> <2
El < 2 MZ:l (16(p* +q%) + 1 + (r/2))"
o dx dy
<2-
fo fo (16(x* + y?) + (r/2))"
Y N BJ tdt
B 2+ 1)F
If we choose f> 1, then
®  tdt 28=%q
S=28-5 =
njo Fs < (4.32)
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Hence

2
N_r(g)<45r1_ﬂ'< )

Now (4.20) yields

T lu(l <y [ PN (g)dr

ui(g)<0
1 2 m © r B
=4S i By r}'_ﬂ< ,+_’> d))
! <m2 k§1 i,jz=1<'[0 ™3 _ Y

For fixed k, i, and j, consider (& r"~?[g, ,+ (r/2)]°. dr. We need to
consider only those (k, i, j) such that g, ;+(r/2) <0 or g, ;< —(r/2) <0.
The change of variables r =2(g, ;) —p gives

el B 1
f P gyt ) dr=21P f p' P(1—p)fdp )-(gey) ™!
0 2] 0 v
Since 1 < f<y+ 1, we know that
1
S1=2y“‘“-(f Pyﬁ(l—/?)ﬁdp><oo
0

Hence

2

1 m
) |uj(g)|ys4ssly-(; ) (gk,.-,»)?_“)

#i(g)<0 k=1ij=1
This completes the proof of the proposition for K=4SS,y. [

Corollary 4.2. Assumptions are as in Lemma 4.4. Then for 0 <y <1,
we have

1 2 m 1/
X lu,-(g)lsK”%(—; Y o ¥ (gk,,.j)v_“) (4.34)
ui{g)<0 m” =1 ij=1

Proof. Let pu,<p,< - <uy<0<py, < ---. Then

) |#,-|<( Y |“j|v>|u1|1_7$< 3 Iﬂjly)l/y

pi<0 pi<0 #<0

By Proposition 4.1, we obtain (4.34). 1[I
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With the estimate shown in Proposition 4.1 (especially in
Corollary 4.2), we can prove the following theorem, which is a generaliza-
tion of Lemma 4.2.

Theorem 4.2. (Discretized Lieb-Thirring Ineguality). Let ¢V, 1<I<
N(<2m?) be a family in M x M which is orthonormal with respect to the
inner product < -,->. Let pe M xM defined by

N
Peg= 2 loly1? (k=12 1<i j<m) (4.35)
=1
Then for every p with
I<p<g2

there exists a constant k >0 independent of m such that

(2 3 oty ) <x(Z teii+n) o)
I=1

mklljl

Proof. Define the operator BMxM->MxM by B=A4+1—
ap*?=Y Then

N N N
2 <0 Be> =3 (leWIT+10WI5)~a T (o, ptP= D

=1 =1 =1

Since
N 2 N
1 m
(1) 1/( —1) ()N 1/(p—1)\2
Z P (P( >_;1_2 Z Z Zp/(p ))
/= k=1ij=1 1
N
— /(p—1)
=— ) X ry
m k=1ij=1 Y
we have

N
pﬁ/f,’"”+ 2 (eI +1913)
=1

L

k=1

N
Z ((p(’) B(p“’)

u'[\’l3

0
m

Since ¢*,..., ™ are orthonormal in M x M, a well-known wedge-product
argument shows that

N
Y <o® Boy =i (—ap" ) 4 py(—ap" )
I=1

. +#[N(__ap1/(p~1))
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Hence
N
S <o, BeY > uy(—ap P V)4 py(—apt ) 4
I=1

+#N(_ap1/(p~l))> Z ‘uj(_apl/(pIA))

(—apltr=1h <o

By Corollary 4.2 (take y= p— 1), we have

) i —ap7= 1)

ﬂj-(,apl/(P—l)) <0

” V-1
> —KYe-1. ( Y (aple=1) )

3
M- 21 =1

Thus

1 2 m . i/(p-l) 2 m )
<Kotp — Z Z p/(p— )) ( 5 Z pp/(p ))
=1 =1

m: 21
N
Z U135 + 1e®13)

Let

we have

Y (eI +le®15) =27 % VK

Z
TN
|p_
[\°]
M-
™Mz
)
]
@y
|
~——
5
|

This completes the proof for

L p
271488,y 2% rfhsr T A1 —s)P ds

where fe(1, p). O

Corollary 4.3. Let ¢Y,..., 0™ be as in Theorem 4.2. Then

—12" Z 'Zn: Pi,ijSK(Z (H(P(”\lf+1)> (4.37)
=1 i 1 =1

m

k..
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where k can be chosen as

= lim 2p =—
K_ﬁ——»1+ njésl‘ﬂ(l—s)ﬂds_n

Proof. By taking p=2 in Theorem 4.2, we obtain (4.37). 1[I

4.3. The Hausdorff and Fractal Dimensions of the Global Attractor

In this section, we consider the shifted version of the discretized
Navier-Stokes equation (3.22) or, equivalently, (3.10),

du 1
& () Du-(Dr)utvdu+(Dr ") p=T
dt 2 (4.38)
DIVu=0 '
=0

with the initial condition
u(0)=u@eW={weMxM|DIVw=0, »=0} (4.39)

where ue MxM and peM are unknowns, and e M xM is fixed and
satisfies (H).

By taking the formal derivative of the solution u to (4.38), for u
starting from the attractor <7, as in Theorem 3.4, ie., u(0)=u'Y e o, , with
respect to the time variable ¢, we obtain the following equation

?t—-}— vAU-I-%((w)-D—i—v-(Dr’l))u—%%((ru)-D+u
(Dt Y o+ (DY) g=0 (4.40)
DIVy =0

v=0

where ve M xM and u =u(t) is the solution of (4.38).
Equation (4.40) is equivalent to

dv

1 . 1
dt+vAv+§P((w)-D+v-(Dr ))u+2P((ru)

D+u- (D)) v=0 (441)

where P: M x M — W is the orthogonal projection with respect to the inner
product (-, .>.

865/4/2-6
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Equation (4.41) is associated, as usual, with the initial condition
v(0)=¢(eW (4.42)

Since by (4.41), dv/dt is equal to a (quadratic) polynomial in v with
smooth coefficients (depending on ¢), the local existence of the solutions to
(4.41) and (4.42) is evident.

In this section, we estimate the Hausdorff dimension of the attractor
of = s, obtained in Theorem 3.4, ie., the attractor «f = .o, under the
norm | -[lo-

We first prove the following result.

Lemma 4.9. For any bounded set B< W, we have
2

1 c
lim sup sup ;j ()| dt < ——
V]

2
t— +o0 u®eB 16v

where C is as in (H).
Proof. By (3.25),

(443)

1d . "
Sl 4y Ll = P> <IN < 4L
Hence
2
__||u(t)|| j lu(s)|? ds\lg S+ |lu(°’||0

This proves the lemma. [

Proposition 4.2. There exist constants d>0 and a >0 independent of
m such that if 1> d, then there is an o,;> 0 such that

lo@() A VD) A - A D) iwy
SIEDAED A oo A ED| e (4.44)

Proof. Fix a number / with 1 </<m?—2. Let v)(¢) be the solution
to (4.41) with v(0)=¢PeW. Then a standard procedure gives (see

(T31)

o) A vP(1) A oo A VD)) jiw

=IEWAED A o A D] g exp (f'Tr F/(S(s) u®) 0, (s) ds) (4.45)
0
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where S(s) u'” = u(s) and F’ is the operator given by

F(S(s) u®)w= —vAw~L((zw)-D+w- (Dt ")) u
—(zu)-D+u- (Dt ") w (4.46)

and Q,(s) is the orthogonal projection of W to the space spanned by
vW(s), v@(s),..., v¥s). Equation (4.45) implies that if @), @) ¢O
are linearly dependent, then v')(¢), v'®(¢),..., v)(¢) are always linearly
dependent [in this case (4.44) is trivial]; otherwise, if &), @) O
are linearly independent, then v'V(z), v®(¢),..., v"(¢) are never linearly
dependent. We shall always assume that ¢, £ &Y are linearly
independent. Therefore

dim(Q,(s) W) =
for any s>0. Hence we can find an orthonormal basis {¢¥}/_, of
Q,(s) W, where ¢ = ¢(s) depends on the time 5. We have
14

Tr F/(S(s)u®) e Q)(s) =} <F'(u(s))>Q,(s) 0"(s), 9™(s5))
1

n

it

(F/(us)) 9 "(s), 9™(s)>

1

1 !
=—v ) lo™li- Z b(u(s), ™) (447)

|1M~

n

where
b(u(s), ) = (T Du(s), > + LDt ") u(s), o)
+ {((tu(8)) - D +u(s) - (Dt~ 1)) 0, 0™
=b,(n)+ by(n)+ by(n) (4.48)

By Lemma 3.4, b;(n) =0. Hence we need to estimate

b(u(s), p™) = b,(n) + by(n) | (4.49)

Define pe M x M by

4

Pry=p, (@) (4.50)

n=1
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Since

¢

Y, bu(n)

n=1]1

[
Y, z Tk‘ﬂi"fj(Dku(s))h,y‘pzl}j

11 7 2 '
<53 Y ((Dku(s))h,ij ) (tk‘P;cn;))

ij=1 hk=1 n=1

1 S '
+32: 2 X ((oku(s) 2 (oi)) )

ij=1 hk=1 =

=2 Ju)ll - lpllo

Similarly,
i

<2 (sl - el

by(n)

Thus (4.49) yields

!
b(u, 0™)| <2 /2 llu(s)ll; lpllo

By Corollary 4.3,

I 1/2
oo (x 3 lo™i+xl)
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where x is a constant which can be taken by x =4/n. Hence

! 1,2
<2./2xY? ||u(s)||1-< Y o™ 1+l>
n=1

i b(u, ™)

n=1

Thus, (4.47) yields
Tr F'(S(s) u'®)< Q,(s)

/ ! 12
<—v Y o242k nu(s)nl(z ncp<")||§+z)

n=1

Since {@”}!_, are orthonormal, by using (3.26), we have

! 1 /
= )2 (n))2
Y e “0\1621 o™l

Hence
TrF'(S(s) u®)= Q,(s)

!
<=v T oI+ /26 (o)l - f(Z lo <">||)

By Young’s inequality, we have

’ () e gz, Y d o2, MK 2
TeF'(S(s) u'™)o Q,(s) < —v Z e “1'*'5 Z o “1"“{‘6\7”“(””1

=1

N|<

{
Z o™} + llu(s)l!2 (4.51)

But a standard wedge product argument shows that

~

Z lo™N2= A1+ Ayt - + 4 (4.52)

where 4, <1,< --- <4, are the [ smallest eigenvalues of 4: W —>W. We

need a lower bound for 4, in terms of .
By Theorem 2.1, the eigenvalues of 4: M — M are

Mk, j)=4m? <sm k—+ szi_)
m m

_ (s’ knm) o sin’(mjm)
=4 (S T )

> 16(k* + j?) (4.53)
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with 0<k, j<m—1, where we used the fact that (sinx)/x>2/n
(Vxe (0, m/2]).

All eigenvalues 0=0<Ad; <A< --- <Ay of AMXM->MxM
are obtained by doubling the A(k, j)’s. Hence

Ay 2k (I<ksm*=2) (4.54)
Let 1, <1,< -+ €71,2_, be an ordering of
{16(k*+j*) | 0<k, jsm—1,k+j#0} (4.55)

and let 8, <8, < --- £0,,.2_, be defined by

0r_1=0y=1, (I<I<m’—1) (4.56)
Then

Ap = A =0, (1<k<sm?*-2) (4.57)
Let

#B(N)= #{(k, })IO<k,j<m—1,k+j#0,k*>+ j°<N?}
Then
#B(N)<2(N+1)2-2
Hence
0 4 5wy 1> 16N?

or

Aantian 1= 16N? (N=1)
For any /> 7, there exists an N =1 such that

IN? +4AN+1<I<2(N+1)2+4(N+ 1) +1
Then

01? 92N2+4N+1 2 16N2
=¥2N+1)>+4(N+1)+ 1)+ £ (240N> — 128N — 112)
By elementary algebra,

240N? — 128N —112>0 (VN=1)
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So for any =7,

B,>LBQRN+1) > +4N+1)+1)> 3/

317

(4.58)

Since 8, =0,=0,=0,=16, 8;=0,=32, we know that (4.58) is still
true for 1</<6. Thus 6,>(16/17)! (¥i=1). By (4.57), we have

J,;> (16/17)1 (Vi>1). Hence

6 10+1) 8
172 T

Then (4.52) gives

8
loWli> g2 (Wz1)

1~

n=1

Combining this with (4.51), we have
4 17
TrF(S(s) u®) e 0,(5) < — 2 12+ lu(s)]| 2
17 4ny
Thus
1t 17 1
;j TeF/(S(s) 4@) - Q, (s)ds<——12+——-—j lu(s)))2 ds
0

By Lemma 4.9, for any G, such that

C2

Gi> 162

we have
1 rt
7 M)t ds <6y

for ¢ large enough. Hence (4.59) yields

1 o 4y 177
1 . ), ——=|P—z—3"
IL TrF/(S(s) u®)= Q,(s) ds < — 5 (l i3 G1>

for ¢ large enough. Let

17
T 2%

(4.59)

(4.60)

(4.61)

(4.62)

(4.63)
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where
C
G= (4.64)
then if /> d and 1 is large enough, (4.62) yields
1 t
- j TrF'(S(s) 4®)e Q,(s) ds < —a,<0 (4.65)
0]
with
4
a,=1—; (12— d?)>0 (4.66)

Therefore, by (4.45), the Proposition holds. 1[I
Corollary 44. There exist global solutions to (4.40) for any initial
value E€W.

Proof. Take /=1. Then (4.45) and (4.65) guarantee that v(¢)=v(t; &)
does not blow up in finite time. [

Let V(z; u®) be the operator with
Vit u®) E=0(r)

where v(#) is the solution to (4.41) and (4.42). Then, by Proposition 4.2,
the global Lyapunov exponents u,= u,(t), for u®e o/ = o/, and t large
enough, satisfy

Ui+t T sy (4.67)

By applying Theorem V.3.3 of [T3], we obtain

Theovem 4.3. Let of = o, be the attractor given by Theorem 34, ie.,

the attractor under the norm |-|,. Then there is a constant d, which is
independent of m, such that the Hausdorff dimension of <f = s, satisfies
17 17C

dy()=dy(,)<d (4.68)

T ALz’ = 24122
In other words, the Hausdorff dimension of the attractor s =<, of the
semiflow of (4.38) is bounded by a constant which is independent of m. [l

The fractal dimension dg(B) (or capacity) gives another measure of
the complexity of a geometric set B. It is always true that

dr(B) > du(B)
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for any set B. Hence the fractal dimension gives an upper bound for the
dimension information.

To estimate the fractal dimension of & = .o/, we need Lemma VI.2.2
of [T3].

Lemma VI1.2.2. We assume that the sequence of numbers y;, j>1
satisfies the following inequalities:

M1+H2+"'+”j<_aj6+ﬂs Viz1
where o, f, 8>0. Let JeN be defined as

2 1/6
J—1<<—'[—3> <J
o
Then py+ pia+ -+ +u,; <0 and

(B tiot 4 ), (j=1,2,.,7) O
[y + i+ -+

By this lemma, together with Theorem V.3.3 of [T3] and (4.67), we
have the following.

Theorem 4.4. Let of = .o, be the attractor given by Theorem 34, ie.,
the attractor under the norm ||-|,. Then the fractal dimension of o = <,
satisfies

17G 17C
di ()= dp(s4,) <2/2d=

4 27t=4v2\/2_n

Remark 4.1. Theorems 4.3 and 4.4 show that improving the mesh
size h=1/m (or increasing m) does not change the estimate for the dimen-
sion of the attractor .o/ = .¢/,. In other words, there is a limit for the mesh
size beyond which the discretized system does not give more valuable
information of the dynamical behavior. [

APPENDIX: EXISTENCE OF |-|,-Attractors

In the continuous version of the Navier-Stokes equations, to prove the
existence of the global L>-attractor, it is necessary to prove both L- and
H'-absorbing properties. In our discretized model, the phase space is finite
dimensional, so all bounded sets are compact. This leads to the direct proof
of the existence of the global ||-|_-attractors once the |- | ;-absorbing
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property is proved. In Section 4, the estimates of Hausdorff and fractal
dimensions of the attractors are established.

We shall prove the existence of the global || - | ,-attractors. We do this
by proving the discretized | -||,-absorbing property. In the proof, a dis-
cretized interpolation inequality plays an important role. This inequality
can be proved by using discrete Fourier transform.

At the end of this section, we prove a discrete interpolated inequality
directly rather than using the discrete Fourier transform, which con-
siderably shortens the proof of the existence of the | -||;-attractors.

A.l. Discrete Fourier Transform and an Interpolated Inequality

In this section, we first discuss the two-dimensional discrete Fourier
transform; we then apply this theory to our model M set in Section 2.2 to
obtain an interpolated inequality, which plays an important role in
studying the dynamical behaviors of (3.22).

Fourier analysis is a well-developed theory which is a powerful tool in
the research of partial differential equations. [S-W] gives an introduction
to this beautiful theory.

In (3.22), the “space” variable (i, j) is discrete. So the Fourier trans-
form of the continuous version is not applicable to our model. Discrete
Fourier analysis is developed in numerical analysis. In [V-B], there is a
discussion of discrete Fourier analysis of one-dimension.

In the first part of this section we list some properties of the two-
dimensional Fourier transform.

Let h>0 be fixed. Temporarily we use symbols n=(n,n,),
m=(m,, m,y), k=(k, ky) € Z? w=(wy, w,), 1= (1, t,) e R%. We denote by

Qh={w=(w1,wz)eR2 —%swl,wﬁ%} (A1)

And we assume that v: Z> > R, ie.,
v=uv(n)=v(n,, n,)eR (VneZ?) (A2)

We say that ve L®(Z?) or ve L' (Z*) or ve L*(Z*) or ve H* (Z?) if
the following corresponding condition is true:

sup |v(n)| < o0 (ve L™(Z%)) (A.3)
or
h? Z lv(n)| < o0 (ve LY(Z?)) (A4)

neZ2
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or
h? ZZZ lm)|* <0 (veL*(Z?) (A.5)
or
% EZZ |4v(ny, ny) —v(ny + 1, ny) —o(n, — 1, 1)

—o(n,my+ 1) —v(n, ny=1)><0  (veH*Z%) (A6)

If ve LY(Z?), we define its discrete Fourier transform as a function
#: R? —» C, which is defined for every we R? by

b=0(w)=06(w;, w,)

h2 z v(n)ewihw-n

neZz?

il

+ cc )
=h> Y u(ny,ny)e Honmtwmm) (A.7)

ny, = —0o

One can check that the series is convergent in this case.

In the continuous version, the existence of the inverse Fourier trans-
form is a difficult problem, especially the pointwise existence. But in
discrete version, it is surprisingly simple to prove the pointwise existence
of the inverse Fourier transform.

Lemma A.. IfveL'(Z?), then the inverse Fourier transform is given
by

1 A ihn-w
u(n):Wth B(w) e dw (A48)

Proof.
@y JQ B(w) e dw
4
2
_ (2};)2 JQ ( Z U(k)e—ihk-w> eihn~w dW
j

keZz?
hZ

= & Zz (jQ e”’("‘k"w> v(ky=uv(n) O
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For ve L*(Z?), we define its L3-norm by

lolg="n* 3 lo(m) (A.9)

neZ?

Note that this is an extension of (2.24).
For the discrete Fourier transform & of v, we define the L2-norm by

2= —— [ (5w
|1u1|L2_(2n)szh|u(w)| dw (A.10)

It is well-known that the continuous Fourier transform is a unitary
operator in L. We claim that the discrete Fourier transform also preserves
the L*norm. We prove this by using the results of the continuous version.
We want to extend u: Z> —» R to u*: R> > R.
We construct a function

sin[n{x, —hn,)/h] . sin[7(x, — hny)/h]
[n(x; —hn)/h]  [n(x,—hny)/h]
(VxeR? VneZ?) (A.11)

Srln(x) =

Note that (0, x,) and (x,,0) are removable singular points of ¥,
Also, we have the following shifting formula

V.(x)=Yy(x—hn) (A.12)
Now we define for xe R?,
*x)= Y ¥,(x)u(n) (A.13)
nez?

v* is not a direct extension of v, but it is an extension in the following
sense:

v*(hn) = v(n) (VneZ?) (A.14)

Since in (A.11) and (A.13), the spatial variable x of ¥, and v* is con-
tinuous, we can apply the continuous Fourier transform to ¥, and v*.
Let ¥, be the continuous Fourier transform of ¥,,.

Lemma A.2. For teR? we have

Po(1) = {gz reQs (AI5)

elsewhere
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and
P (t)=e" " (r) (A.16)
Proof. By (1.68) of [V-B] (actually it is from [P]), for any se R, we
have
Joo sin(ﬂx/h)egislxa,x_{h se [—(n/h), (r/h)]
—w (7x/h) 0 elsewhere
then
YA’O(I):J Yo(x)e "> dx
R2
© sin(mx,/h) _, . ( © sin(mxy/h) ., )
— s S TAGR4 ity x i DEAARAATT inxs g
(2 Sy e an ([ Sy e e
_{hz teQ,
R elsewhere

This proves (A.15).
To prove (A.16), by using (A.12), we have

YA’n(t)=J' yjn(x) eViz'deZJ‘ Y’O(x__hn)e—it-xdx
R? R2

=e—iht-nf y/o(x)e—-itvx dx:e—iht»nq’}o(t)
R2
This proves (A.16). [

Lemma A.3. IfveL'(Z?), then

ﬁ*(t)z% Yo(t) d(2) (A.17)
and
81l 2= [[v*] .2 (A4.18)

Proof. Again, by (A.12),
Q% t) = * ~izrxd — ' Lp—it-x
5%(t) Lzu (x)e X L@( Y P.(x) v(n)) e dx

neZ?

=y <f Y’O(x—hn)e_”‘(x“"”)dx>-v(n)e“”'""
72

nez?
Lo
=40 (1)

This proves (A.17).
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Hence by (A.15),

. 6(1) 1eQ,
%) )=
(?) {0 elsewhere (A.19)
But by Parseval’s equation,
1
*(2 * 2 = A%k 2
¥ 5= | o dx =gz [ 164001 d
So (A.19) yields
1 . .
o413 = Gy | 180001 o = o1
This proves (A.18). [
Lemma Ad4. Ifve L'(Z?), then
Iollo = v*| 2 (A.20)

Proof. Since the continuous Fourier transform is a unitary operator
on L*(R?), we have

1 " =
(e W)= [ Pl0) () de =5 [ 2,02, (0) d
1 . -
=WL2 P (1) V(1) dt

By (A.16) and (A.15), we have

/’14 n/h ) n/h .
"4 , Y - ethtl(nlfml) dt )( ethtz(nz—mz) dt )
( m n)L2 (27'C)2 <J_n/h 1 J‘_"/h 2

sin[(n; —m,) =] sin[(nl—ml)n]_{h2 n=m
[(n—m)a] ~ [m—m)a]l 0 n#m

Hence

lo*¥|Z2= X v(n) vo(m)(¥,, ¥n)r2

m,neZ2

Y @) (P, Pzt Y v(n) o(m)(¥,, P2

neZ? nmelZ

n#m
=r Y, |o(m)*=vlg

neZ?

This proves (A.20). [
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From Lemmas A.3 and A.4, we know that the discrete Fourier trans-
form preserves the L*-norm.

Theorem A.1. If ve L*(Z*), then
8 2= llvlle O (A.21)

% * * * *

We now extend the definition of the operator 4 in (2.9). For any
v: Z* > R, define Av: Z> >R by

(A0)(n) = 5 (o001, ) — oy + 1, 2z) = vlmy — 1, )
—v(n, na+1)—v(ng, ny—1))  (Vn=(n,n,)el?) (A22)

In the rest of this section, we prove an interpolated formula by using
the discrete Fourier transform discussed above.

Theorem A.2. If ve L®(Z*)~ LY (Z*) n L*(Z*)n H*(Z?) as defined
in (A.3)-(A.6), then

9
Il < 557 Iollg (ol + fAvlg) "
9
S ol (lollo + I Avllo) (A4.23)

where |v|| , is defined by
ol o = sup |o(n}} (A.24)

ne2?

Proof. For v as in the statement of the Theorem, we can define its
discrete Fourier transform as above, we have

Aow)=h T (Ao)(nye= v

ne2?

=( Z v(nl, nz)e—iim‘w> . (4__eihw1_e—ihwl _eihwz__e»ihwz)

ne2?

4 — eihwl — e*ihwl _ eihwz _ e—ihw;

h?,
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Define
4 _ eihw; _ e—ihwl _ eihwz __,—ihwy
K(w; h) = = ¢ (A25)
Then we have
Av(w) = K(w; h) d(w) (A.26)

If Ave L'(Z?)~ L*(Z?) [see (A.4) and (A.5) for the definitions], then
PAaS 1 N
2 2
— d
Av| 72 Gn)? JQ;, |Av(w)|” dw
1

=Gy th K (w; h)|2 [8(w)|2 dw (A.27)

Now by (A.8), for any ne Z?, we have

1 . 1
— A ihn-w < A
6001 = |53 | sm e | < [ s
1 1
= |B(w)| dw + —— o(w)| dw
(2n)? jgm{uwwa} o (275)2JQM{IWI>1}| W)

where o is a positive parameter to be determined.
By the Cauchy-Schwarz inequality,

1
1= 7712
(27)* Jgpr (1wl <a)

1 , 12 1 , 12
< ——= ldw) <— |5(w)] dw)
((2702 Qnr {Iwl <a} (21)* g4 (1wl <)

|B(w)| dw

1 .
< Gny (ma®)'2 - 6] 1

and combining this with (A.21), we have

o
I S lvllo (A.29)
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Again, by the Cauchy-Schwarz inequality,

1 ]
B Do g P

L

T (2n) thﬂ{(WI>a} 1+ K{w; h)?

L dw 12
S
(27)* \Ygin (w22} 1+ K(w; h)

- ST+ K(w; h)? |6(w)| dw

172
(] (L KOs 1) 80017 |
Qnn{lwl = a}

(A30)

L= (1 + K(w; b)) [5(w)|2 dw
Opn {iw| za}

<[ 1800 dw+ [ Kowi )2 16(w)? dw
(o)

[
by (A.10), (A.27), and (A.21),
L<2n)? (8122 + 1401 22) = (27)* (o]} + | 4v)13) (A31)

We need to estimate

dw
L= L
? ng{lwlzw 1+ K(w; by

By (A.25),

W K(w; h)=4 (sin2 (1_1_»;) + sin? (%)3))

sin? (%) sin? (/—12&>
Kw; h)={ ——2 L2 2

Wi+ w

(fl—“ilz ' thz'z
2 2

hence

865/4/2-7
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Since we Q,, then |w,| <n/h, or |hw,/2| <m/2, we have

sin® (hw2/2)

w2 > n2 (i=1,2)

Therefore,
4
K(WQh)>7”t“z‘(Wf+w%)
Now
dw 2n +oo p 16
I,< . o _
’ J.Qhﬁ{|w|>rx}1+K(W h)? 2f d,[ 7 dr= e (A.32)

By substituting (A.31) and (A.32) back in (A.30), we obtain

1
(2m)°

16\
I, < (—3) ((2n) (Ioll§+ 1 4ol1D)
oL
< (lol3+ [ Av]3)”
Sy 0 0
By using this, together with (A.29) and (A.28), we have

o 2
lo(n)l S Ilvllo+m (o3 + 114vlI5)?  (VneZ?)

If 0] o=0, then (A.23) is trivial. Otherwise, we take

_ lol3+ 4v)3)™

o]l
so that
lo(n)l < S i 3/2 ol ¢ (llvll5 + 1| vl §)
<47'c3/2 ”U||(1)/2 (Ilwllo+ HAUHO)I/Z (VnEZZ)

This proves (A.23). [

A.2. The Interpolation Inequality in M

In the last section, we proved the interpolation inequality (A.23). This
inequality holds for v:Z>—R. But in our discretized model (2.28),
elements in M are not defined on whole Z> So we need to modify (A.23).
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First, we need to extend a veM to a #: Z? - R. Since M is the dis-
cretization for periodic functions, one may try to use (2.5) as a natural
extension of any veM. Unfortunately, such an extension causes the
blowing up of the discretized H'-norm defined in (A.6). In other words,
using (2.5) will ruin the well-definedness of the operator A defined in
(A.22). To get around this, we multiply the periodic extension of v by a

cutoff function.
Consider the following polynomial

p(s)= —10(s —2)> = 15(s —2)* — 6(s — 2)°

defined on the interval se [1, 27. One may check that

p()=1,  p'()=p"(1)=p(2)=p'(2)=p"(2)=0
and
0<p(s)<t, ——%Sp”(s)s—\l/_% (Vse[1,2])

We define a 2-D cutoff function 6 by
0(x)=0(xy, x5} =01(x) - 02(x,) (Vx=(x;, x,)eR?)

where
0 —-o<s< —1
p(1—5) —1<s<0
8.(s)=<1 O0<s<t (i=1,2)
p(s) l<s<2
0 §>2

Elementary calculus shows that the following is true.

Lemma A.5. 0 C?*(R?) and
0<B(x)I<1  (VxeR?)

O(x)=0(x;, x;)=1  (0<xy, x,<1)

(A.33)

(A.34)

(A.35)

(A.36)

(A37)

0(x)=0(x;, x,)=0 (x;< —lorx,< —lorx;=22o0rx,=2)

40(xy, x,) = 0(x, + b, x,) — 0(x; — h, x,)

— 0(x,, Xy + )= O(x,, x5 — h) 40
i <

B

(Zx=(x,, x,)eR?)
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Proof. The first three statements are trivial.
For the last inequality, according to the definition of 8 in (A.36) and
(A.37), we can rearrange the left-hand side as

40(x,, x3) —0(x; + h, x5)—0(x, — h, x;)
— 0(xy, xy+h)—0(x,, x,—h)

h2
2 1/ 1 - 17
g‘ p(x,)—plx ;h) p(x h)’-lp(x2)|
2 _ 2 _ 27
+|p(x1)|_‘ p(x,) — p(x ;;h) plx h)\

By the mean value theorem, there exist ¢;, &;, {;€(x;—h, x;+ h) such that

20(x;)— p(x;+ h)— p(x,—h i i
p(xl) p(xt;l_z ) p(xt )= _p"(cl—)-% (l=1, 2)

But by (A.35) and the fact that |{,—&;| <2k (i=1, 2), we have
2p(x;)— p(x;+ h) — p(x;— h) <£
h? \\/5

Hence the lemma is proved. [

(i=1,2)

Define the extension of any ve M by

~ n, ny
D(l’l) = U(nl mod ;. m), (nymod ;. m) 0 (;’I_’l’ E)
(Vn=(n,, n,)e Z?) (A.38)
We can prove that this extension preserves the various norms of M.

Lemma A.6. ForanyveM, de L®(Z%)n L (Z*) n L*(Z*)n H*(Z?)

and
ol o = 113l (A.39)
lollo<IBlo<3 lIvllo (A.40)
1 Avllo < | 48] o < (4800 [|v]|3 +9 [l 4v]I5)" (A41)

where ||5l|o and || AB|, are as in (A.9) and h=1/m
Proof. Let ve M. By Lemma A.5 and the definition of 3,

¥(n)=1d(n,,ny)=0
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if n,< —m or n,< —m or n;=2m or n,=2m. So e L*(Z*)n L' (Z*)n
L*(Z*) n H?(Z?*). Moreover, since

B(n)=0(ny, ny) =0y, o
if 1<ny,n,<m, and

[5(n)| < |U(n1 mod, m), (n2 mod 4 m)|
SO
0l = 11B]l 0
and
lolo<ldlle,  llAvlo<il4Bl,o

For the other inequalities, note that by Lemma A.S5,

I8l5=h* 3 16(n)]?

neZ?
n m\|?
2
=h nEZZZ U(nl mod . m), {n; mod ;. m)e (E’ Z)
2
<h2 z 'U(n1m0d+m),(n2mod+m)i
—m<n,n<22m
9 m
2 2
== X logI*=9 vl
m Lj=1

Furthermore, by using Lemma A.5, we have

[013=R ¥ (4DmP=— T 1406 P

nez? —m<i,j<2m

1 i j
SW Z (AD)(imod+ m), (jmaoad4 m) 0< )

- =
—mKLji<2m m m

2

2
+? Z Iv(imod+ m), (jm0d+m)|

—m<i,j<2m

.‘m“<4g<i’i)_9<iil,i>_g<l_i,L>
m m m " m m ' m

. - . ._- 2
)0 5)

m.m m m

40 \?

<9 [l 4vllg+9 vl (—)

NG

This completes the proof of Lemma A.6. [
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Now we can state the modified version of the interpolation inequality
(Theorem A.1) in M.

Proposition A.1. For any veM,
9 172 1/2
[0 o0 < =575 lIvllo™ 1 4vllg (A.42)

Proof. Extend ve M to a &: Z* — R as in (A.38), then by Lemma A.6,

1ol o = 1171

Theorem A.2 yields
~ 9 SN1/2 2 ~112)1/4
19 oo =181 oo < 757 1816 (155 + 1451l )
Using Lemma A.6 and Corollary 2.2,

9
ol =E§,—2~\/§ ol - (9 Iollg + 4800 flo)lg +9 | 4v)§)"*

< ol 4vlg?. O

——, U
1'[3/2 ” ”

A.3. Global |- |,-Attractors

In this section, we prove the existence of global attractors of the
shifted Navier-Stokes equation (3.22) under the norm | -|,. We actually
prove the |-||;-norm absorbing property, which implies the existence of
global attractors in the sense of the || -||;-norm.

First, by Lemma 3.5, ||-ll, I-ll0> |1y, @and |-], are norms in W. We
change the symbols in (2.32) and (2.33). Denote by

2

1/2
ol = ||Dv||o=< 5 nDkv,né) (WoeW)  (Ad3)

k=1

and

2 1/2
Ioll,= “AU”o:( ) ||AUk||(2)> (Voe W) (A.44)
k=

1

We want to prove an a priori estimate for ||-||; as in Theorem 32. We
begin with the following lemma.
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Lemma A.7. For any fixed r >0, there exists a constant

~ rC* pi\\2
P=\T62 17

with arbitrarily fixed py>p, such that for Ry, Ty, and the initial data
u® e W described in Theorem 3.2, we have

thr
[ ids<pr, ez,
t

Proof. (3.25) yields

1d

1
522 I3+ v [l < CPLL w0y < IPT g fulo < 55 IPT I3 + 8 1l

By (3.26) and (H), we have

2 2

C
T 12— e+ 12 <+ 12

t+r ,
<
v ) ds< T o

Now for R,, T,, and u® as in Theorem 3.2, by the conclusion of
Theorem 3.2, we have

lu(s)llo < po (Vs> T,)
Hence

rCZ p/2
16v2+—\% (Vi=To)

t+r 5
[ uts)nz as<

This completes the proof. [I
Remark Al. p,,—»0as C—-0. [

To prove the absorbing property for | -||;, we need a lemma stated in
[T3] (Lemma I1I.1.1).

Lemma [ The Uniform Gronwall Lemma]. Let g, h, y be three positive
locally integrable functions on t€ (ty, + o0) such that y' is locally integrable
on (ty, + o), and which satisfy

dy

- < h Vizt
G Set (Vi=1,)

t+r t+r t+r
[ ewd<a, [ Mods<a, [ podi<a (i)
! t 4
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where r, a,, a,, a; are positive constants. Then
a3
yietr)s{—+ay)e (Vizi) O

F
With this lemma, we can prove the following H'-absorbing property.
Theorem A.3. There exists a constant

C 3llc4
P1= 15,372 XP (219n6v7>

which is independent of m, such that for any comstant py>p, arbitrarily
fixed and R, > 0 independent of m, there exists a constant T, > 0 independent
of m, such that as long as the initial data u'© e W satisfy

1o < R,

then
lul)lly<py  (Ve2Ty) (A45)

Proof. By taking the inner product <, -> of Au and (3.21), we have

|| 13 + (PB(u,u) Aud +v | Au| 3= {PI, Au)

Since
1 v
(P Auy < || P iAuHoSEHPFHﬁ+§IIAuH§
SO
d 2 2 1 2
k34 CPB ), Au> v Lul3 <2 1712 (A46)

By Corollary 3.1, Aue W. Thus Au = PAu, therefore

{PB(u, u), Auy = <{B(u, u), Au>

= 2.2 z (Tt ( Dkul)(Aul))

1 ki=

tor 33 D)), (A4
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Hence

1 2
| PBlt, w), Au>| < Jull.. -(—3 S Dy (Au)), |
=1

+

';1 k
5 l((Dkr,:lu,xAu,))gi)
{=

1
2
m =1k

<22 Jull o [1Dulo [l Aull
by (A.42), we have

A o 3/2
(< PB(u, u), Aud| =18 /2 [l Jull, (“—n—“—) (A.48)

By using Young’s inequality

at b3

S____
b<sTtm

(Va, b >0)

we obtain

(B ), duy| < LB/ Il

4¢
6487 lull3 full 3e*?
< 4340 -4+ - | Aullg

Set 3¢%?/4n* = v, then &* = (4vn?/3)>. Hence

11

3
[<PB(u, u), Au}| SHiE lull§ el $ v | 4ullg (A.49)
Together with (A.46), we obtain
d ! 311 C2
v A3 < g G -l P+ =~ (AS0)

Set y(s)=llu(s)I3, A(s)=M) L5 and g(s)=(3"/4v’n®)u(s)]5
lu(s)||3. Let R,>0 be as in the assumption. Then, by Theorem 3.2 and
Lemma A.7, there is a #,>0 such that {u(s)lo < p; and [i*7 lu(s)||; ds <
P12 if £ >t,. Then there are positive constants a,, a,, and a, such that

r4r t+r t+r
[ eyds<a, [ hsyds<a, [ ys)ds<a; (Vi)
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where

11
, r
a1=m(/70)2 Pf/za az=;C2, 03=P%/2 (A.51)

Choose (p})* = (as+a,)e™ and T, = t,+r. Using the uniform
Gronwell lemma, we obtain

lul <py  (Vi=Ty)

with

Y2 — ﬁ ﬁz (po)* 114 732 rC*  (py)’ 3 6
(p1) —(16v2+ — = Jexp (300 (et )[4V

for arbitrarily chosen r>0 and pg> po= C/16v.
Let r— 0, py— po, we have, for any 4@ e W,

) C 3icH
lim sup < 677 exp o6y

t— +o0
This completes the proof. [
Remark A.2. The absorbing radius p, (of ||-||;-norm) tends to 0 as
C, the uniform bound of ||I'||, as in (H), tends to 0. [
As an immediate consequence of Theorem A.3, we have the following.
Theorem Ad. The solution u=u(t) to (3.22) [or equivalently, (3.10)]
has a global attractor of = o, in W under the norm ||-|;. [

Remark A.3. Since W is finite dimensional, by the fact that all norms
in a finite dimensional space are equivalent to each other, we know that
o = of, in Theorems 3.4 and A.4 are geometrically the same. Moreover, by
the proofs of Theorems 3.4 and A.4, the rates of convergence T, and T
differ only by a fixed constant r. [

A.4. Another Proof of the Existence of the Global |- || ;-Attractors

One sees that in the proof of the existence of the ||-||;-attractors in
Section A.3, the following inequality shown as in (A.48) plays a key role:

| (PB(u, u), Aud| <c llullg?- luls -l Aull3? (A.52)

where ¢ is a constant independent of u and the mesh number m.
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In this additional section, we give a very short proof of (A.52) by
using the inequality (4.5) proved in Lemma 4.2. The new proof avoids the
long argument by the discrete Fourier transform. By the proof of
Theorem A.3, we know that as long as (A.52) is holds, all other arguments
of the proof of Theorem A.3 can be applied without any change.

By (A47),

|<PB(u, u), Au|=|{B(u, u), Au}|

1 m 2
‘r_n— Z Z (Tkuk(Dkul)(Aul))y
Lj=1 kiI=1
1 m 2
m_ Z Z (e(Dy(Dyy ui)(Aul)) (A.53)
Lj=1ki=1

Using the generalized Holder’s inequality
1/4 1/4 1/2
abe<(Tat) (T6) (Te)

[{PB(u, u), Au)|

(o £ % oy

Lj=1 ki=1

we have

1/4 1 m 2
) (I_zz Z (Dkuz)i}

)1/4

12 m 2 1/4
(i £ % ) +(|= 5 5 w))

Lj=1 k=1 M™ et k=1

m 2 1/4 { m 2 12
(e £ 2 0erwt]) (|5 53 o)

Qj=1 k=1 m- i ki=1

m 2
=27/4.(’W DEORCR:

)I/A'QLZ i > (D)

>1/2

We need the following lemmas.

(| £ % cawg

Lj=1kliI=1

Lemma A8. Let Dy, D,, and A be as in (2.12), (2.14), and (2.15).
Then they commute with each other, and DYD,, DYD,, and A are all
positive in BW, and

DD, +DID,=4 (A4.54)
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Furthermore, define

~

{D1=aD1+bD2

~ AS55
D2=CD1+dD2 ( )

where a, b, ¢, deR and (¢ %) is an orthonormal matrix. Then D, and D,
commute, and D{D,, D5D,, and DD+ DD, are all positive over R.
Moreover,

btb,+DbsD,=D"D,+ DYD, (A.56)

Proof. The first part of this lemma follows from the definitions and
Theorem 2.1. The second part can be checked directly by the basic proper-
ties of orthogonal matrixes. [

Lemma A.9. For any uc'W, we have
1D Dyullo< | Aully (G, j=1,2) (4.57)
Proof. If i=j=1 or 2, then for any ue W, by Lemma A.8,

||DiDiu”2: {D;D;u, D;Duy=u, DDD}D;uy
4] i i
<ty Aduy = (Au, Auy = | Aul2

| a b\ (N2 —(42)
Otherwise let <c d>=<1/ \/E y \/5

in (A.55). Then for any ueW,

>, and let D, and D, be as

1D, Dyullo= D, D, ullo=1D,D,u—D,Dyul,
< ||ﬁ1ﬁ1u||0+ Hijz[)z””o
In a similar way, we can prove that
1D Dyullo < I(DYDyu+D5Dy) ujo  (k=1,2)
By Lemma A.8,
1Dy Doullo=1D,D ullo <[l Aulo 0
Now we can prove the following.
Proposition A.2.

|<PB(u, u), Aud| <2°- ullg? - lull, - | Aul? (4.58)
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Proof. By Lemmas 4.2 and A.9, we have

|KPB(u, u), Aud| <274 Jull g ull -4 -4 July Jul - ul,

< 2% [lull o Nually - el 32

This proves the proposition. [

Remark. The proof of (A.52) depends heavily on the fact that
PA=A. It is true only in the periodic boundary condition case. [
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