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Existence and Stability of Traveling Waves in 
Periodic Media Governed by a Bistable Nonlinearity 
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We prove the existence of multidimensional traveling wave solutions of the 
bistable reaction-diffusion equation with periodic coefficients under the condi- 
tion that these coefficients are close to constants. In the case of one space 
dimension, we prove their asymptotic stability. 
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1. I N T R O D U C T I O N  

We consider the initial value problem of the bistable reaction-diffusion 
equation with periodic coefficients: 

ut = ~ (aij(x) ux,)xl+ ~ bi(x) uxi + f (x ,  u) (1.1) 
i,j i 

The coefficients are assumed to be smooth, and 27c-periodic in each compo- 
nent of x, x~R";  a(x)=(ao(x)) is an n x n  positive definite matrix 
uniformly in x, and f (x ,  u) is a cubic bistable nonlinearity. Typically, 
f (x ,  u ) = u ( 1 - u ) ( u - # ) ,  /~e (0, 1/2). We are interested in the large time 
behavior of solutions of (1.1), in particular, the convergence of these 
solutions to a traveling wave solution as time tends to infinity. 

An equation like (1.1) with constant coefficients was first studied in 
the classic paper by Kolmogorov, Petrovskii, and Piskunov (1937), where 
they consider 

u, = uxx + f(u)  (1.2) 
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with f ( u )=  u ( 1 -  u), called KPP nonlinearity. In the constant coefficient 
problem, a traveling wave is a solution of the form u = q~(x - ct), where ~0 
satisfies 

~0"+ c~0' + f(~o) = 0 

~ 0 ( - ~ ) = 0 ,  q ~ ( + ~ ) =  1 
(1.3) 

and c is a constant. Kolmogorov et al. (1937) established the existence of 
traveling waves and the convergence of solutions to a traveling wave solu- 
tion with c = 2 f x / ~ - ) ,  when the initial condition is the indicator function 
of the set (0, + ~ ) .  Since then, Kanel (1964), Fife and McLeod (1977), 
Aronson and Weinberger (1975), and others studied the large time 
behavior of solutions of (1.2) and its multidimensional analog for various 
nonlinearities f (u)  and various initial conditions. More recently, equations 
like (1.1) with periodic or random coefficients and KPP nonlinearity were 
investigated by Freidlin and Gartner (1979). Their results for the periodic 
case are as follows. For any y ~ R', let 

Lz = ~ (Oxi- zi)(a~(x)(3xj - zj)) + ~ bi(x)(O~,- zi) + f~(x, 0) (1.4) 
i , j  i 

Lz is obtained from the right-hand side of Eq. (1.1) by substituting 0~,-z~ 
for 0~ and fu(x, 0) for f (x ,  u). Lz is a linear strongly elliptic operator on 
T',  the n-dimensional torus of size 2g, so Lz has a unique principal eigen- 
value 2 = 2(z), differentiable in z. It is easy to show that 2 is also convex 
in z. Thus it has a convex dual function H =  H(y) defined by 

H(y) = sup ((y, z) - 2(z)) 
z ~  R n 

where y e R'. Freidlin and Gartner (1979) showed that if the initial condi- 
tion is nonnegative, continuous, compactly supported, but not identically 
zero, then for any given y ~ R', the asymptotic behavior of u is described 
by H =  H(y) as follows. 

lim u(t, ty)=(O1 if H ( y ) > 0  
, - ~  if H(y)  < 0 

In the above sense, the set t. { y ~ R ' [ H ( y ) = O }  can be regarded as the 
wave front and the wave speed v in the unit direction e ~ R n is obtained by 
solving the equation H(ve)= 0. Their approach is based on applying the 
Feynman-Kac formula and limit theorems for large deviation probabilities. 
In the KPP  case, it turns out that the wave speed can be determined inde- 
pendently of the wave shape, and the large deviation method is well suited 
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to capturing the wave speed and neglecting the more delicate problem of 
the wave profile. In fact, the linearization of f ( x ,  u) at u = 0 is enough to 
determine the wave speed as seen from the definition of Lz where only 
fu(x, 0) appears. 

In the bistable case, however, the wave speed and the wave profile are 
usually coupled and have to be determined at the same time. On the other 
hand, the traveling waves, if they exist, are more stable than those in the 
K P P  case. This is evident in the work of Gartner (1983) and Sattinger 
(1976) on related front propagation and stability problems. Their results 
imply that traveling waves are in general not stable in the K P P  case unless 
stability is considered in a suitably weighted Banach space, whereas in 
the bistable case, stability holds without weight. We therefore look for 
traveling wave solutions of (1.1) which not only carry the usual features 
of traveling wave solutions of constant coefficient semilinear parabolic 
equations, but also take into account the effect of the nonuniform but 
periodic medium. Without loss of generality, we put hi(x) to zero and 
assume that f ( x ,  u) does not depend on x. We find that solutions of the 
form u =  U ( k . x - c t ,  x) serve our purpose, where k e r  n, x s R  n, c is a 
constant, and U =  U(s, y)is  2re-periodic iny,  U ( - o %  y ) =  0, U( + 0% y ) =  1. 
Indeed, substituting it into Eq. (1.1) gives 

(V s + kt?s)(a(y)(Vy + kOs) U) + cUs + f ( U )  = 0 

U( - oe, y) = O, U( + o% y) = 1, U(s, �9 ) 2g - periodic 
(1.5) 

This is a degenerate elliptic equation on an infinite cylinder. 
In Section 2, we prove the existence of solutions under the condition 

that the coefficients are close to constants. The idea is to write (U, c) as a 
perturbation of ((p, co), which is the solution of (1.3), i.e., U =  q~ + 6V, c = 
Co+ 6ca, and analyzing the equation satisfied by (V, Cl). It can be recast 
into the form Lo V= R(V, c1, 6), where Lo is a linear degenerate elliptic 
operator with coefficients homogeneous in y, and R contains (Vy + k~?,) 2 V, 
~s V, Vy V, ca, and is nonlinear in V. A priori estimates for L o are obtained 
by using Fourier series in y and spectral theory of second-order ODEs on 
R 1. Lo is shown to have a one-dimensional null space and a solvability con- 
dition must be satisfied to solve the inhomogeneous problem Lou = f .  To 
remove the uncertainty in u due to the one-dimensional null space, a 
normalization condition is introduced. When the solvability condition is 
satisfied and normalization is done, L o  a gains one derivative in s, y, and 
two derivatives of the form (Vy + k~s) 2. Because of the degeneracy of the 
second derivative terms of Lo, the usual elliptic W 2,p estimates are not 
available. Instead we have weaker parabolic-type estimates. This property 
is then used to set up the iteration scheme LoV"+a=R(V",c'~,6),  with 
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c~ = c]'(V ~) given by the solvability condition. The iteration scheme is 
shown to converge in a suitable Sobolev space by the contraction mapping 
principle. The normalization condition implies that the solution to equa- 
tion (1.5) is unique up to a constant shift in the s variable. 

In Section 3, we prove the asymptotic stability of traveling waves we 
constructed in Section 2, when space dimension is equal to 1. Nonlinear 
stability is proved in the sense that if the initial condition is a sufficiently 
small H 1 perturbation of the traveling wave profile, then the solution of 
(1.1) converges in H ~ to a shifted traveling wave as t goes to infinity, and 
the decay rate is exponential in time. The idea of the proof is that after 
changing to the moving front coordinate ~ = x - c t ,  the above traveling 
wave solution becomes a time periodic solution of (1.1), and the perturba- 
tion satisfies v t=  L(t)v + N(v), where L(t) is linear and periodic in t, and 
N(v) is nonlinear. We analyze L(t) using the Poincar6 map and its spec- 
trum. By L 2 integration methods and perturbation theory of the spectrum 
of bounded linear operators, we show that 1 is a simple eigenvalue of the 
Poincar6 map, and the rest of the spectrum stays strictly inside the unit 
circle. This spectral property is then used to establish the linearization 
principle which implies the nonlinear asymptotic stability. 

2. M U L T I - D I M E N S I O N A L  EXISTENCE OF TRAVELING WAVES 

2.1. Introduction and Statement of Main Theorem 

In this section, we consider existence of traveling waves, i.e., solutions 
of the following equation: 

(Vy+kSs)(a(y)(Vy+kSs)U)+c~sU+ f(U)=O (2.1) 

satisfying the boundary condition: U ( -  ~ ,  y) = 0, U( + ~ ,  y) = 1, and 
U(s, .) 2n-periodic in y. Here f (U)= U(1 - U)(U-~t), #~ (0, 1/2), the 
typical bistable nonlinearity; a(y) is a positive definite matrix, 2n-periodic 
in y, y ~ Rn; s ~ R 1 and k is any unit vector in R n. 

We are interested in the case when a(y) is not far from a constant 
positive definite matrix. We assume that a(y)=I+ 6al(y), where a~(y) is 
2~-periodic in y and smooth, I is the identity matrix in R ", and 6 is taken 
to be small. 

Let ~p = ~o(s) be the classical traveling wave solution of 

~P"s + Co ~P's + f(~o) = 0 (2.2) 

where s ~ ( - 0% + Go ), q~( - ~ ) = 0, ~p( + 0o ) = 1. It is known that q~s > 0, 
and Co < 0. Solution of (2.2) is unique up to a constant shift in s. To remove 
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this translation invariance, we impose a normalization condition: rp(0) = 0, 
0 E (0~ 1). A similar normalization condition is proposed for (2.1): 

1 
f U(O,y)dy=O, Oe(O, 1) (2.3) 

(2=)" r; 

where T~ denotes the n-dimensional torus with size 2=. 
We proceed to show existence as follows. Write U=cp+6v, 

c = Co + 6cl, and substitute these expressions into (2.1): 

(Vy + k~?~)((I + 6al)(Vy + k~s)(q) + 6v)) 

+ (Co + 6cl)(~o + 6v)s +f(q~ + 6v) = 0 (2.4) 

which is the same as 

6(Vy + kO~)(I+ 6a~)(Vy + ka~)v + (Vy -1- kO~)(I+ 6al)(kq)s) 

+ f(~o) + (c o + 6Cl)  q)s "[- ~(Co "Aft ~C1) Vs 

+ ,Sf'(~o)v + �89 v 2 - 63v3 = 0 (2.5) 

Simplifying the above equation using (2.2), we get 

cS(Vy + kO~)(I + 6a~)(Vy + kc3s)V + r -[- kOs )  a~(kq~ ~) + (~C 1 q) s 

+ 6(% + 6c~ ) v, + 6f'(q))v + �89 v 2 -- 63v 3 = 0 (2.6) 

Canceling a and letting L o =  (Vy +k~?~)2 + CoOs +f'(q~), we arrive at 

Lov = - 6 ( V  u + kOs) a~(Vy + kas)v - (Vy + kOs) al(k~ps ) 

+ 6Zv 3 - c~(r + firs) - �89 v 2 (2.7) 

Notice that the normalization condition is now reduced to 

fry v(0, y) dy = 0 (2.8) 

Our existence result is the following: 

Theorem 2.1. Consider problems (2.1)-(2.3) and (2.7)-(2.8) with 
0 = 1/2. Let 

X t  : {veHt+l 1 n n (Rs x 7"2)] (Vy+kOs)2veHt(R~ x Ty)} 

where k is a unit vector in R ' ,  t e Z +, and t - It /2] > (n + 1)/2. Then 360 = 
6o(Co, n, t), such that i f  6 is less than 6o, there exist unique ve  Xt and Cl e R, 
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solutions of the problem (2.7)-(2.8), so that (U, c) given by U= ~o + (Sv, and 
c = Co + (5cl, solves the problem (2.1) along with its boundary conditions. 
Moreover, if (V(s, y), C) is another solution of (2.1), then C = c  and 
V(s, y ) =  U ( s -  So, y ) for  some So E R. 

The proof of consists of four steps. 

(1) Fourier decompose Lo into ODEs on R t (beginning of Sec- 
tion 2.2). 

(2) Use spectral theorem of second-order ODEs (Henry, 1981, 
pp. 136-142) and Fourier transform to study their invertibility in L 2 and 
high-order Sobelev spaces (Lemmas 2.1 to 2.3). 

(3) Piece together the results on the ODEs in step 2 to get the inver- 
tibility of L0 (Proposition 2.1). 

(4) Set up the iteration scheme based on step 3 and show its 
convergence by the contraction mapping principle (Section 2.3). 

2.2. Invertibility of  L o and Related Estimates 

Let V=L2(R~x T~), V 1 = {h~ V[ (h, ~ps) = 0}, where (-,-) is the usual 
L 2 inner product. We are going to analyze 

Lo~k = g, gE V (2.9) 

where r satisfies the normalization condition: 

f ~(0, y ) d y = 0  (2.10) 
T; 

To do this, we expand ~ and g into Fourier series in y: 

~(S, y ) =  E O~rn(S) eim "y 
mEZ n 

~m(s)~L~(R), E II~mll~< + ~  
m~Z" (2.11) 

g(s,  y)= E gin(S) eim'y 
m~ Z a 

gm(s)~L2(R), ~ Ilgml[ 2< + ~  
m~Z" 

then Lo~0 -- g is equivalent to the following ODEs indexed by m: 

~ + ( C o + 2 ( k . m ) i ) ~ ' m + ( f ' ( q ~ ) - l m l 2 ) ~ m = g m  (2.12) 

here prime means d/ds, and ]ml = x / ~ - m ) .  
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When m = 0, we have 

~ + Co~ + f'(q~) % = go (2.13) 

Let No = ds~ + cod, + f'(~p), Nm = d,s + (Co + 2 ( k . m ) i ) d ,  + 
(f ' (q~) -- [m[ 2) for m ~ 0 ,  where ds=d/ds and dss=d2/ds z, and consider 
No, Arm (m ~ 0) on L2(R). 

Differentiating (2.2), we see at once ~o, e Ker(No). Notice that f'(q~) 
- l + p ,  as s ~  + ~ ;  f'(q~) ~ - # ,  as s ~  -~z.  So N o % = 0  is asymptotic 
to 

%'+  C o ~ +  ( -  1 +/z) % = 0 ,  s ~  + ~  (2.14) 

~ + C o ~ ; - # %  =0,  s-~ -oo  (2.15) 

In both cases, there are two linearly independent solutions; one is exponen- 
tially decaying, and the other is exponentially growing. So No% = 0 has 
at most one nontrivial L 2 solution, and dim Ker(No)= t, Ker(No)= 
span{~o~}. It is easy to check that e~~ is in Ker(No*), and thus 
dim Ker (N~ ' )= l ,  Ker(NJ')=span{e~~ By Fredholm alternative, 
(2.13) has L 2 solution if and only if 

(go, eC~ = 0 (2.16) 

moreover, if we restrict ourselves to V~, the solution is unique. Let %0 be 
such a solution, then 

II~oollH~ ~ Mo IlgollL= (2.17) 

where Mo depends only on q~. 
The normalization condition now becomes 

% ( 0 ) = 0  (2.18) 

Since %(s)=C%o(S)+?q~s(s), where ? is a constant, the normalization 
condition gives: 

? = -%0(0)/%(0) (2.19) 

By Sobolev inequality, [~oo(0)l ~< M1 II %oil u2, which implies, together 
with (2.17), 

171 ~< M2 Ijgo[lL2 (2.20) 

or." 
H~oH H 2 ~< M3 l] go[I L2 (2.21) 

where M 3 depends only on q~. 
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Now we turn to the invertibility of Nm. We use spectral theory of 
second-order ordinary differential operators. We state a definition of essen- 
tial spectrum and a related theorem, proof of which is given by Henry 
(1981, pp. 136-142). 

Definition 2.1. If L is a linear operator in a Banach space, a normal 
point of L is any complex number which is either in the resolvent set or an 
isolated eigenvalue of L of finite multiplicity. Any other number is in the 
essential spectrum. 

Theorem 2.2. Suppose M(x), N(x)  are bounded real matrix functions, 
and D is a constant positive definite matrix," M(x)  --* M+_, as x --* +__oo, and 
N(x)  --* N+_, as x ~ +_oe. In any spaces LP(R), 1 <<. p <<. o% Co(R), Cunif(R), 
define 

L u ( x ) =  - D u x x + M ( x )  ux+N(x )u ,  - o e  < x <  +oe 

Let S+_ = {21det(~2D+izM+_ + N + _ - 2 1 ) = 0 ,  for some real z �9 
( -  o% + oo )}, then the essential spectrum of  L is contained in P, which is the 
union of  the regions inside or on the curves S+_. 

Remark 2.1. S_+ consist of finitely many algebraic curves, and they 
are asymptotically parabolas as z becomes large. 

To apply the above theorem, we write N m into the equivalent real 
second-order system. Let ~,, =/~m + i7m, then the operator in matrix form 
is 

(~m)ss+(2(;Om) -2(k.m))co / "(~m)s 

+ ( - - [ml20f ' ( rp ,  _ lml20+f , (~o) ) " (~)  

So 

where 

S_+ = {2 I de t ( - z2 I+  i z M +  N_+ -~ . I )=  0 for some real z} 

( ,m,2+s+0 j + ~  ) N+ = ,m,2+ .. . 
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and 

It follows that  

f '+ = - 1  + #, f '_  = - #  

( - v 2 - 2 -  Iml 2 q-if+ + irco 
det 2i( k . m ) z 

which is 

o r  

Thus we get 

- 2 i ( k  . m ) r  ~ = 0  
- r  2 - 2 - Jml z + f'+_ + izco / 

(g2  _}. 2 "{- [m[ 2 -f'_+ - i"cCo) 2 - 4 ( k - m )  2 ~2 = 0 

r 2 q- 21 + lint 2 -f '+_ - ivco - 2(k .  m ) r  = 0 

r2 + 22 + Iml 2 -f '+_ - irco + 2(k.  m) r  = 0 

21 = - I m l  2 + f ' +  - T 2 + 2 ( k .  m ) r  + icor 

22 = - Iml2  +f,_+ _ z2 _ 2 ( k - m ) r  + icor 
(2.22) 

It is easy to see that  both  21 and 22 live on parabolas.  In case of 21, set 
x =  - z  2 -  Iml2 + 2 ( k . m ) r  + f'+_, y = C o r ,  then 

x = - y 2 / c 2  - I m 12 + 2(k .  m)y/Co + f'+_ 

= - ( y -  co(k .  m))Z/c~ - ]ml 2 + ( k .  m) 2 + f'_+ 

This is an equat ion of a parabola  in the left half (x, y) plane, with the 
vertex being 

Xo = - ] m l  2 + (k.  m) 2 +f'_+ 

Yo = co(k" m )  

Notice x0 ~<f'_+ ~< m a x ( # -  1, - # ) =  - #  < 0, so 21 is strictly inside the left 
half plane. Similarly, 2 2 stays strictly inside the left half plane. Therefore,  0 
is not  in the essential spectrum of Nm. It is either in the resolvent set or an 
isolated eigenvalue of finite multiplicity. 

Suppose 0 is an isolated eigenvalue, then there exists u e L 2 such that 

u " +  (% + 2(k .  m ) i ) u '  + ( f ' (~o) - ImJZ)u = 0 
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which is asymptotic to 

u" + (Co + 2(k. m ) i ) u ' +  (f'+ - [mlZ)u = 0 

as s ~ + ~ .  At s near - ~ ,  u = O(e "s) where r/is 

= - C o / 2 -  (k.  m) i  + 1/2 x/C2o- 4f'_+ + 4(k. m) coi + 4 [m[ 2 - 4(k.  m) 2 

Therefore, 

Re t /= -Co/2 ++_ 1/2 Re x/c~ - 4 f "  + 4(k-m)  Co i + 4 Ira] 2 _ 4(k.  m) 2 

By the inequality 

IRe ~71 > ~ , ~ z ,  if Rez~>0 

and the fact that 

c ~ - 4 f ' _  + 4 Iml 2 - 4 ( k .  m) 2/> c~ - 4 f ' _  > c~ 

Xin 

v" + ( f ' ( ~ o ) - c ~ / 4 + ( k . m ) c o i - / m / 2  + ( k . m ) Z ) v = O  (2.23) 

o r  

v" + ( f ' ( e p ) -  c 2 / 4 -  Iml 2+. (k.  m)2)v = - i ( k .  m) Coy (2.24) 

Since the operator in the left-hand side is self-adjoint on L2(R), its 
spectrum is real, so (k. m ) =  0. This implies that 

v" + (f'(~o) - c 2 / 4 -  Iml2)v = 0 

or equivalently for u 

u" + CoU' + f'(q~)u = Iml 2 u 

from the known fact that operator dss+cods+f ' (~p)  does not have 
eigenvalue in the right half-plane, we get a contradiction. Thus 0 is in the 
resolvent set of N,,,  and Nm's are all invertible on L2(R). 

we see that Re r/ is dominated by the second term in the sum. So one 
characteristic root has negative real part; the other has positive real part. 
Then at - ~ ,  u behaves like O(e s Re '7+), where ~/+ is the characteristic root 
with positive real part. From the above formula for Re ~/, we have Re q + + 
Co/2 > 0. Hence, if u ~ L 2, then v = el/2(c~ ~ L 2, in view of Co being 
negative. However, v satisfies 
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Lemma 2.1. For any m 4: 0, Nm has a bounded inverse on L2(R). 

In order to derive more properties of Nm's, we study their associated 
constant coefficient differential operators. 

Let Nm, o = (d2/ds 2) + (Co + 2(k-m)i)(d/ds) - [mr 2, m ~ 0, and consider 
the problem 

Nm,oU = g on L2(R) (2.25) 

After transform the above equation becomes 

( - ~ 2 + ( C o + 2 i ( k . m ) ) i ~ - l m l 2 ) f i = ~ , ,  ~ER  

which is 

(_r  _ 2(k. m)r - [ml 2 + icor = 

Letting S(~) = - r _ 2(k. m) ~ - I m] 2 + ico ~, then we have the following. 

Lemma 2.2. There exists constant M 4 = M4(co) , such that 

tS(~)l 2 ) M4(~2 ..]_ Iml 2) 

Proof. Since IS(~)14=]~k+ml4+cgr  z, we only need to show that 
]S(~)[ 2 ~ const �9 I ml 2, where the constant is independent of m. 

If I~1 ~< Iml/2, then 

IS(r 2 ~> (Iml - Ik~l )4 _{_ C2~2 ~ (im]/2)4 + c2r [ml4/16 

If I~1 > Iml/2, then 18(~)12>~c~2>~c~ Im12/4. Combining the 
inequalities, we prove the lemma. | 

Corollary 2.1. 

Proo~ 

and 

above 

I f  Nm, oU= g, then there exists M5 =Ms(co) such that 

llullLz~< ~ 1  IlgllL~ 

]lullm ~< M5 [IgllL2 

It follows from Lemma 2.2 that 

a =  ~/S(r 

IlallL2~<~-[ 
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which implies the first inequality. Also, 

1 2 
Ilull~l-- I1(1 + ~2) ~211L~ ~<M44 [I~IIL= 

from which the second inequality follows. I 

Lemma 2.3. 

P r o o ~  

o r  

There exists cons tan t  m 7 depending only on c o such that 

M7 
IlNm lg[I L2 ~< ]m---~ [I gll ~2 

IINmlgllH~ <. M7 IlgllL= 

Let us consider 

Nmu = g, i.e., 

Nm, oU+ f'(cp)u= g 

Nm,oU= g -  f'(tp)u 

By Corollary 2.1, we have 

IlulIL2~<~I (llgllL~+ IIf'llL~ HulIL2) 

If Iml ~>2M5 IIf'IIL~, then 

1/2 IIuIIL=<~ (1 M5 Imlllf'llL~)ilu[lLz~< M,~_~ IlgllL= 

or  

2Ms 
Llulh L2 ~-~-~-IIgbLL~ 

However, there are only finitely many m's that satisfy I m[ ~< 2M5 I] f 'll L~, 
for each of them we have from Lemma 2.1 that 

IluIIL2~ Mm IlgllL2 

where J~m is the bound of N m  I a s  given in Lemma 2.1. Let no = 
2M5 II f '  II L~, and M 6 = max(max1 ,< I,~l ~n0 (-~tm Iml ), 2M5), then 

M 6  
Ilull L= ~< ~m-~ IIglIL: 
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where M 6 ---M6(co). In other words, 

F r o m  
obtain 

therefore, 
II f'l] Lo~M6)). 
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UNm l]] L2 ~ M6 I -~ (2.26) 

N,~,ou=g-f'(q~)u, Corollary2.1, and the above inequality, we 

/{ull n~ ~< Ms(I( g([ L2 + ([ fit{ L| Ilutl L~) 

<~Ms (l[g[[r2+ ~ 1  gllL2) Im[ ][f'llL~ M6 ]l 

<~Ms(1 + tlf'l!L~ M6) IlgtlL~ 

][N~agll~v2 <~ Mv IIgIIL2, where 347 = max(M6, Ms(1 + 

Corollary 2.2. I f  Nmu= g, then there exists constant M8=M8(co)  
such that 

Ilull~v I ~< Ms IlgllL2 (2.27) 

[[(kd~ + im)ut[L2 <~ M8 IlgllL~ (2.28) 

[I (kd~ + ira) 2 ull Cz <<- M8 I1 gl] L: (2.29) 

Proof. The first two inequalities are direct consequences of 
Lemma 2.3, while the last one can be seen by writing the equation N~u = g 
as 

(kds + ira) 2 u -- g - CoU~ - f '(~o)u 

and taking the L 2 norm of both sides. | 

Corollary 2.3. [ f  Nmu= g, and g ~ H t, then 3M9 = M 9 ( c o ,  t) such that 

Ilull~,,+l <~ M~ Ilgll,~ (2.30) 

{{ (kd~ + im ) u {( n, <<- 319 I[ g If n, (2.31) 

[I (kC + im)2 nil n, <<- M9 II glt H, (2.32) 

where t ~ Z +. 

Proof. Notice Nmu=Nm,  o u + f ' ( q ~ ) u = g ,  and that DJ=(ds )  j com- 
mute with Nm, o, so if we apply D;  to the above equation, we get 

Nm.o Dju+ E CJDJ- l ( f ' (q~))D'u+ f ' (~~  
O<~l<<.j-- 1 
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o r  

NmDJU + ~ CJDJ-l(f'(q~)) D'u = Dig 
O<~l<~j--1 

By induction on j, Lemma  2.3 and Corollary 2.2, we see that the expected 
inequalities hold. | 

Proposition 2.1. Consider problem 

Lou = g on L2(R~ • T;)  

where L o = (Vy + kOs) 2 + Co~s + f'(q~), and g satisfies 

(g, eC~ = 0 

moreover, u satisfies the normal&ation condition: 

fr; u(O, y) dy = 0 

then there exists constant Mlo = Mlo(Co, t) such that 

II ull , ,+ 1(,~ • r;) ~< Mlo [I gll W(,,~ • T;) (2.33) 

II (Vy -I- kc~s) 2 nil ~'(R~ • ~;) ~< Mlo II gll H'(R~ • ~) (2.34) 

where t e Z +. 

Proof. Write u and g in terms of Fourier  series of y 

U ~-- E Urneim "y 

rn g Z n 

g =  ~ g m  e i m ' y  

m E Z  n 

where urn, gm e LZ(R), and Z , ~ z ,  ( u2 + g2m) < +00. 
By analysis in (2.13)-(2.21),  we have 

Iludl ~,+2(R) ~ mlo(Co, t) II golt u,(R) 

F rom Corollary 2.3, it follows 

Ilumlln,+,(m <<.Mlo(Co, t) Ilgmllu,(m 

IlmUmll at(R) ~ Mlo(Co, t) II grail ~t(~) 

II(kds + ira( 2 Umll U'(~) ~< Mlo(Co, t) Ilgmllw(R) 

for m # O .  
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Combining the above inequalities, we get 

IlUI]H'+~(R~• ~ Y~ [ml z Ilu~+l--Otlz=(R) 
m e g  n O<~l<~t+l 

~ M l o  E l lgmllH~(R) q- E E 
m ~ Z  n m ~ Z  n l ~ < l ~ < t + l  

m ~ Z  n O<~l<~t 

Imt t IIU~ + I -  OII L2(m 

Iml '+~ Ilu~-l)ll~z(~)) 

tml z II g(m'-- 011L2(R)) 
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/ 
<~Mlo ~, (llgmltW(m+ 

rn ~ Z n \ O <~ l <~ t 

Mlo fl gll,'(R} • C~ 

Similarly, we establish the second inequality. | 

We end this section with a Sobolev imbedding lemma. 

Lemma 2.4. Let u~ Ht(R~ • T~), and t -  It/2] > (n + 1)/2, then there 
exists constant M = M(t)  such that 

2 []u ][u,~<M ]lullS, 

Ilu3Jln~< M {lull ~, 

Assume that t ~ Z +. 

Proof. It suffices to show that IfD'u2F[L2<~M Ilull~, where D is 8~ or 
ayj. The mixed derivatives can be treated similarly. Since 

Dr(u2) = E C~ DtuD('-Ou 
O<~l<~t 

If t --  It/2] > (n + 1)/2, then Ht(R~ • Ty) can be continuously imbedded 
into CEt/21(R~ • Ty), which is 

]lD(l)ut] L~ ~< M IluHw 

for 0 ~< l~< It/2]. Now taking the L 2 norm of both sides of the identity of 
differentiation, and using the imbedding inequality, we arrive at our 
conclusion. In the same manner, one can show the inequality for u 3. | 

2.3. Iteration Scheme and Its Convergenee 

Let us consider equation (2.7), that is 

Lov = - 6 ( V y  + kOs) al(Vy + kd~)v - (Vy + kOs) a~(kcp~) 

- -  6 2 V  3 __ Cl(~O s ~- (~l)s) - -  16f"(~o ) v 2 

865/3/4-5 
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along with the normalization condition: 

f~ v(o, y) ay = o 

The related iteration scheme is 

L o V n +  1 = --r + k~s) a l ( V y  --b kSs) v,, - (Vy + kOs) al(k%) 

- -  C7 + l((ps --['- (~Vn, s)  - -  �89 v 2 + 62v3,, (2 .35)  

and 

where 

and 

1 
C7 +1 --  (F(v,,), ~p) (2.36) 

(~o,+ 6v .... q,) 

F(v) = -g(Vy + kS~) al(Vy + kSs)v - (Vy -~- kSs) al(kqb) 

- �89 v 2 +62v 3 (2.37) 

= eC~ (2.38) 

Moreover, v,'s satisfy the normalization condition. 
Let 

Xt=  {v e Ht + '(R] x T;)I  (Vy +kSs) z v e Ht(R~ x T;) } 

equipped with norm: 

V 2 Ilvllx, = (11 IIH,+I + II(Vy + k a s )  =v[I ~r 1/2 

X t is a Hilbert space with above norm. Notice that in the iteration, c7 + 1 = 
n + l  C"I+X(Vn), and V n + l = l ) n + l ( C 1  ,1)n)=1)n+l(1)n). By Proposition2.1 in 

Section 2.2, we see that the mapping T: vn ~ v,+l  is a mapping from Xt 
to X, if t -  [t/2] > (n + 1 )/2, since each term in the right-hand side of (2.35) 
is in H' and thus v,+l  belongs to Xt. 

Let M be the maximum of all constants in all our previous estimates 
( M =  M(co, n, t)), then Proposition 2.1 yields 

]ll)n + 111 X, <<- M(6 Ilvnl]..-, + 62 IIv. II 3, + 1 + Ic7 + 11 

+ ~ Ic7+11 IIv.llx,+,~ [Iv.II 2 )  (2.39) 

M(1 + 6  IlVnlIx+6 IIv.II]. + 6  = IlVnlI3) 
Ic~ '+ '1 ~< (2.40) 

(~os, , / , ) -6  IIv,,ll x,-II~IIL= 
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Suppose IIv.[[x~ ~< R, then (2.39) and (2.40) give 

Ic~+11 < 
M(1 + 6R + 6R 2 + 62R 3) 

1 -- 6 M R  

live+ 111~ ~ c~MR + 6 M R  2 + 82MR 3 4- M 

M(1 + ~R + 6R 2 + 62R 3) 

+ ( M +  (~R) 1 - cSMR 

(2.41) 

Choose R = 2(M 2 + M), then there exists a 6o = 6o(M), suitably small such 
that when ~ < 6o, the right-hand side of (2.42) is less than R = 2(M 2 + M); 
and 6 o M ( M Z + M ) < l / 4 .  As a result, the mapping T : v n ~ v , , + l  is from 
Bx,(O, R )  to itself, where Bx,(O, R)  denotes a ball of radius R with center 
at 0 in our iteration space X,. Moreover, (2.41) says that {c7} is a bounded 
sequence. From now on, we use M for all possible positive constants 
appearing in our analysis which depend only on c 0, n, and t. 

Consider v~ + 1 = Tv~, and Vn + 2 = Tv,  + i, then 

and 

Lo(v,+ 2 - v,+ 1) = - 6 ( V y  + k~gs) al(Vy + kOs)(vn+ 1 - 1)n) 

n+2 n+ 
- -  (~C1 l ) n + l , s 4 - ( ~ e T + l D n ,  s - (C ln+2_C 1 1) q~s 

- �89 - v ] ) +  3 2(v,, +, - 3  v3) 

Taking the H'-norm of both sides and using Schwarz inequalities: 

l i v e §  vlll/~ < C l ( t )  IlVn+l - -  UnlIH t" HOn+l + v. l l~  

<~ 2ec~(t) [Iv.+ i - v~ll., 

~< M IIv.+ 1 - Vnllg t (2.43) 

IIv3. + x -  v3.[I.~ < M IIv.+ i -  V.IIH, 

we have 

[ILo(v~ + 2 - v~+ 1)N H, ~< II - ~ ( V y  + k~s) al(Vy + k8~)(v.+ 1 - -  v.)tl. ,  
t tt 2 + [1 -  ~3 f  (q~)(v. +1 - v~) + 62(v3. + 1  - -  v~.)[I •, 

+ H_c~c~+Zv ,~ n+l , ,  n+2 n+l 
n + l , s 4 - v C  1 Vn, s - - ( C  1 - - C  1 ) q ) s [ l H  t 

~<6m Ilv.+ t -  v.[lx, + m I c7+=-  c7+11 

. + ,  c7+2) + l l g c T + l ( v , + l , s - V , , s ) + f i ( - c l  + v,+1,sll~, 

(2.44) 

(2.42) 
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Notice 

Cln+2 cT+a 
1 1 

r(v.+l) 
(q,s, r  + 6(v.+ a, ~) ( < ,  ~,) + a(v. ,  ~,) 

F(v.) 

1 1 ) F(v,+ a) 
~-- '( ~O s , ~t ) -4- 6 ( V n + 1, ~1) - ( ~O s , I / I ) " ~ - 6 ( V n ,  ~t ) 

1 
"[- ( F ( ! ) .  + a ) - -  F(v,)) 

(~os, ~)  + a(v. ,  ~,) 

It is easy to see that 

IF(v.§ ~<M 

1 g,) ~<M 
(q)s, I/]) "~- ~(Vn + 1, 

1 ~) 
( qgs , ~h ) + 6 ( v. , <<. M 

and that 

IF(v,+ a ) -  F(v,)[ <~ 6M I lv ,+l -v , [ Ix ,  

Therefore by the boundedness of {c7} sequence and (2.44), we have 

1c7 +a - cTI ~< 6M IlVn+ 1 - v.II x, (2.45) 

and thus 

IlZo(v.+2-V.+a)Hu,<6M IIv. + 1-v . l lx ,  

or 

I lv .+2-Vn§ [Iv.+ 1-v . l lx ,  (2.46) 

So if 6 < 60 = 1/M, then T is a contraction mapping, it has a unique 
fixed point in X,. When the v, sequence converges, (2.36) shows the 
corresponding convergence of c7 sequence. As a result, we obtain the 
unique solution (v, c), being limits of the sequence (v,, c"1), to the problem 
(2.7)-(2.8). 

Without loss of generality, we can take 0 in (2.3) to be 1/2. Suppose 
V= V(s, y) is any other solution of problem (2.1), we can always shift its 
s variable by So such that the normalization condition is satisfied by 
V(s+so, y), which solves the same (2.1) that V(s, y) satisfies. By the 
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uniqueness of contraction mapping, V(s + So, y) is just the solution we con- 
structed by iteration, therefore V(s, y ) =  U ( s -  So, y). In other words, if 6 is 
less than 6o, the problem (2.1) has a unique solution up to a constant shift 
in the s variable; especially the traveling speed c is unique. This completes 
the proof of the theorem. 

3. O N E - D I M E N S I O N A L  STABILITY OF TRAVELING WAVES 

3.1. Introduction and Statement of Main Theorem 

In this section, we study the stability of the traveling wave solutions 
that we constructed in the last section when space dimension is equal to 1. 
Consider the following reaction-diffusion equation: 

u, = (a(x) Ux)x + f(u) 

u I,=o = U(x, x) + Uo(X) 
(3.1) 

where a ( x ) =  1 + 6al(x) ,  a l (x )  is a smooth 27z-periodic function, f ( u ) =  
u ( 1 - u ) ( u - # ) ,  with #~(0 ,  1/2), and U = U ( s , y )  is the solution of the 
following equation: 

(a~ + Oy)(a(y)(~ + Oy) U) + CUs + f ( U )  = 0 
(3.2) 

U( + ~ ,  y)  = 1, U( - ~ ,  y)  = O, U(s, .  ) 2re-periodic 

Writing u = u(t, x )  as a perturbation of U = U(x - ct, x): 

u = u(x, t) = U(x - ct, x)  + v(x, t) 

and substituting into (3.1) gives 

(3.3) 

v t = (a(x) vx)x + f ( u +  v) - f l u )  

v I,=o = Uo(X) 
(3.4) 

Changing to moving coordinate (~, t) = (x - ct, t), one gets from equation 
(3.1): 

u, = (a(~ + ct) ur162 + cu t + f ( u )  

u I,=o = u ( ~ ,  ~ ) +  Uo(~) 

Equation (3.4) becomes under (~, t): 

(3.5) 

v t = (a(~ + ct) vr162 + cvr + f ( U +  v) - f ( U )  

v i ,=o = Uo(~) 
(3.6) 
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Let 

L(t)v = (a(~ + ct) vr + eve + f ' ( U ) v  

R(t, v) = f ( U +  v ) - f ( U )  - f ' ( U) v  

Equation (3.6) can then be put into 

v, = L(t)v + R(t, v) (3.7) 

Notice that L as an operator on v = v(r t) is time dependent. However, due 
to the fact that a = a ( ~ + c t )  and U =  U ( x - c t ,  x ) =  U(~, ~+ct )  are all 
periodic functions in t with period 2~/c, L = L ( t )  is periodic in t with 
period being 2~/c. 

Applying operator d =  c O r  to Eq. (3.5), in view of the property 
that 0 r and 0, commute with d, and d(a(~ + ct))= 0, we have 

(du)t = (a(~ + ct)(du)r162 + c(du)r + f ' (u)(du) (3.8) 

Especially if we make u = U(~ ,  r + ct), then 

d( U) = d( U( r ~ + ct ) ) = eUs + cUy - cUy = cUs 

or U, = Us(~, r + ct) is a time periodic solution of 

v~ = Lv = L(t)v (3.9) 

where L(t + 27t/c) = L(t). 
We see that the time evolution of v in (3.9) is governed by the spec- 

trum of Poincar6 return map and 1 is its eigenvalue. We show that 1 is a 
simple eigenvalue and all the other points in the spectrum are bounded 
in absolute value by 1. This spectral property is shown to imply the 
asymptotic stability of the traveling waves. 

Our stability result is 

Theorem 3.1. Consider Eq. (3.1) with initial data u(x, O) = U(x, x) + 
eUo(X), or equivalently Eq. (3.5) with initial data U(~, 4)+ eUo(r Assume 
that Uo(r Hl (R) ,  U= U(s, y ) 6  C3(R~x Ty), Us6 H3(Rs• Ty), then if e is 
sufficiently small, there exist a function 7 = Y(~), and a constant K =  K(po), 
Po ~ (0, 1), such that 

]lu(~, t ) -  U(r + y(e), r Vt>~0 (3.10) 

where 7(~)=eh(e), h is C 1 in ~, and has a finite limit as e~O,  i.e., 
h(O) = (Uo, e*), here e* is the initial value of the unique time periodic solu- 
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tion of  - v t = L * v ,  with (v, Us(r ~ + c t ) ) =  1, and L* is the adjoint of  L in 
L2(R). 

Remark 3.1. The assumptions on U and Us in Theorem 3.1 are 
satisfied when t in Theorem 2.1 is chosen large enough. 

The proof consists of two steps. 

(1) Spectral analysis of the Poincar6 map of operator L(t)  (Sec- 
tion 3.2). Using L 2 integration methods and perturbation theory of the 
spectrum of bounded linear operators, we show that the Poincar+ map 
associated with L has its spectrum strictly inside the unit circle except 1, 
which is a simple eigenvalue (Lemma 3.1 and Corollary 3.1). 

(2) Following Sattinger (1976), we use the spectral properties of the 
Poincar6 map to establish the nonlinear asymptotic stability (Section 3.3). 

3.2. Spectral Properties of Poincar~ Return Map 

Let p = 27z/c, and consider problem (3.9). 

Definition 3.1. The Poincar6 map is 

u: v(~, 0) --, v(r p) 

where v(~, t) is the solution of (3.9) with initial condition v(r 0). It is easy 
to see that U is a bounded map from LZ(R) to itself by the standard 
parabolic estimates. In our problem, U =  U(6). We are interested in 
analyzing its spectrum when 6 is small. To do this, let us write (3.9) in 
perturbation form adopting the notation of Section 2: 

v, = Lov + 6Llv  
(3.11) 

v [ t=o=vo~L2(R)  

where 

Lov = vr162 + Coy r + f'(q~)v (3.12) 

L x v = ( a l ( ~ + c t )  vr162 (3.13) 

recalling that U =  q~ + 6q h,  c = c o + 6cl. Here to avoid abuse of notation, 
we replace v=v(s ,  y) in Theorem2.1 by ~ol. So in the above equation, 
q91 = q~1(r ~ + ct). 

Define By = (f'(qg) q~ - 3&p~)v, then 

L~ v = (al(~ + ct) vr162 + c 1 vr + By (3.14) 

It is clear that B is a bounded operator from L2(R) to itself. 
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The spectrum of L o lies in {2 [ Re 2 ~< - # }  except 0, which is a simple 
eigenvalue. This picture of Lo's spectrum can be obtained by applying 
the spectral theory of second-order ordinary differential operators, in 
particular, Theorem 2.2 in Section 2.2. As a result, the Poincar6 map Uo 
for the problem 

v t =  Lov (3.15) 

has spectrum strictly inside the unit circle except 1, which is a simple eigen- 
value with the corresponding eigenfunction being r 

Let us consider v~ = e - % ,  where v is the solution of (3.15) and 2 > 0. 
Then v)~ satisfies (3.15) with Lo replaced by Lo, x-= L o - 2 .  Similarly, if v 
solves (3.9), then vx solves (3.9) with Lo,)~ in the place of Lo. Let Ux and 
Uo, z be the return maps for L~ = Lo,.~ + 6L,  and Lo,~, respectively, then it 
is clear that U). = e-P~U, and Uo,)~ = e-PXUo �9 

Define R ( 6 ) =  U ( 6 ) -  Uo. We have the following. 

L e m m a  3.1. Consider R(6)  as an operator f rom L2(R)  to itself, then 

/IR(~)II~2 = II u ( ~ )  - Uoll ~= = o b ,  f i )  

as 6 ~ 0 .  

Proof. Let v ~ be the solution of 

and 

v~ = Lo v~ 

V ~ 2 
(3.16) 

vt=Lov+OLlV 
(3.17) 

v [ t = o = v o ~ L  2 

Define v ~ = e - %  ~ vx = e %0, then v ~ and vx satisfy 

v o _ Lo,)V ~ 
~ " -  (3 .18)  

vz t  = Lo,~V~ + 6Ll  v~ 
(3.19) 

V 2 ] t = 0 ~ V 0  

Choose 2 = [f'(cP)IL~ + 1, then multiply (3.18) by v ~ and integrate over ~. 
Integration by parts gives 

( ~ . )  - , ~.r + ( f ' ( q , ) - , ~ ) ( v ~  ~ 
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By our  choice of 2, we have 

So 

t" 
0 

for t E [0, p ] .  
Integrat ing (3.20) from 0 to p over t gives 

t = p  P P 0 2  

therefore 

It follows 

which is 

563 

(3.20) 

(3.2t) 

f0"f ~  (v;.,~) ~c2  Ilvoll 2 (3.22) 

where c2 ~- 1/2, the subscript 2 means L 2 norm. 
o then w satisfies Let w = va - vz, 

w, = Lo, ~ w + 6 L l  v~ = Lo.;. w + 6 L l  w + 6 L l  v ~ (3.23) 

Multiply w to (3.23) and integrate over 4. Integrat ing by parts, we obtain 

1 / 2 0 t i w 2 < ~ - f w ~ - - i w 2 - 6 ; ( a a w ~ - B w 2 ) + 6 ; w . L l v  ~ (3.24) 
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which implies 

11U(3) - Uolb2 -< O(.,/~) (3.30) 

this completes the proof of the lemma. | 

Corollary 3.1. I f  8 is small, then 3p =/)(6) < 1 such that the spectrum 
of  U(3) lies inside Bp(O) (the ball o f  radius p with center at O) except 1, 
wkick is a simple eigenvalue. In other words, a(U(3))\ {1} c Bp(O). 

Proof. We know that a(Uo)\{1 } is separated from 1 by a circle of 
radius less than 1, and 1 is a simple eigenvalue. Lemma 3.t says U(6) is a 
O(xf6 ) perturbation of Uo. By perturbation theory of bounded linear 
operators, we see that a(U(6)) has a simple eigenvalue in the neighborhood 
of 1 and the rest of the spectrum still lies inside a ball of radius less than 
1, which depends on the size of 3. From our preliminary analysis, we 
observe that 1 is still an eigenvalue of U(3), so it must be the simple eigen- 
value predicted by the spectral perturbation theory. | 

Remark 3.2. In general, the Poincar6 return map is defined as 

V(s): v(~, s) --, v(r s + p) 

where v(s, t) is the solution of (3.9). It is well known that U ( t + p ) =  U(t) 
for all t, and the nonzero spectrum of U(t) is independent of t. 

3.3. Stability of Traveling Wave Solutions 

Let X =  L2(Rr and decompose X according to the spectral point {I }, 
i.e., X(t):XI(I)~X2(t), where Xl ( t )=span{~(~ ,  t)} for all t>~0, here 
~b(~, t) = Us(~, ~ + ct), and U = U(s, y) is the traveling wave solution 
constructed in Section 2. In order to define the projection operator, we 
consider the following backward parabolic equation: 

- v t =  L * v  , 

v I t : p : v l  

t e [0, p ]  
(3.31) 

where L* is the adjoint of L in terms of L 2 inner product ( - , . )  in 4, and 
L is the time periodic linear operator in (3.9). 

Define operator V: v(~, p) ~ v(~, 0). V is well defined from L 2 to itself. 
Let u be the solution of the problem: 

u, = Lu, t ~ [0, p ]  
(3.32) 

U ] t = 0 : U o  
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with which is associated the Poincar6 map U:u(~, 0 ) ~ u ( r  p). Direct 
computation shows that 

SO 

(u, v)t = (u,, v) + (u, vt) = (Lu, v) + (u, - - L ' v )  = (Lu, v) - (Lu, v) = 0 

(u(~, p), v(r p)) = (u(~, 0), v(~, 0)) 
o r  

(u(u(r o)), v(~, p ) ) =  (u(~, o), V(v(~, p))) 

Since u(~, O) and v(~, p) are arbitrary, we see that 

V = U *  

therefore a(V) = a(U*) = a(U). 
Let e* = e* be the time periodic solution of (3.31) such that e*(~, O) 

is the eigenfunction of U* corresponding t o { 1  }. Since {1} is a simple 
eigenvalue of U, hence of U*, (e*(~, 0), O(~, 0 ) )~0 .  It is clear that the 
forward problem: 

- v t = L * v ,  t>>.O 
(3.33) 

v [t=0=Vo 

has bounded L 2 solution for all t 1> 0 if and only if Vo = ce*(~, 0), where c 
is a constant. After normalization, we assume that c =  1 and 
(e*(~, 0), ~p(~, 0)) = 1, therefore (e*(~, t), ~b(~, t)) = 1, for all t/> 0. 

Define the projection operator P: X ~  X~(t) by 

Pu = (u, e* ) 0 

where u = u(r t), u e L2(Rr for all t ~> 0, and (-,-) is L 2 inner product in 
4. From P we have another projection Q: X--* Xz(t) given by 

Qu = u - Pu 

It follows that 

(Qu, e* ) = ( u -  Pu, e* ) = (u, e* ) -  (Pu, e* ) 

= ( u , e * ) - ( u , e * ) ( ~ k , e * ) = ( u , e * ) - ( u , e * ) = O ,  Vt~>O 

Definition 3.2. For any p ~ (0, 1), 

X p =  u ( t , ' ) s H 1 ,  Vt>~O Ilullp ,~>op = sup2- 7 Ilu(t, ")H~v < + ~  

Q X p =  { U S X p l  (u, e*)=0 ,  Vt>~O} 
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Lemma 3.2. Consider the following initial value problem: 

ut = Lu + Qh 
(3.34) 

u l , = 0 = 0  

where h=h( . ,  t ) e H l ( R ) ,  Vt>~0. 
Let K be the linear map from h to u, then 3po e (0, 1) such that K is a 

bounded map from Xpo to QXpo. 

Proof. Let T(t, s) be the evolution operator of equation: 

and 

ut=Lu,  O<<.s<~t (3.35) 

u(s) = T(s + p, s) 

By the periodicity of L(t), it is well known that a(U(s))\{0} is independent 
of s. Because of the spectrum of U(s) as described in Corollary 3.1 and the 
gradient estimates of parabolic equations, there exist constant M, p e (0, 1), 
such that 

II U~(s) Ox(s)II 2 ~< pn II Ox(s)ll 2 

II U~(s) Ox(s)tl H, <<. MP ~ II ax(s)l1.1 

II T(s + r, s)llh, <~ M 

where r e  [0, p), s>~O, n e Z  +, x e H  ~ and M and p are independent of 
r~ S, n,  x .  

Therefore, for any s, 0 ~< s ~< t, such that t = s +np + r, r ~ [0, p), we 
have 

thus, 

since 

T(t, s ) =  T(s +np+r ,  s+np)  T(s+np, s) 

I[ Z(t, s) Qx(s)ll 1~1 ~ tl Z(s + r, s)ll HI" II U"(s) Qx(s)llH~ 

~< M II Un(s) Ox(s)ll,~ ~< M2P ~" II Ox(s)It ~ 

pn = (pl /p)np = (p l / p ) t - - s  r ~ p(t--s)/p--  1 

let r/= pl/p, we obtain 

M 2 
liT(t, s) Qx(s)llH~ <<.--~' S llQx(s)lln~ ~er = Mln  ' - s  IlOx(s)llHl 

p 

(3.36) 
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By variation of constant formula, we have for u in (3.34) 

f2 u(t) = T(I, s) Qh(s) ds (3.37) 

[[u(t)llH~ ~< Ilr(t,s) Qh(s)tlH1ds<.M1 ~lt-Slrh(s)tl~rlds 

i s  
<~Mt q t - ,  ilh(s)llH, p~oPodS, poe(U, 1) 

fo t--s s ~<M1 Ilhllpo ~/ po ds 

f,(.y 
~<M1 []hl]~176 P; Jo k~oo/ ds 

1 
~< M 1 Hhl[oo Po ln(po/?/) 

Let M 2 = M I [ 1 / ( l n  p0/t/)], we see that 

1 
Ilu(t)ll HI "_--7 ~< M2 [Ihllpo 

Po (3.38) 

IlKhllpo = Ilullpo ~< M2 Ilhlloo 

Moreover, 

(Kh, e*)t = (u,, e*) +-(u, e*) 

= (Lu+ Qh, e * ) +  (u, - L ' e * )  

= (Lu, e*) + (u, - L ' e * )  = 0 

(Kh, e*)= (Kh, e*)It=0 = (u, e*)1,=o = 0 

therefore Kh ~ QXoo if h ~ Xp. ] 

Consider u(x, t) solution of (3.1) with initial data of the form u(x, O)= 
U(x, x ) +  eUo(X), or equivalently the following equation in the moving 
coordinate (4, t): 

u t = (a(~ + ct) ur + cu t + f ( u )  
(3.39) 

u I,=o = u(~ ,  ~) + ~Uo(~) 

Proof  of  Theorem 3.1. Write 

u = u(~, t) = u ( r  + ~,(~), r + ct)  + ev(r t, ~) 
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and 

then v satisfies 

o r  

where 

o r  

where 

U v = U(~ + 7(e), ~ + ct) 

v, = (a(~ + ct) v~)r + cvr + f(U7 + ev) - f ( U  ~) 

v, = (a(~ + ct) vr162 + cvr + f(U~)v + eR 

R = R(~, t, v, e) = e2{f(  U ~ + ~v) - f (  U ~) - ~f( U~)v} 

vt = (a( ~ + ct) vr +cvr + f (  U)v + eB + ,R  

( f ( u o  - f ( U ) ) v  
B = B ( v ,  h )  = 

= (1/e)(f(U(r + 7(e), r + ct)) - f ( U ( ~ ,  ~ + ct)))v) 

= (1/e){f(U(r r + ct) + 7(~) Us(~, ~ + ct) + O(TZ)) 

- f(U(~, ~ + ct))}v 

=1  {f ' (U)(TUs+ 0(72) )}v  
g 

=h(e){ f ' (U)  Us+ O(v)}v  

B is a bounded  .map f rom X p o X R ~ X p o ,  
While R, 

and Fr6chet  differentiable. 

R = ~-2 { 1/2~2v2f,,(U v) _ e3v3 } = ~ f , , ( U  r) _ ev 3 

3 Since IIV21IHI~ClIv[I 2 W, IIV311H~ClIVlIHI, we see that  R = R ( v , h )  is a 
bounded  m a p  f rom Xoo x R ~ Xpo, and  Fr6chet  differentiable. At t = O, 

u(r + r, r + ~v(~, 0, ~) = u(~, 4) + *Uo(r 

v(r o, ~) = Uo(r + 1 (u(r r - u(r  + r, 4)) 

= Uo(r  h(~) us(c, r  ~g(r ~, ~) 
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where 

Xin 

So 

since 

we have 

p, Us + ~t = L~ + sB + ~R 

Form the inner product of both sides of (3.40) with e*, 

Pt + (~,, e*) = (L~, e*) + e(B + R, e*) 

which is 

Pt + (~t, e*) = (~, L 'e*)  + s(B + R, e*) 

Pt+ (~t, e*)= -(~, e * ) + s ( B + R ,  e*) 

(~t, e*) + (~, e*)  = (~, e*)t = 0 

p , = e ( B +  R, e*) 

Plug this equality into (3.40) 

( , = L (  +~(B+ R ) - s ( B +  R, e*) Us 

= L~ + sQ(B + R) 

Summarizing, we have 

~t = L~ + eO(B + R) 

p, = s(B + R, e*) 

(3.40) 

(3.41) 

1 

g(~, h, ~) = - h  2 fo U.(~ + ~m, ~)~ d~ 

g is uniformly bounded as e--* O, and differentiable in h. For fixed e, h, 
g~HI(Rr By assumption, uo~H 1, so v(~, O, s ) ~ H  1, then v(~, t ) r  1 for 
all t ~> O, from classical parabolic theory. 

Decompose v(~, t) as v = P v + Q v = p ( t ) u s + ~ ,  where p(t)=(v,  e*), 
(~, e*)= O. Substitute the above equality into the equation of v: 

p,U~+ p ( U s ) t + ( t = L ( p V s ) + L (  + e B + s R  

= pL(U~) + L~ + sB + eR 
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Decomposing initial condition yields 

p(0) = (Uo, e*) -- h(8) + e(g, e*) 

~(0) = Q(uo + eg) 

where e~' = e*(~, 0). 
By Lemma 3.2, the above equations are equivalent to 

~(t) = eKQR + eKQB + T(t, O) Q(u o + ~g) 

f2 p(t) = e (B+R,e*)ds+(uo ,  e* ) -h (e )+e(g , e* )  

where the last equation can be rewritten into 

p ( t )=  - e  ( B + R , e * ) d s + e  (B+R,e* )ds  

+ (Uo, e*) -h (e )+e(g ,  e*) 

which can be split into the following two equations, recalling that h is to 
be determined: 

p ( t ) =  -~  (B+R,e* )ds  (3.42) 

f) h=(uo, e~)+e(g ,e*)+e  ( B + R , e * ) d s  (3.43) 

These two equations along with the equation for ~ can be recast into 

f l(~, p, h, ~) ~f ~ - eKQR - eKQB - T(t, 0) Q(u0 + eg) = 0 (3.44) 

F2(~,p,h,~)ae=fp(t)+~ ( B + R , e * ) d s = O  (3.45) 

f? F3(~,p,h,e) de2h-(uo, e ~ ) - ~ ( g , e * ) - e  ( B + R , e * ) d s = O  (3.46) 

Define mapping F =  (F1, F2, f3), the above equations are the same as 

F(~, p, h, e) = 0 (3.47) 
Define function space 

{ ,->, } Ro= p( t )eC(R)  s u p ~ < o o ,  p~(0,  t) 
t~>0 P 

865/3/4-6 
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Then from Lemma 3.2, and properties of R, B, g, it is straightforward to 
check that F is a Fr6chet differentiable mapping from QXpo x Rpo x R to 
itself. 

When e = 0, Eq. (3.47) has solution in QXpo x Rpo x R: 

h = h 0 = (Uo, e*) (3.48) 

p = 0 (3.49) 

= T(t, O) Quo~ QXpo (3.50) 

moreover, 

F '  I(~0,p0,h0.0) = I 

0 

which is invertible. 
Implicit Function Theorem in Banach Space says that if e is suf- 

ficiently small, then there exists (if(e), p(e), h(e)) in QXpo x Rpo x R, differen- 
tiable in e and satisfying 

F(~(~), p(e), h(~))= 0 

which then implies (3.10), and thus the asymptotic stability of traveling 
wave solution. I 
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