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Given a family of time-dependent linear control processes, we study conditions 
under which local null controllability implies global null controllability. This is 
done by employing methods of dynamical systems and the Sacker-Sell spectral 
theory. We show that the above implication holds "almost surely" for recurrent 
families provided the spectrum of the associated linear system is contained in 
(-0%03. 
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1. I N T R O D U C T I O N  

In this paper we study the time-dependent linear control problem 

x'( t )  = A( t )  x( t )  + B(t)  u(t) (x ~ R", u ~ R m) (1.1) 

where u = u(t) is an appropriate control function. We are interested in the 
following question: When does local null controllability of (1.1) imply 
global null controllability? We study this question under the assumption 
that u is admissible, that is, u(t) lies in a fixed compact convex subset 
s ~ R m which contains the origin. 

We recall the concept of local (respectively, global) null controllability. 
If (Xo, to)e R " x  R, we say that (Xo, to) can be steered to y in time T >  0 if 
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there is an admissible control uo: [to, to + T] ~ g2 such that the solution of 
the initial value problem 

x'(t) = A(t) x(t) + B(t) Uo(t ) 

X( to) = Xo 

also satisfies X(to + T) = y. Most of the time y will be the origin in R n and 
to will equal zero; in this case we say that x0 can be steered to y = 0 in 
time T. 

Define D ( T ) =  {x~Rnlx  can be steered to y = 0  in time T} and set 

D =  ~ {D(T)] T>O} (1.2) 

One says that (1.1) is locally null controllable if there exists T >  0 and 
a neighborhood V of 0 ~ R "  such that V~D(T) .  Note that one can define 
a weaker notion of local null controllability by letting T depend on x ~ V. 
However, these notions turn out to be the same under mild assumptions on 
I2 (see Lemma 2.8, below). The control process (1.1) is called globally null 
controllable if D = R". 

The relation between local and global null controllability is well 
understood when A and B are constant matrices and f2 is a compact con- 
vex set containing zero. Then it is known that global null controllability is 
equivalent to local null controllability together with the condition that the 
real parts of the eigenvalues of A are all nonpositive. It is easy to see that 
generalized eigenvectors of A corresponding to eigenvalues with a negative 
real part decay to zero exponentially under the action of e tA (the 
fundamental matrix solution of x' = Ax), and thus they can be steered to 
zero by first bringing them into a neighborhood of the origin (note that 
0e  t2) and then using local null controllability. However, steering 
generalized eigenvectors with purely imaginary eigenvalues to zero is not 
quite as simple. In this case, one can use arguments based either on the 
Jordan normal form (see Ref. 10) or on the convexity of the reachable set 
(see Ref. 11 ). 

The above discussion points out two general principles which carry 
over to the study of nonautonomous control processes. First, once one is 
given local null controllability, global null controllability depends only on 
the qualitative behavior of the solution of the associated linear system 

x' =A( t )x  (1.3) 

and does not have much to do with the matrix B(t). Second, it may be 
difficult in general to steer vectors with "zero exponents" to zero because 
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they may exhibit a sort of "transient" behavior. In fact solutions of the 
nonautonomous system (1.3) may wander away to infinity even when the 
exponent is zero. Thus the additional condition one needs to impose is that 
these solutions of (1.3) should be recurrent in some sense. This in turn 
suggests that ergodic theory can play a role in studying our controllability 
question. 

We study the control process (1.1) under the assumption that A(t), 
B(t) are uniformly recurrent matrix-valued functions. We define this con- 
cept below; it seems a natural assumption to make in studying the relation 
between local and global null controllability for (1.1). We remark that if 
A(t), B(t) are almost periodic in the sense of Bohr, then they are recurrent. 
So our theory applies when (1.1) has almost periodic coefficients. 

To analyze the qualitative behavior of solutions of the linear system 
(1.3), we use the results of Sacker and Sell [14] and Johnson et al. [-9]. In 
the language of these papers, the additional condition one needs to impose 
is that the zero exponent is the right end point of the "spectral interval" to 
which it belongs (see Section3). We translate this condition into the 
language of ergodic theory, and then, using an ergodic-theoretic recurrence 
result on an appropriate probability space, we show that the norm of a 
vector with a zero exponent returns close to its initial value after a 
sufficiently long time. Using this fact, we are able to steer such vectors 
closer to zero than before and, finally, to zero in finitely many steps 
(because of local null controllability). 

In the case when (1.3) has negative exponents (thus avoiding the 
troublesome case of vectors with zero exponents), global null con- 
trollability of (1.1) was discussed by several authors (e.g., Ref. 13). On the 
other hand, in Ref. 16, Tonkov states a result about global null con- 
trollability with nonpositive exponents but under a very strong assumption 
of reducibility of the associated linear system. Our assumption is far weaker 
and also illustrates exactly where the problem lies. 

The paper is organized as follows. In Section 2, we show that a weak 
notion of local null controllability implies a stronger one, namely, uniform 
local null controllability (see Theorem 2.10). This result is a generalization 
of a result of Artstein [1] and is false in general if A(t), B(t) are not 
uniformly recurrent (see Ref. 1 for counterexamples). In Section 3, we state 
and prove our main theorem (Theorem 3.2) relating local and global null 
controllability. 

We finish the introduction with basic definitions and terminology. Let 
M(n, m) be the set of n x m real matrices with the Euclidean norm I[ [I and 
let L~oo(n , m) = {f: R ~ M(n, m ) ] f  is locally LP-integrable}. Here p~> 1. 
This space is given the distribution topology. Thus f j - -+f  in L(oc(n, m) if 
and only if S~fj( t )r  ~ Saf(t)q~(t)dr,  where r ranges over the set of 



262 Johnson aodNerurkar 

real-valued, C ~ functions on R with compact support. If feLPo~(n, m), 
defines the translations 

%(f)(s) =f ( t+s) ,  t, s~R 

We also write z , ( f ) =  z(f, t). The translations are continuous and satisfy 
the group property: 

T, tO'Cs='Ct+s, t , s~R 

Now suppose that St,+lllA(s)llPds, S~+lllB(s)llPds are bounded 
independently of t ~ R. If p = 1, we suppose, in addition, that 

ft+~ ft+~ Lim [IA(s)ll d s = 0 =  Lim Ilg(s)ll ds 
~ 0  " t  e---~0 t 

uniformly in t. Under these conditions, the sets CA =cls{%(A)l t~R)___ 
P LPo~(n, n) and Cs=cls{z~(B)[t~R}_Lloc(n,m ) are compact and trans- 

lation invariant. Consider the product space CA x Ca. The restriction of 
the set of mappings {%[ t~R}  defines a flow on C A x C s ,  that is, a 
one-parameter group of homeomorphisms of CA X Cs which is jointly 
continuous in ~ ~ C~ x Cs and in t E R. Define 

E=cls{zt(A, B)[ t ~ R }  ___ CA x CB 

Definitions 1.4. (i) Let d be a metric o n  Lfo~(n, n) x L~oo(n , m) 
which is compatible with the distribution topology. The point 3o = (A, B) 
is called uniformly recurrent if, given e > 0, there exists T =  T(,) > 0 with the 
property that every interval [t, t + T] ~ R contains a point to such that 
d(~o, Z(~o, to)) < 5. 

(ii) The flow (E, { z t l t ~ R ) )  is called minimal if, for each ~ E ,  the 
orbit {zt(~)l t ~ R }  is dense in E. 

Theorem 1.5 (e.g., Ref  5). I f  ~o=(A,B) is recurrent, then 
(E, {z t l t~R})  is minimal. Conversely, if (E, {%l t~R})  is minimal, then 
every point ~ ~ E is uniformly recurrent in the sense of Definition 1.4. 

The condition of minimality is a strong restriction on the flow 
(E, {z,}). On the other hand, for certain purposes the minimal subset of an 
arbitrary compact metric flow may be regarded as its "building blocks," 
and results valid on minimal sets may be used to obtain information valid 
for the entire flow. An instance of this point of view is presented in Ref. 8. 

Instead of concentrating on the single control system (1.1), we con- 
sider the family of systems 

x'(t)=A(z,(~))x+B(zt(~))u (~eE) (1.1)r 
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Here we have abused notation and written A(%(~)) for that matrix func- 
tion A(t) which is the projection onto Ca of the point ~ E CA x Ce; B(%(r 
is to be interpreted similarly. We say that (Xo, to) e R n x R can be r 
to y e R n in time T >  0 if there is an admissible control Uo: [to, to + T] ~ (2 
such that the solution of (1.1)r satisfying X(to)=Xo also satisfies 
X(to + T) = y. The sets defined in (1.2) are generalized in the natural way. 
Set D(~, T )=  {x ~ Rnlx can be ~-steered to y = 0 in time T} and 

D(~)= U { D ( ~ , T ) [ T > 0 }  foreach ~ e E  (1.6) 

We also need the concept of an ergodic measure in Section 3. 

Definition 1.7. Let (E, {z t l t eR})  be a flow where E is a compact 
metric space. A (Radon) probability measure m on E is invariant if 
m(%(B))=m(B) for any Borel subset B~_E. An invariant measure is 
ergodic if, in addition, for each Borel subset B ~_ E, m(zt(B) AB) = 0 implies 
m(B) = 0 or 1, where A denotes the symmetric difference of sets. 

It is a standard fact that every compact metric flow admits at least one 
ergodic measure. See, e.g., Ref. 12 for a proof and for a detailed discussion 
of the concept of invariance and ergodicity. 

2. LOCAL NULL CONTROLLABILITY 

In this section we study the local null controllability of the family of 
control systems 

x'(t)=A(%(~))x+B(z,(r (~eE) (1.1)r 

where (E, {r,}) is a minimal flow as described in Section 1. Our goal is to 
show that if, for some r ~ E, the system (1.1)r is locally null controllable, 
then every Eq. (1.1)r is uniformly locally null controllable in the sense of 
the following. 

Definition 2.1. The family of control systems (1.1)r is said to be 
uniformly locally null controllable if there exists a neighborhood of the 
origin V___R" and a number T > 0  such that V~_D(~, T) for all r  

We first need to recall a necessary and sufficient condition for local 
null controllability proved in Ref. 3 and some terminology that goes 
with it. 

Definition 2.2. 
setting 

Let O be a subset of R m. Define Ha: R ' ~  R by 

Ha(c0 = Sup{ (c~, o9) I co ~ t'2} 

865/4/2-3 
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where ( , )  is the usual inner product on R m. The map Ha  is called the 
support function of (2. 

Remarks 2.3. (a) If 0 ~ O, then Ha  is nonnegative. (b) If (2 is com- 
pact, then Ho  is continuous. 

We quote a lemma and a proposition from Ref. 3, then prove a 
corollary of these results. The statements are true for linear control system 
(1.1) solely under the condition that A(t), B(t) are locally integrable. The 
assumption of uniform recurrence is not needed. 

Lemma 2.4. Let xo~R",  t ouR and suppose s is compact and 
contains zero. Consider the control process 

x'(t) = A(t) x(t)  + B(t) u(t) (1.1) 

Then (Xo, to) can be steered to zero in time T if and only if  

~ t o +  T 

(Xo, 2*(to)) + Ha(a*(s ) z*(s)) ds >~ 0 
t o 

for all solutions z*(t) of the associated adjoint linear system 

z' = - A * ( t ) z  (2.5) 

Here the asterisk denotes transpose. 

Proposition 2.6. Let the control process (1.I) and the set (2 be as in 
Lemma 2.4. The process is locally null controllable i f  and only i f  there exists 
2 > 0  such that S~ Ha(B*(s)z*(s))ds>_.e for each solution z*(t) of the 
adjoint system (2.5) which satisfies [Iz*(0)ll = 1, II II being the Euclidean 
norm. 

Corollary 2.7. Let the control process (1.1) be as in Lemma2.4. 
Suppose there is a neighborhood V of the origin in R n such that, for each 
x ~ V, there exists T=  T(x) > 0 with the property that x can be steered to 
zero in time T. Then the control process (1.1) is locally null controllable i f  
either (a) f2 is compact, convex and contains zero or (b) f2 is compact and 
0 ~ int(O). 

Proof. (a) Suppose that f2 is compact, convex and that 0~g2. 
Choose xl ,  x2 ..... Xr ~ V such that the convex hull of the xi's contains a ball 
B around zero. Let u i=  ui(t) (1 ~ i<~r) be admissible controls which steer 
x~ to zero in time Ti. Set T = max { Til 1 ~< i ~< r }. If x e B, then x is a convex 
combination of the x~'s, say x = ~ 7 =  1 • i X i ,  where 0~<ei~< 1. Define 
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u = ~7= 1 ei~i where fii = ui on [0, T~] and zero otherwise. Then u steers x 
to zero in time T. Hence the same T can be used for all points in B and 
part (a) is proved. 

(b) Suppose now that 12 is compact and 0~int(t2). Let t? be the con- 
vex hull of s Let 6 and R be positive numbers chosen so that (i)the ball 
B(6) of radius 6 centered at 0 is contained in (2 and (ii)the ball B(R) 
centered at 0 of radius R contains ~. By part (a) and Proposition 2.6 
applied to the constrained set B(R), we obtain an e > 0 such that, for each 
solution z*(t) of the adjoint system (2.5) which satisfies [[z*(0)[t = 1, one 
has the following. 

; ?  Ho(B*(s) z*(s)) ds >~ e 

Now we reason as follows: 

f? H~(B*(s) z*(s)) ds >~ f? HB(~I(B*(s ) z*(s) ) ds 

Sup{ (a, B*(s) z*(s))  J I1~[I < ~} ds 

Sup{ (c~, B*(s)z*(s))[  N~I/< R} ds 

HB(m(B*(s) z*(s) ) ds >>, 

for each solution z*(t) of (2.5) satisfying ptz*(0)[[ = I. Another application 
of Proposition 2.6 completes the proof of (b). 

We now return to our family of control systems (1.1)r where ( runs 
over a minimal set E. Consider the associated linear systems for each ~ ~ E. 

x'=A(~,(~))x (2.8) 

z '=  -A*(%(r  (2.9) 

Let the corresponding fundamental matrix solutions be X(~, t) and 
X*(r t)-1, respectively. Each of these maps satisfies the following coeycle 
identity. 

X(~, t + s) = X(r(r t), s) X(r t), ~ ~ E, t, s ~ R 

and similarly for Z(~, t ) =  X*(~, 0 -1. Now we can prove the main result of 
this section. 
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Theorem 2.10. Let (2 ~_ R m be compact and suppose 0 e (2. Suppose 
that there exists a ~oe E such that the process (1.1)~o is locally null 
controllable. Then the family of Eqs. (1.1) o ~ e E is uniformly locally null 
controllable. 

Proof. For convenience we set 

f~(t)=B*(vt(~)) X*(~, t)-lp, peR",  ~ e E  

By local null controllability of (1.1)r and Proposition 2.6, there exists e > 0 
such that 

oH~(f~o(S)) ds~ 8~ ( p e R " ,  [IPl[ = 1) 

Since the map p ~ Ha(f~o(s)) is continuous and nonnegative for each s, 
the compactness of the unit sphere in R" implies that there exists J > 0 such 
that 

fo'Ha(f~o(s))ds>~4e ( p e R " ,  [[PI[ = 1 )  

d Let d be a metric on E. By continuity of the map r ~0 Ha(f~(s)) ds, we 
can find 6 > 0 such that, if d(~, r 6, then the value of this map changes 
by no more than e for all Ilpll = 1. 

Now the point ~o is uniformly recurrent. Therefore, corresponding to 
the number 6 just defined, there exists L > 0  and a sequence T n ~ - o 0  
with the following properties: (i) T,<Tn_~; ( i i ) ] T ~ - T n _ I I < L ;  and 
(iii) ~(~o, Tn) lies in the f-ball centered at 40, for all 
Theorem 1.5). 

These conditions along with our choice of 6 imply that 

Next let 
claim that 

n >~ 1 (see 

J 
foH~(ff(r ( p e R " ,  [Ipll = 1, n>~ 1) (2.11) 

M=Sup{max(ILX*(~,t)- l lL,  1 ) l t e [ - L ,  0], d(~,~o)~<6}. We 

f 
J+L 

H o ( f  P(r ) ds>~., if Ilpll=l and T < 0  
"0 M 

To see this, note that for each ~ e E and t e I - L ,  0] we have 

H~( f  P~e,t)(s) ) = H o (  B*('cs'ct( ~ ) ) X*('ct(  r ) , s) - l p )  

= Ha(B*(r,+t(r X*(~, t + s) -~ X*(r t) p) 

(2.12) 
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where we used the cocycle identity for X * -  ~. Thus letting ,6 = X*(~, t)p, we 
get 

~(,J+L I } 
inf lJo Ilpll = i 

f#+L } 
--inf ~J ~ H•(fg(t+s))ds IIP[I = 1 

L 
= inf H~(f~(s)) liPl[ = 

f ~,+J+L ds } 
~> inf ~Jo Ha(f~(s)) ]l p[] = 1 (since t < 0) 

fO+J+LH~(f~P/"PH)(S)) = I} = inf { llX*( :, t) p,[ I ,,pll 

Now, given any T<O, we can write T = T n + t  for some n, with 
t~ I - L ,  0]�9 Applying the above inequality with ~=  V(~o, Tn), we obtain 

{ff+L P T) (s))dS ) inf H~(f~(~o, [[pl] = 1 

= inf {]lX*(r(~o, = 

>i (2e)inf{ IlX*(Z(~o, T.), t)plllllp[] = 1} by (2.11) 

>/(2e) inf{(lZ*(r(~ o, T.), t)pll[[lpl[ = 1, t~ I - L ,  0]} 

Since Ilpll ~ IIA-I[[ ]iApll for any nonsingular matrix A, we finally obtain 

{ # + L ds } 2e 
Jo " inf Ho(f~(eo, T)(S)) Ilpll = 1 >/M 

which implies (2.12)�9 
Now note that minimality of E implies that {z,(~o)lt <0}  is dense in 

E [5]�9 Using continuity of the map ~ ~ + z  Ho(f~(s))ds, we obtain 

fo J + L 2e He(ff(s))ds>>.-~ (~eE, IlPll = 1) (2.13) 

Now define V -  {xe i l " [  tlx[I <(e/M)}. We show that V~_D(~, T) for 
all ~ E ,  where T is independent of ~. This completes the proof of 
Theorem 2.10. We do so by essentially repeating the steps of the proof of 
Proposition 2.6 above (see Ref. 3). 
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By Lemma 2.4, we must show that there exists T > 0  such that, for 
each x e V and 4 e E, one has the following: 

(x ,p )+I~Ha( f f ( s ) )ds>~O (peR" ,  IlPl] --- 1) 

If this statement is not true, then there exists xo e V and a sequence 
p , e { p e R  n, Ilpl[=l},  ~ , e E ,  and T n ~ o o  such that 

;o P" - ( x o ,  p,)<~llxoi[<~, for n~>l Ha( f  r ds < 

By compactness of the unit sphere in R n and of E, we can assume that 
p,  --. p and ~, --* 4. Then 

P n  lim Ha( f  ~,(s)) )~ Eo. f,l(s) = He(f~(s)) 
n ---~ o o  

where the limit holds pointwise on R. Here XE0.~.3 denotes the charac- 
teristic function of [0, 7",]. We thus have 

fo  Ha( f  f(s)) ds <~ lim inf ~ ~" Ha(fP~(s)) ds 
rt ~ o o  "J O 

~< lira sup  H~(ff~(s)) ds <~ IlXoll < 
n ---~ o o  

where the first inequality uses Fatou's lemma. However, this violates (2.13). 
The proof of Theorem 2.10 is thus complete. 

Remark 2.14. In Ref. 16 Tonkov states a result where uniform null 
controllability at ~0 is obtained from null controllability at ~o, under the 
additional assumptions that there exists a uniformly recurrent ~1, such that 
(i) the system (1.1)r is globally null controllable and (ii) d(4o(t), 41(t)) ~ 0 
as t ~  oo. Condition (ii) appears to weaken the assumption of uniform 
recurrence of 4o; however, condition (i) is much too strong. 

3. GLOBAL N U L L  CONTROLLABILITY 

In this section we state and prove our main result. Theorem 3.2, 
relating local and global null controllability for recurrent linear control 
processes. We use results of Sacker and Sell [14] and Johnson et al. [9] 
concerning the family of linear equations, 

x' = A(vt(4))x, (4 e E) (2.8) 
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Define S = { 2 e R ] x ' = [ A ( z t ( 4 ) ) - 2 I ] x  admits a nontrivial bounded 
solution for some 4 ~ E}. The set S is called the (Sacker-Sell) spectrum of 
Eqs. (2.8). Analogously one defines the spectrum L'* of the adjoint system 
(2.9). It is easily seen that L '=  - S * ;  that is, 2eL" if and only if - 2~2" * .  

Theorem 3.1 [14]. The spectrum S of  the family (2.8) is a disjoint 
union of  k <~ n compact intervals [ai, bi] ~ R ,  (1 <<. i <~ k). Furthermore, there 
exists k continuous subbundles V1, V2,..., Vk of  the trivial bundle R n • E such 
that 

(i) R ~ x E = ~r 1 ~ V 2 @ . . .  @ V k ( W h i t n e y  sum); 

(ii) each V i is &variant under the f low {it It 6 R} on R" x E defined 
by 

L(x, 4) = (x(4, t)x, ~,(4)) 

(iii) for each (x, ~)~ Vi, one has 

1 
Lim sup t In fiX(C, t)xl[ e [a .  b~] 

and 
1 

Lim in f -  In 11~(4, t)xl[ ~ I-a~-, be3 
t ~ + ~  t 

and 

(iv) .S, [ v ,= [a;, b,]. 

We can now state our main result. 

Theorem 3.2. Let s ~_ R n be compact with 0 ~ 12. Suppose the uniform 
recurrent family of  control processes (1.1) r (4 ~ E) is uniformly locally null 
controllable [see (2.1)]. Suppose, further, that the spectrum Z of  Eq. (2.8) 
is contained in ( - ~ ,  0]. Let m be an &variant measure on E. Then the 
process (1.1) ~ is globally null controllable for m-almost all 4 ~ E. 

It is worth noting that the hypothesis that Z___ ( - ~ ,  0] is equivalent 
to the following statement: to each e > 0 there corresponds a constant K, 
such that, for all 4~E,  all x ~ R  n -  {0} and all t~>0, one has 

I[X(4, t)xl] ~< K~e ~t [[xl[ 

We begin the proof of Theorem 3.2 w!th an elementary observation. 

Lemma 3.3. Consider the process (1.1) r for f ixed 4 ~ E. I f  xo can be 
i-steered to xl in time T1 and i f  x~ can be z(4, T1)-steered to x2 in time T2, 
then Xo can be 4-steered to x 2 in time T~ + T 2. 
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Proof. Let u, and u 2 be admissible controls which steer Xo to x 1 and 
x~ to x2, respectively. Define 

f ui(t if O~<t~<T~ 

u(t)=l~2(t- Ti) otherwiseif TI~t<<, TI + T2 

It is straightforward to check that u(t) if-steers Xo to x2. 
We now continue with the proof of Theorem 3.2. First, assuming m to 

be ergodic, we prove that there is a set E* c_ E such that m(E*) = 1 and 
such that, for any r e E* and x e R n, there exists T (which may depend on 

and x) such that x can be i-steered to 0 in time T. 
We begin by showing that it is sufficient to prove this statement when 

A is lower triangular, i.e., has zeros above the main diagonal. This is 
achieved by making a uniformly recurrent change of variable x = P(t)y, 
which triangularizes the matrix function A (see Ref. 9). Briefly, there is a 
minimal flow (/~, {i,{ t eR}) ,  a surjective continuous map n:/~--* E which 
commutes with the flow, and a continuous mapping P:/~ ~ GL(n, R) such 
that 4: ~ (d/dt)P(f,(~))lt=0 is continuous, with the following properties. 
First, make the change of variables x=P(it(())y in the linear system 
x'= A(r,(n(())x; then the resulting coefficient matrix, 

-- P-'(~,(~)) A(%(u(~)) P(~,(~))- P- l(-~t(j) ) ~/P(~,(~)) C(~,(~)) 

is lower triangular. Second, there is an invariant measure rh on /~ which 

projects to m under re, i.e., zt,rh = m. Thus if/~* _c/~ has rh measure 1, then 

the m measure of E* = rc(/~*) c__ E is also 1. 
Since the above change of variables clearly preserves local and global 

null controllability (with the same control), we can assume that A is lower 
triangular, as asserted. With this assumption let ail denote the ith diagonal 
element of A. The assumption that all spectral intervals are contained in 
( - 0% 0] implies that (see Ref. 9) 

We show that this implies, for m-a.a. CeE, that the process (1.1)~ is 
globally null controllable. We fix numbers r > 0, To > 0 such that the ball 
B(r) of radius r around x = 0 can be i-steered to zero in time To for all 
CeE. 

We use the following ergodic theoretic result from Ref. 15 or, rather, 
the corollary which follows from it. 
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Proposition 3.4. Let (Y, {z,}, #) be a flow where Y is a compact 
metric space and # is an ergodic probability measure on Y. Let h: Y ~ R be 
a #-integrable function with ~yhd#=O.  Let ~'= {yE Ylgiven e > 0  and 
N > O, there exists t > N such that 1~o h(zfiy)) dsl <~ e }. Then It(Y) = 1. 

Corollary 3.5. Let (Y, {zt},#) be as above and let h: Y ~ R  be a 
#-integrable function satisfying ~ r h d# <-.. O. Let ~r= { y e Y] given e > 0 ,  
To>0 ,  and k e N ,  there are numbers Qj> To (l~<j~<k) such that, if 
S o = 0  and Sp= Ze,=~ Qi, then ~Qd h(z(y, Sj_~ + s)) ds <e (1 ~<j~<k)}. Then 
#(?) = 1.  

Proof. The statement (of the corollary) follows from the Birkhoff's 
ergodic theorem if ~y h d# < 0. If ~y h d# = 0, we fix e, To, and k and use 
Proposition 3.4 to choose Qj> To such that [~SJh(rs(y))ds I ~< (e/2) for all 
1 <~j<~k; here Sj= Q, + ... + Qj and y e  ~'. This implies the statement of 
the corollary for each y e "7" and completes the proof. 

Now let E =  { i c E [ t h e  conclusion of Corollary 3.5 applies to each 
function aii(i) (1 ~<i~ n)}. Then m ( E ) =  1. Define E* = 0 {z(E, N ) ] N e  Z }. 
We have m(E*)= 1. Also, i e E* implies z(~, N ) e E *  for each integer N. 
We show that (1.1)~ is globally nult controllable for each i e E * .  

Fix a vector x = (xl,  x2 ..... xn) e R n and let i e E * .  We claim that x 
can be f-steered to a vector whose first component is zero. To see this, 
let k be an integer such that k -~[X l l<r .  Write x =  (eXl, 0,..., 0) + 
((1 - ~) x l ,  x2 ..... xn) where a Ix1[ < r and ( l /k)  < ~ < 1. Then using the 
definition of E*, we can find Q1 > To and a control V,(t) such that x is 
i-steered in time Q1 to a vector (ya, y~,..., y~) with y l = / ~ X l ,  0 ~ f l ~ <  

( k - 1 ) / k  by V,(t). This procedure can clearly be repeated. After j (j<~k) 
steps, we can use Lemma 3.3 to obtain a time T~ = Q~ + Q2+ "'" + Qj> To 
and a control U,(t) such that x is i-steered in time T 1 to a vector whose 
first component is zero. This proves our claim. 

The next step is, of course, to apply the preceding argument to the 
vector (0, z 2 ..... zn), which we have just obtained. It is clear that there exists 
Q >~ T~ such that z(i,  Q) e E*. Note that, setting U l ( t  ) = 0 for T~ ~< t ~< Q, 
without loss of generality we can assume z(i,  T~)e E*. Having done so, we 
choose a new k such that k -1 Iz21 < r. Replacing aH by a22 and proceeding 
as above and, in particular, making use of the triangular form of Eq. (2.8)~, 
we obtain a number T2 > To and a control U2(t) such that (0, z2,..., z,)  is 
z(~, Tl)-steered to (0, 0, w3 ..... w,) in time /"2 by U2(t). 

It is now clear that, after n repetitions of our argument, we obtain 
(using Lemma 3.3) a time T =  T 1 -t- T 2-t- "-" -t- T n and a control U which 
i-steers x to zero in time T. This proves Theorem 3.2 if m is ergodic. 

Finally, in the general case set E * = { r  process (1.1)r is 
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globally null controllable). Then we have shown that m(E*)= 1 for every 
ergodic measure m on E and, hence, for every invariant measure m [12-]. 
This completes the proof of Theorem 3.2. 

Remark 3.6. (a) Even if the spectral interval [a, b] containing 0 
satisfies b >0,  using generic results developed in Ref. 6, under some 
additional conditions (e.g., for two-dimensional systems) we can show that 
there is a residual subset E* _ E (which, however, has measure zero) such 
that, if ~ ~ E*, then (1.1)r is globally null controllable. 

(b) Suppose that all solutions in the j th  spectral bundle Vj are 
bounded for - ~  < t <  ~ .  Then it can be proved that (1.1)~ is globally 
null controllable for all ~ e E. 

We close the paper with a partial converse to Theorem 3.2. 

Theorem 3.7. Suppose the minimal flow (E, {zt}) supports exactly one 
invariant measure m, which is then necessarily ergodic. This is the case if, for 
example, A(t) and B(t) are Bohr almost periodic. Suppose that m{ ~ ~ El the 
process (1.1) ~ is globally null controllable} is positive. Then the spectrum 27 
of  x' = A(zt(~))x is contained in ( - ~ ,  0]. 

Proof. Assume that the spectrum 27 intersects the positive real axis. 
Then the spectrum 27" of the adjoint system (2.9) meets the negative real 
axis. Let b < 0 be the left end point of one of the intervals in L'*. Then by 
Ref. 9 there is an ergodic probability measure /t on projective bundle 
P" - I (R )  x E such that Lim,~ +~(1/t)In IlX*(~, t)-lv][ = b < 0 for/t-almost 
all (v, 4)e pn - I (R  ) • g. Here we confuse v ~ 0 with the line in R ~ on which 
it lies. Since/t projects onto m, we have 

{ E 1 } m ~ f o r s o m e v # 0 i n R  n, L i m - l n l l X * ( ~ , t ) - l v l l < O  =1 
t ~ q-oO t 

Now Proposition 2.1 of Ref. 13 shows that, if (1.1)r is globally null 
controllable, then Lim,_ +~(1/t)In IIX*(~, t)-lvll i> 0 for all v ~ R n. Thus 

m { ~ E  Lim l ln l lX*(~ , t ) - ' v l l>lOforal lv6R" ,vr  >O 
t~+~ t 

This contradicts the previous paragraph and completes the proof. 
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