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1. Introduct ion  

In this paper we will be concerned with the theory of Stochastic Partial Differential 
Equations with multiplicative noise in Banach spaces. 

The theory of such equations in Hilbert spaces originated in the seventies, see for 

example [11]. The fundamental works of Pardoux and Krylov-Rosovski i  (see 
[-33]-[34], [28]) have given it a mature shape. These authors considered nonlinear 

monotone stochastic evolution equations and for such equations, roughly speaking, 

they proved existence and uniqueness of solutions. Although in [28] the authors 

consider their equations in Banach spaces, the basic space for their treatment is a 
Hilbert space. The main assumption of all these papers is monotonicity of the operators 

involved and the authors make use of the methods developed earlier for monotone  
deterministic partial differential equations, see [30]. 

Another approach,  based on theory of semigroups of linear operators was initiated 
by Dawson, see [11] and later developed by Da Prato and his collaborators, see [9-], 
[10], [18] and references therein. 

In this paper we follow mainly the latter method. Our main object is to develop 

a theory of stochastic evolution equations in Banach spaces. However, not all Banach 
spaces fit into such a theory, only a class of the so-called M-type 2 Banach spaces 
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seems to be welt suited. Let us remark that L v space with 2 ~< p ~< c~ is a good 
example of an M-type 2 Banach space. Comparing with [40] we have different 
assumptions and our results are of different nature. 

We describe briefly the content of the first part of this paper. In Section 2 we 
present the basic definitions used throughout the paper, in particular those of M-type 
2 and UMD Banach spaces. In Section 3 we consider stochastic It6 integrals of 
processes with values in M-type 2 Banach spaces. We recall some basic properties 
of this integral (including an inequality of Doob type and a simple version of It6's 
formula). Let us mention the works of Dettweiler, [12]-[14], where a theory of 
integration in M-type 2 Banach spaces is built and where one can find the proofs of 
all the results we state in Section 3. In Section 4 we treat linear stochastic differential 
equations in M-type 2 Banach spaces of the following type 

du(t) + Au(t)dt = ~ BJu(t)dwJ(t) + f( t) ,  

u(0) = Uo, (1.1) 

where --A is a generator of an analytic semigroup {e-*A}~>~0 on X, an M-type 
2 Banach space, B 1 . . . .  ,B  d are linear (generally unbounded) operators in X and 
w(t) = (w~(t), . . . .  wn(t)) is a d-dimensional Wiener process (we take it finite dimensional 
only for simplicity of exposition). 

We prove existence and uniqueness of solutions for such equations, where the basic 
space (i.e. the space of initial conditions) is some real interpolation space between 
D(A), the domain of A, and X. 

In Section 5 we show that under some additional assumptions on A, the initial 
condition u o can as well be taken from X (however we lose some regularity of the 
solutions). In Section 6 we show what happens with our theory in the Hilbert space 
framework. In fact our results generalize those from [9]. In Section 7 we give some 
simple examples of equations satisfying our assumptions. 

In the second part of our work (consisting of Sections 8 to 11) we will mainly be 
concerned with applying the results from Section 4 to stochastic parabolic equations. 

The model equation for our study is the following special type of equation (1.1), 

du - Aud t  + ~ bj,k(X) ~Ux, dWJ(t) = O, t > O, 
a, ,  

u(0) = u o, (1.2) 

with w(t) = (w3(0) as before. The results of Section 4 allow us to study the problem 
(1.2) in the real interpolation space Oa( ½, 2) = (L p, D(A))~, 2 with D(A) being the domain 
of the operator A, the appropriate realization of - A  in the L p space. 

There, one of the necessary conditions for studying (1.2) is that the linear operators 
Bj, B2u = bj(8/Oxj)u, map the space D(A) into DA(½, 2). But here one encounters two 
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difficulties. One is that the elements of DA(½,2 ) usually satisfy some boundary 
conditions and so even if u satisfies them, (O/Ox~)u does not have to. This difficulty 
can be overcome (by means of some trick and complex interpolation method) by 
changing the pair of spaces (D(A),DA(½, 2)) so that the new space corresponding to 
DA( ½, 2) do not contain boundary conditions, see Section 5. The second difficulty is 
that the space DA(½,2) is tOO big (for p > 2), in the sense that Bj is not a bounded 
map from D(A) i n t o  DA(½, 2) even if we forget in the latter space about the boundary 
conditions. And this difficulty does not disappear by means of the methods used in 
Sections 5 and 6. 

We show how to overcome this difficulty in Sections 8-11. Roughly speaking, the 
real interpolation method should be used instead of the complex one. To explain this 
point more clearly, let us consider the case of equation (1.2) in the whole domain N". 
Then the real interpolation spaces are the Besov spaces. So D(A)= W2"p(N"), 
DA(½, 2) = Bpl2 (~n)  and thus O/(?xj, j = 1,..., n, are not bounded operators from D(A) 

1 n to O~(½, 2). However O/axj is a bounded operator from B2v, z(N ") to Bv,2(~ ) and from 
0 n B~.2(N") to Bp,2(R ). This example (in a general framework of this paper) will be our 

guideline in Sections 8 - t l .  
A natural question one should ask himself is the following. What new information 

concerning the equations (1.2) can be obtained comparing with the Hilbert (i.e. L z) 
space methods? One of the possible answers can be easily seen in the case of a 
boundary value problem, see Section 10, written formally as an equation (1.2). For, 
by taking X = L p with p > n, the value u(t) of the solution u to (1.2) at time t > 0 
belongs t o  Bpl 2(1~ n) a.s. in co e f~ for all t > 0. Hence, in view of the Sobolev imbedding 
theorem u(t, .) belongs to c¢~(N,) for ~ < I - n / p .  And this property is the main 
motivation of this paper. It is especially important that it is also valid for boundary 
value problems in bounded domains without imposing a long series of compatibility 
condffions as it has been done in 117] by using only Hilbert space methods. 

Let us now describe briefly the content of the second part of this paper. 
Section 8 can be considered as the main part of it. Loosely speaking, we construct 

an extension Z of the Banach space X and a semigroup {T(t)} on Z (with a generator 
denoted by - A z), an extension of the semigroup {e- tA } such that D(A~z) = (Z, D(Az))~.2. 
This result is used in following sections to study equations of type (1.2). 

In a short Section 9 we identify some of the spaces constructed in Section 8 by 
means of duality. 

Section 10 provides two simple (but systematically worked out) examples. The first 
one concerns the equation (1.2) in the full domain N", while in the second one we 
treat a similar equation but in bounded domains with Dirichlet boundary conditions. 

In Section 11 we extend the results from the preceding one, so that we are able to 
treat general systems (of any order) of stochastic parabolic equations in bounded or 
unbounded domains, with general boundary conditions. 
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As already said, the case of Hilbert space is discussed in Sections 5 and 6 by means 
of complex interpolation method. Therefore let us only add a remark that under 
quite general assumptions on the operator A, the real and the complex interpolation 
methods coincide one with another (of course in a Hilbert space setting). However, 
there are some examples of generators of analytic semigroups - A  for which these 
two methods are different (even in Hilbert spaces). Related problems and questions 

will be treated elsewhere. 

NOTATION. Throughout this paper X will always denote a Banach space, - A  a 
generator of a uniformly bounded analytic semigroup {e-*a}~> o on X and 
{w(t)}t~ o = {(wJ(t))~ = ~}t>~o a d-dimensional Wiener process with respect to a filtration 
{o~},~> o on a complete probability space (Y2,~,P). By writing a.s. we mean almost 
surely on (fL ~,  P). M 2 (0, T; X) is a space of all progressively measurable X-valued 

processes such that 

f f  E[~(t)[ 2 dt < co. (1.3) 

I fD is a domain in ~", k~ N, 1 ~< p < 0% then wk'P(D) denotes the Sobolev space of 
functions u belonging to LP(D) such that all derivatives of u up to order k belong to 
LP(D). B~p,q(D), for s ~ ~, 1 ~< p, q <<. oo is the Besov space of functions defined on D. 

2. Notation and General Information 

In this paper (f~, ~,, P) will be a complete probability space, 1 c E, {o~},8i an increasing 
family of sub-a-algebras of 3r and X a Banach space. An X-valued process {M~}t~t 
is an X-valued martingale, see [15] or [32], if and only if M, e Ll(f~, ,~,  P; X) for t ~ I and 

~(Mtl~)  = M s a.s., for all s <~ t e I .  

For a nice and precise definition of conditional expectation of a Banach valued 
random function the reader is referred to Chapter 5 in [15]. 

Following [37] we take 

DEFINITION 2.1. A Banach space X is of M-type p, for p e [ 1 , ~ ) ,  iff for any 
X-valued martingale { M , } , ~  the following inequality holds 

sup ~[M,[ p ~< L p ( X ) ~ - I M ,  - M , _ l l  p, (2.1) 
?1 n 

where the constant Lp(X) (depending only on X (and so on its norm)) is the smallest 

possible. As usual M_ 1 = 0. 
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X is of type p iff for any finite sequence el . . . . .  e.: f~---+ { - 1 ,  1} of symmetric i.i.d. 
random variables and for any finite sequence x 1 . . . . .  x, of elements of X, the following 
inequality holds 

~_ ~=le~xi "<<. Kp(X),=I ~' [xilp' (2.2) 

where the constant Kp(X) = Kp is the smallest possible. 
If X and Y are isomorphic Banach spaces then X is of M-type p iff Y is and X is 

of type p iff Y is so. Moreover 

L,(Y) <~ {dist(X, Y)}PLp(X), Kp(Y) ~ {dist(X, Y)}PKp(X), 

where dist (X, Y) = inf {JT[[T-I[ :T is an isomorphism between X and Y}. 
If X is of M-type p then X of type p and Kp(X) ~ Lp(X), see [37] but the converse 

is not true. It is important to determine the cons t an t s  Kp(X) and Lp(X) for various 
spaces X and different p. In particular, i fH  is a Hilbert space then K 2 ( H  ) ---- L2(H ) = 1. 

In the definition of type p Banach spaces, one could instead of the Bernoulli 
sequence e, take as well a sequence ¢i of i.i.d. Gausian random variables with E¢i = 0 
and EI~[ = a 2 > 0. Indeed, X is of type p ifffor any sequence (i as above the following 
inequality holds 

¢,x, .< g,(S)rFl¢,lP Y. Ix, I ~. (2.3) 
/ = 1  

Here, as usual,/£p(X) is the smallest possible constant. Writing ~i = e~[~] and using 
a standard conditional expectation trick we have 

IF_ i~. ¢ix i = ~_ eil~lx i <~ gp(x)E II¢~lx, I p = Kp(X)EI~I  ~ txil'. 
i i = 1  i = 1  

so that gp(X) <.<. Kp(X). 

PROPOSITION 2.1. (1) I f  a Banach space X is of M-type p and r~[0, oo) then for 
any X-valued martingale { M . } . ~  the following inequality holds 

r 

(2) (Doob Inequality) I f  X is a Banach space X and r~(1, oo) then for any X-valued 
martingale { M . } . ~  

(ry 
EsuplM 7 ~< r--L- f E[M.[ r. (2.5) 

j<~n 
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Proof For a proof of (2.4) see [38]. (2.5) can be proved by observing that in view 
of 1.18, ch I in [32], [Mjl is a nonnegative submartingale and then applying the real 
version of Doob inequality, see [26]. See also Theorem 8.2, ch. IV in [32]. [] 

It is now well known, see [37], [38] that X is of M-type p iff it is p-smooth, i.e. X 
can be equivalently renormed in such a way that its modulus of smoothness 

px(t) = suP{½(lx + tyl + ix -- tyl) -- l:lxl, lyt --- 1} 

satisfies: Px(t) <~ Ktp for all t > 0 and some K > 0. 
Therefore all spaces L p for p ~ [2, oo) are of M-type 2. 

DEFINITION 2.2. A Banach space X is a UMD space (i.e. X has unconditional 
margtingale difference property) iff for any p~(1, ~) ,  for any X-valued martingale 
difference {~j } (i.e.: ET= 1 ~j is a martingale), for any e :~  ~ { -  1, 1 } and for any n ~ 

~-~1 cj~ P<<. flp(X)~-lj~= 1 ~j P, (2.6) 

where tip(X) > 0 is a smallest possible constant. 

It is known, see [8] and references therein, that for a Banach space X the following 

conditions are equivalent. 
(i) X is a UMD space; 

(ii) X is ff convex, i.e., there is a biconvex function ~: X x X ~ N with the properties: 

((0,0) > O, ~(x,y) <~ Ix + Yi for Ixl, lYl = 1; 
(iii) Hilbert transform for X-valued functions is a bounded linear operator in 

LP(N,X) for any (or some) pc( l ,  oo). 

EXAMPLE 2.1. Every L p space with p~(1, oo) is a UMD space. Also, for a given 
Hilbert space H and p~(1, oo), the space 

cgp = {A: H---,H:A is compact and IIAtl := (tr(AA*)P/2) 1/p < oo} 

is a UMD space, see [22] and [8]. 

3. It0 Type Integrals 

In this section we assume X to be of M-type 2 Banach space, see Definition 2.1. 
Below we shall show how to define It6 integral for X-valued processes. Although the 
definition, construction and properties of this integral highly resemble the ones in 
Hilbert space setting, for convenience of the reader we present them. All details (and 
proofs, which we mostly omit) one can find in the work of Dettweiler, especially [13]. 
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Let (f~, ~,  P) be a complete probability space, { ~  },~> o a right-continuous, increasing 
filtration of sub-o--algebras of ~ .  Finally let {w, }t.> o be a d-dimensional Wiener process 
on (f~, 5 ,  P) with respect to the filtration {~},~0. Let ~ denote the a-algebra of Borel 
sets in ~. On the product space X d we consider a norm defined by 

DEFINITION 3.1. Let f :  [-0, T) x f~--~ L~'(~ a, X) ~ X a be an adapted random step 
function, i.e. f(s) = f~ a.e. for s ~ It i, t i + 1) for some sequences { t i } ~'= o :0 = t o < . . .  < t, = T 
and . -  1 { f ~ } i = o : f ~ L 2 ( ~ , , P ; X ) .  Let Aiw= w(ti+l)-w(t i) ,  Ait = ti+ 1 - t ~  and for 
f e X  a, ~ e R d ( f , a )  = ~.~O~ifii. Then we put 

/I--1 
t(f):= ~ (f,a,w>. (3.1) 

i=0 

Let us observe that I(f):O---~X is ~ r  measurable and I ( f )~LZ( t ) ,~r ,P ;X) .  
Moreover, in view of M-type 2 and type 2 properties of X we have 

[E[l(f)12 ~< Lz(X ) ~ E[(fi, Aiw)[2 
i 

<~ L2(X)K:(X) ~ ~ tf/[2A,t = C2(X) Z lfl2(t,+ ~ -- t,). 
i j i 

This gives (with Cz(X ) = K2(X)L2(X)) 

PROPOSITION 3.1. For any adapted random step function f : [ 0 ,  T)×~-- - ,  
~.~z([~ a, X) ~ X a the following inequality holds 

~[I(f)[2 ~< C2(X ) ~_lf(s)[Zds. (3.2) 

Let us notice that the c o n s t a n t  C 2 ( X  ) is independent of d, the dimension of the Wiener 
process. The above result allows one, in a standard way, to extend the operator I to 
a larger class of random functions. 

DEFINITION 3.2. If Y is a Banach space and pc( l ,  ~) ,  by MP(0, T; Y) we denote 
the space of all functions ~: [0, T) x f~--~ Y with the properties: 

(i) ~ is progresively measurable, 
(ii) ~ eLP([O, T) x f~, ~ × ~ T , P ,  Y) and 

f f  tEl~(s)lP ds < oo. 
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By M~oc(0,~; Y) we denote the space of functions ~ : [ 0 , ~ ) ×  fl-- ,  Y such that 
~ M P ( 0 ,  T; Y) for any T >  0. The most common case will be p = 2. 

The following facts are well known. 
(a) If ¢ ~ MP(0, T; Y) then the function [0, T)~ t---~ ~(t)ELP(fL ~r; Y) is strongly 

measurable. 
(b) MP(0, T; Y) is a closed subspace of LP([0, T ) × f2, ~ × ~ r ;  Y). 
(c) The family of random adapted step functions belongs to MP(0, T; Y) is dense 

in M p(O, T; Y). 

C O R O L L A R Y  3.2. There exists a unique linear and bounded operator 

I: M2(0, T; Xd)--~ L2 (~-], ~T, P; S), (3.3) 

which is an extension of the operator introduced in Definition 3.1. Moreover the inequality 
(3.2) holds for any f e M 2 ( 0 ,  T;Xd). 

If ~eM~oc(O, ~ ; X  d) and t > 0 then we put 

fi(~(s), := I(ltoa)¢) dw(s)) (3.4) 

and we call ~o (((s),dw(s)~ the It6 integral of the process ( up to time t. 

P R O P O S I T I O N  3.3 (i) I f  (i ,~2 ~M2oc(0, ~ ;  yd) and ~ 1 , ~ 2 ~  then for t >t O, a.s. 

fi (~dl(r) + ~2~2(r),dw(r)) = ~ fi <(~(r),dw(r)> + ~2 fl (~2(r),dw(r)). 

(ii) I f  0 ~< t 1 < t 2 ~< t, r/~L2(~,~t,P, yd) and ¢ = ltt~:)~/then a.s. 

i(~(r), dw(r)) = Q/, w(t2) - w(tO). 

(iii) I f  ~eM~o,(O, T; yd) then ~ (~(r),dw(r)) is ~ measurable and for r <<. s <~ t, 

E (~(r), dw(r)) = (~(r), dw(r)). 
o 

(iv) I f  X and Y are Banach spaces of M-type 2, Z is any Banach space and t3: X × Y--* Z 
is a continuous bilinear function, then for all ~ e M2oc(O, ~;  Xd), rl e M2oc(O, ~:  ya) and 
all t >/0 

~:fl(fi(~(r),dw(r)),fi(rl(r),dw~r)))=fi~-fJ(~(r),rl(r))dr, 

where for ~ e X  a, f l eX  e we put ~(¢, r/) = Z fl(~J,~TJ)~Z. 
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(v) (Stochastic Fubini Theorem) I f  g~La([O,T)X [0, T ) x  f2, .~r ;X ~) is such that 
g(t, ")EM2(0, T ; X  d) for almost all t e l0 ,  T), then .for all t >i 0, a.s., 

fl f[ <g(s,r),dw(r)> ds = fi ( fl g(s,r)ds, dw(r) ).  (3.5) 

PROPOSITION 3.4. I f  ¢eM2oc(O, ~ ; X  d) then 
(1) t---* x(t) = ~to ( ~(s), dw(s) ) is an X-valued martingale, with almost all paths continuous; 
moreover x e M2o~(0, oo; X). 
(2) for any r~(1, ~ )  

~sup.<. fi(~(s).dw(s)) " <~(~_I) C.(X)~{r " Jof r [~(S),' ds~) "/'. (3.6, 

In particular x ~ L 2 (~, C(0, T; X)). 

COROLLARY 3.5. (A simple case of It6's formula) Assume that X, Y,, Z are M-type 
2 Banach spaces and fl: X x Y--~ Z is a continuous bilinear map. Let ~ ~ MPoc(0, ~ ;  X d) 
and qEM7oc(O, ~ ;  ya) for some p,q~(2, ~ )  and let 

x(t)= fi <¢(s),dw(s)> and y(t)= fl (q(s),dw(s)). 

Then the process fl(x('), y(. )) belongs to M2o~(O, ~ ;  Z) and .for all t >~ 0 a.s., 

fl(x(t), y(t)) - {fi(~J(s), y(s)) + fl(x(s), ,7~(s))} dw~(s) + fl(-~(s), #(s)) as. (3.7) 
j = l  

where ((s) = ~,~=, ~J(s) and Fl(s ) = Y.~=, tli(S). 

4. The Main Results 

In all this section, but in Proposition 4.1 where X is assumed to be only U M D  
Banach space, X denotes an M-type 2 and U M D  Banach space. ~ (X)  denotes the 
space of all linear bounded operators in X. Finally, - A is a generator of an analytic 
semigroup {e-tA}t~> o on X and satisfies the assumptions of [16], i.e.: 

(H1) 3M > 0 such that for 2 ~> 0, (A + 2)-1 exists and 

M 
I(A + 2)-11 < 1 +----5; 

(H2) Vs e RA is exists and belongs to ~(X),  {A i' },,e is a strongly continuous group 
on X and for some K > 0 and u~ A < 7"/:/2 the following inequality holds 

]AiS[ <~ Ke °alsl, s ~ [R. 
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REMARK 4.1. (i) What in fact we shall assume is the following condition 

(H3) A ~  A°(X) for all z ~ C with Im z ~< 0 and for some K > 0, 8a < n/2 the 

following inequality holds 

IAZl -<< Ke oAI1mzl, for Imz  ~< 0, 

where Im z denotes the imaginary part of the complex number z. 

Indeed, it is the stronger condition that is proved in all examples known to the author, 
see [41], [42], [20] and others. Although (H2) may be satisfied even if (I-13) is not, 

no such an example is known to the author. 
(ii) It may happen that the operator A does not satisfy the conditions (H1)-(H2)  

but for some co > 0, A 4- wI does. However all the statements below remain true in 

that case. 
By D(A) we denote the domain of the operator A, which endowed with a natural 

norm is a Banach space. Moreover, as A-1 is bounded, D(A) is isomorphic to X, 

and so is an M-type 2 and U M D  Banach space. 
We introduce now the real interpolation spaces Da,,(8, p) = (X, D(Am))s.p between 

X and D(Am), the domain of the m-th power of A, with parameters ~ ( 0 ,  1) and 

p e [1, oo), where m is a nonnegative natural number, see [9] or [45], 

{ fo o I ' }  DAm(~,p) = x e X :  [tm(1-~Ame-laxl p < oo . (4.1) 

In particular, the norm in (X,D(Am))~,p is given by 

lxloao(o,p) = f ~ It'"-S~Ame-taxlvdt't 

In the case m = 1 the norm 1. [Da(o,v) will be also denoted by 1-]s.p. 

R E M A R K  4.2. (i) If ~ ~< ~2 then DA(92,p)_  Da(~l ,p)  and if e > ~ then 
D(A ~) c_ Da(9,p); i fp  > q I> 1 then DA(9,q) ~_ DA(9,p ). 

(ii) The spaces Da(9,p) are invariant with respect to the semigroup {e-'a}. In 
addition, {e -ta } is an analytic semigroup on DA(~,p) and if g ~< 1 - 1/p it is a 
contraction semigroup; this is the case when ~ = ½ and p = 2. 

(iii) As observed above, if X is an M-type p Banach space then so is D(A). Moreover 
the interpolation spaces DA(O, p) are of M-type p (with the same p). The same concerns 

the U M D  property. See also Appendix A. 

1 We will be particularly interested in the case m = 1, 9 = 5 and p = 2. Then we put 

DA(_~,2) = [Ae-tax[ 2 dt < oo . 
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If X is a Hilbert space and A is a positive self-adjoint operator in X then 

DA(½,2 ) ----- D(A ~) and iXloA~,z)Z = ½lA½xl 2. By II'H we shall denote any norm on 
V = DA(½, 2) which is equivalent to f. Iv,a½,2). 

First we recall a result which is a direct consequence of Theorem 3.2 from [16] 
and Theorems 1.8.2, 1.14.5 and 1.15.3 from [45]. 

P R O P O S I T I O N  4.1. Let X be a UMD Banach space and suppose that a closed 
operator A satisfies conditions (HI) - (H2) ,  and let T ~  (0, o9], p ~(1, 09). 

Then for every u o ~ D n (1 - 1/p, p) and f ~ LP(0, T; X) there exists a unique u ~ W I'p(O, T) 
which is a solution to the following Cauchy problem 

u'(t) + Au(t) = f(t),  t ~ (0, T), 

u(0) = u o. (4.2) 

Here W l'v(O, T) = {u ~ L p(0, T; D(A))}:u' ~ LP(0, T; X)}. Moreover, for some constant 
C~,(X, A) > 0 

(4.3) 
Let {w,} be a d-dimensional Wiener process as in Section 3. Let B j, fo r j  = 1, . . . ,  d, 

be linear operators in X, which are bounded as operators from D(A) into Da(½,2), 
and moreover satisfy 

d 
E j 2 2 2 

[B XIDA(½.2) -~ C llXID(A ) q- C 2 ]X]DA(~,2) , X ~ D(A). (4.4) 
j = l  

for some constants C 1 > 0 and C 2 > 0. By [B] 2 we denote the smallest constant C 1 
for which (4.4) holds for some C 2 > 0. 

Our  goal now is to extend Proposition 4.1 to It6 equations. We consider the linear 
equation (1.t) and assume that 

f ~ M2 (0, T; X), u o ~ L 2 (~, fro, P;DA (½, 2)). 

By Z T we denote the space 

Z T = ZT(A ) = M2(0, T;D(A)) c~ c~(O, T;L2(~ , f f ,  P;DA(½,2))). (4.5) 

D E F I N I T I O N  4.1. A strict solution to problem (1.1) is a function U~ZT(A ) that 
satisfies equation (1.1) in the following integral form 

fo ;i '  fl u(t) + Au(s) ds = u o + ~ Biu(s)dwJ(s) + f (s)  ds, a.s., t 1> 0. (4.6) 
j= l  
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A function u e ZT(A) is a mild solution to problem (1.1) if it satisfies 

u(t) = e-tau° + ~ f l  e-(t-°aBJu(r)dwi(r) + f~ e-"-''af(r)dr (4.7) 
j = l  

a.s., for any t I> T 

Following some ideas of [9] we shall prove 

P R O P O S I T I O N  4.2. Under the assumptions mentioned above a function u eZT(A ) is 
a strict solution to problem (1.1) if and only if it is a mild solution. 

The proof of Proposition 4.12 will be concluded before stating Lemma 4.5. We will 
need the following 

LEMMA 4.3. Let g~M2(0, T;(Da(½,2))a), f ~MZ(O, T;X) and let 

y( t )=  ~ f l  e-(~-r)agJ(r)dw~(r) = f l  e-(t-')a (g(r),du~r)), (4.8) 
j = l  

z(t) = fl  e-(t-oa f(r) dr. (4.9) 

Then both y and z belong to M2(0, T;D(A)) and 

;o ly(s)l~(a)ds ~< C2(X)E 2 Ig(s)lo~(~,2), ds, (4.10) 

f)  tz(s)l A, as f(  If(s)L ds, (411) 
where Cz(X ) (resp. C2(X,A)) is as in Proposition 3.1 (resp. 4.1). 

Moreover y(t) and z(t) satisfy respectively 

f l  Ay(s)ds = f l  (g(r),dw(r)), t >i O, (4.12) y(t) + 

z'(t) + Az(t) =f(t) , t  > 0; z(0) = 0. (4.13) 

Proof. By Remark 4.2(iii) D(A) is an M-type 2 and U M D  Banach space. L 2 (D(A)), 
the M-type 2 constant of D(A) is equal to L2(X) (due to the definition of the norm 
in D(A)). Similarly K2(D(A)) = Kz(X) and thus C2(D(A)) = C2(X). Therefore, in view 
of Corollary 3.2 we have 

le - (t - S)A g( s) l ~(A)a ds, 
do 
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hence by Fubini Theorem 

E [)~t)iZO(A~dt < C2(X)E [e-~t-~Ag(s)12~avdsdt 

~< C2(X)n: -(~-~)a 2 le 0(r)ID(A)a dt dr. 

However, for fixed r e  [0, T], the definition of the norm in DA(~, 2) yields 

2 le-(t-r)A g(r)l~(A)d dt ~< Ig(r)LoA(~-,2)d 

and so (4.10) is proven. 
To prove (4.12), in view of(4.10) we may employ stochastic Fubini formula (3.5). We have 

(-A)fly(s)ds=flf](-A)e-(S-~'~t(o(r),dw(r)>ds 

=fi<ff(--A)~-(~-~)Ag(r)dsdw(r)>=fo<e-(*-')Ag(r)-O(r),dw(r)> 

=f:e-'t-')a<o(r),dw(r)>-fi(g(r),dw(r)>=y(t)-f:(g(r),dw(r)> 

and hence (4.12) holds. To prove (4.11) we observe that z is a pathwise solution to 
(4.13). Therefore by Proposition 4.1, z(t) is progressively measurable and 

tz(t)[~A) dt <~ C2(X, A) If(r)l 2 dr, a.s. 

that concludes the proof of (4.11). []  

The following extension of Lemma 4.3 will also be useful in the sequel. 

LEMMA 4.4 Let 0~M2(0, T;(Da(½,2))a), f~M2(0 ,  T;X) and y and z be defined by 
(4.8) and (4.9) respectively. Then y and z belong to ZT(A ) and 

sup E1Y(S)I~(~,2) ~< C2(X)E ]g(s)[~A~.2)~ds, (4.14) 
O<.s<,T 

sup Iz(s)12n~(~,2)~< C2(X,A)~_ ITIf(s)I2oA~,2)~ds, (4.15) E 
O<~s<~ T , 1 0  

with C2(X ) and C2(X,A ) as before. 
Proof The first part of this Lemma (i.e. concerning M2(0, T; D(A))) is proven in 

Lemma 4.3. In the second part the claim about z is obvious (see the proof of Lemma 
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4.3). The inequality (4.14) follows from Corollary 3.2 and Remark 4.2. In order to 
prove that y ~ ¢g(0, T; L2(f~, o~, p;  DA(½, 2))) we first assume that 9 ~ M2(0, T; (D(A))a). 
Then with v(t) being a pathwise solution to v'(t) + Av(t) = -AM(t),  t ~ (0, T), v(O) = 0 
and M(t)= ~ ( g ( r ) , d ~ r ) )  we have y(t)= v(t)+ M(t) for all t t> 0. Indeed, if 
37(0 = v(t) + M(t) then 37(0) = 0 and 

d37(t) = dr(t) + dM(t) = -Av( t )d t  - AM(t)dt + (g(r), dw(r)) 

= -- A~(t) + (g(r), dw(r)). 

Hence by Lemma 4.5 below (the implication (ii) =*- (i)), 

f l  e-"-"A (o(r), dw(r)) = y(t). y(t) 

Since AM~M2(O, T; X), by Proposition 4.1 we get 

v ~ M2(0, T; D(A)) c~ L2(f~, if,, P; oK(0, T; Da( ½, 2))) c cg(0, T; L2(n, ~,, P; Da(½, 2))). 

Moreover, in view of Proposition 3.4, M ~ cg(0, T; L 2 (f~, o ~, P; Da( ½, 2))). Density of 
M 2 (0, T; (D(A)) a) in M 2 (0, T; (D a (½, 2)) a) and the inequality (4.14) conclude the proof. 

[] 

' 1 d Since B j e 5~(D(A), D A (½, 2)), if u e M 2 (0, T; (D(A))) then 9 J(t):= B ~ u(t) e M 2(0, T; (DA( ~, 2)) ) 
and hence Proposition 4.2 is a direct consequence of the following 

L E M M A  4.5. Assume that uo~L2(f~,Yo,P;DA(½,2)), g~M2(O,T;(Da(½,2))a), 
f ~ M2(O, T; X) and u ~ M2 (O, T; D(A)). Then the followin9 two conditions are equivalent: 

(i) u(t)=e-'AUo + ~ie-('-r)a(g(r),dw(r)) + ~ e-"-r)Af(r)dr, a.s.,for t <-~ T. 

(ii) u ( t , + ~ A u ( s ) d s = u o + f i ( g ( s , , d w ( s ) ) + f l f ( s ) d s ,  a.s.,fort<~T. 

Proof. The implication (i)=~ (ii) follows from Lemma 4.3. In order to prove the 
converse one let us consider a process v(t) given by 

v(t) = e-'Auo + f£ e-"-"a(g(r),dw(r)) + f2 e-"-r'Af(r)dr. 

In view of Lemma 4.3, v ~ M2(0, T; D(A)) and 

v(t) + f l  Av(s)ds = uo + ~ <a(s),dw(s)> + f l  f(s)ds, a.s., t <- T. 
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Therefore  it remains to consider the case f = 0, g = 0 and Uo = 0. In other  words, 
we need to show that  if usM2(O, T;D(A)) satisfies u(t)+ ~toAu(s)ds = 0 a.s. for all 
t s [0, 7"] then u(t) = 0 a.s., t s [0, T].  However  this is an easy applicat ion of  Itg's 
formula (see Corol lary  3.5). Indeed, for fixed t ~ T we have 

de-(t-~)au(s) = Ae-¢t-S)au(s) + e -~t-'~a du(s) 

= Ae-(t-~)Au(s) + e-(t-s)a(--A)u(s) = O, S ~ t 

and hence e-~t-°)au(O) = e-~t-t)au(t) a.s., which concludes the proof. [ ]  

R E M A R K  4.3. The last part  of the proof  can be derived in another  way, see Chapter  
4 in [36]. For  k s  N let Xk(t):= (A + kI)- lu( t) .  Obviously  xk(O ) = 0 and 

x k s mZ(0, T; X) and dXk(t ) = {-- u(t) + kXk(t)} dt. 

Taking (Xk(t), ~> for ~b ~ X* we easily have 

Xk(t) = _ It e k('-~)u(s) ds 
do 

and, as 

we get 

Ilxk(t)llL2¢a,~o,X> ~ II(k + a)-~1111u(t)llL=¢n,~o,X)~ 0 in L2(~, ~o, X), 

fl e *(t - ~) u(s) ds--,  0 in L 2 (f~, Yt, X) for any k • N and t e [0, T].  

Applying Lemma 1.1 from Chapter  4 in [36] (which in fact is valid not  only for 
cont inuous  functions but  for any L a function), we infer that  u = 0 as an element of 
L2(O, T ;LZ( fL~o ,X) ) .  In part icular  we get u(t) = 0 for all t t> 0. 

T H E O R E M  4.6. Assume that X is both an M-type 2 and UMD Banach space and 
that - A  a generator of  an analytic semigroup {e-SA}~o on X.  Assume also - A  
satisfies the conditions (H1)-(H2). 

Then there exists a positive number % with the following property. For any linear 
operators B 1 . . . . .  B d satisfying (4.4) with IBI < % and for any 

u o s L2(f~, ~-o, P;  DA(½-, 2)), f s  M2(0, T; X), (4.16) 

the problem (1.1) has a unique strict solution u in the class ZT(A ) (defined in (4.5)). 
Proof. For  a fixed T > 0 let us consider the following norm on the Banach space 

Z r = Zr(A),  

[[u[[r = max { [U[M~(O,T;D(A)), [u[~(o,r;L2(n,~,e;oA(~,2)))}- 
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We shall show that for T small enough, the equation (4.7) has a unique solution in 

Z T. To do this let us consider an affine mapping OT:ZT---,Z r defined by 

v = Or(U ) iff v(t) = e-tAuo + Y'. e-(t-')ABJu(r)duJ(r) + e-(~-')af(r)dr. 
j = 1 ~  

Due to Lemmata 4.3 and 4.4 • r is a bounded affine operator. We take ul, u2eZr ,  
put u = u 1 - u 2 and compute 

v = td -- v 2 = O(u 1) - O(u 2) = ~ f~e-~t-r)ABJu(r)dwJ(r). 
j=l  do 

Since BJu~M2(O, T; Da( ½, 2)), in view of Lemma 4.3 and inequality (4.4) we have 

lVlM2(O,T;D(A)) <<. C1C2(X)IUlMz(O,T;D(A)) + C 2 C 2 ( X )  ~[u(s)l~)~(~,2)ds. 

But the last integral is not greater than 

sup ~-[u(t)IDA(+,2) i r ~-]U(S)tDA(¢,2) ds <~ 7 T1/2 ]U[Mz(O,T;D(A)) X [U[cg(O,T,L2(n,~,P;DA(4~,2))), 
O <~t <~ T ,10 

where ~ is norm of the inclusion D(A) ~-, DA(½, 2). 
Similarly, applying Lemma 4.4 we obtain 

sup ~_lv(t)t2D~,~ <~ C2(X) f ~ ~- IBu(s)I2a(½,2) ds. 
O<~t<~ T dO 

Therefore 

CI C2(X)IuL~(O,r;D(A)) + C2C2(X)y T1/2 IutM~(o,r;~A))Iu[L~(n,~,e;~(o,r;DA(~,2))), 

which allows us to infer that IIOr 112 ~< C2(X){C~ + C2yT 1/2 }. Therefore by putting 

eo = C2(X) -~ (4.17) 

we find that for T sufficiently small, • r is a strict contraction and hence possesses a 
unique fix point u. This u is obviously a solution to (4.7) on the time interval [0, T). 
Since u(T)~L2(D,o~r,P;DA(½,2)) and T depends only on ),, C l, C 2 and C2(X), we 
may proceed step by step to obtain a solution on any given a priori time interval. 

[] 

COROLLARY 4.7. Under the assumptions of Theorem 4.6, if for some ~e(½, I) the 
linear operators B j are bounded from D(A ~) to D A(½, 2), then the conclusions of Theorem 
4.6 hold true, i.e. for any u o E L2(~, J~o, P; Oa(½, 2)), f e M2(0, T; X) the problem (1.1) 
has a unique strict solution u that belongs to ZT(A ). 
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Proof It is enough to observe that for any 6 > 0 there is C~ such that 

2 

Indeed, we see that then the condition (4.4) is satisfied with the constant C1 as small 
as we want. []  

R E M A R K  4.4. If we had assumed that B~e ~(D(A), D(A')) for some ~ ~(½, 1) then 
the conclusion would not have changed. Indeed, if ~ e (½, ~) then from the intermediacy 
property of D(A~), 0 < v < 1, by applying Young inequality we get that for any 6 > 0 
there is Co > 0 such that 

2 2 2 ]XlD~t~,Z) ~ CtXI2o(A ~) <<. ~IxjD(a~)+ C~lxID~.2), x~D(A). 

R E M A R K  4.5. It is an open question whether and when 

u ~ LZ(•, .~, P; cg(0, T; Da(½, 2))). 

This property holds in a special case of X being a Hilbert space and the pair (A, B) 
being coercive, see [34]. See also [27]. 

The problem of the continuity of paths of a process given by formula (4.8) is also 
treated in [10], again in the Hilbert space setting, but with w being an infinite 
dimensional Wiener process, however with g = identity, i.e. with additive noise. 

5. Decreasing of Regularity by Complex Interpolation Method 

Let X be any Banach space and - A  is an infinitesimal generator of an analytic 
semigroup {e-tA }t~> 0 on X, such that it satisfies the conditions (H1)-(H2).  In particular 
A-1 exists and is bounded. 

On the space X we define a scale of norms (parameterized by a E(0, 1]) 

p=(x):= IA-=xl, x~X,  (5.1) 

where, for ~e(0, 1) (see [36] §2.6), 

f o  1 f o t~ - l e - t ad t  (5.2) A -" = Sinnn_____~ t- '( tI  + A)- 1 dt = F -~  

We denote by Y~ the completion of X in the norm p,; obviously X is dense in I~. 
Let ¢~ e ~ ( X ,  Y,) be the unique bounded extension of A~; in fact ¢~ is an isometric 
isomorphism. We have the following 

P R O P O S I T I O N  5.1. Let c~(0, 1) be fixed. Let S7 be the unique bounded extension 
of e -tA to ~. Then {S~}t< o is an analytic semigroup on Y~ with an infinitesimal generator 
denoted by - ,g , .  Moreover the following properties hold. 
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(i) A c ~ ,  i.e., D(A) ~ D(,4=) and Ax = X~x .for x e D(A); 

(ii) .4~ satisfies the conditions (H1)-(H2); 
(iii) D(X,) = D(A ~ -=), DyjO, p) = @jDA(O,p)), .for 0 < 0 < 1, 1 < p < ~ and 

OyjO, p) = Da(O - a,p) if also ~ > ~; 

0v) X; 
(v) X ~_ DL(O, p) / f  c~ < 1 - 0. 

Proof. The proof follows from an observation that S~ exists and is given by 
S~ = ~ ,  ° e - 'a°  @=-~5 From this we easily derive the following sequence of equalities: 

.4z = @,oA 0@~ "l,/T~ -a = @~° A-a ° @: l, D(Y,) = @JD(A)), 

D(A~) = @~ (D(A ~)), DA- " (~t, p) = {y e Y~ :O~- i y e D A (0, p)}. 

From this and Remark 4.2(i) follow (i), two first parts of (iii), (iv) (as @jD(A=)) = X) 
and (v). Finally the last part of (iii) follows from Reiteration Theorem, see [45]. To 
prove (ii) we first observe first that p(St x) ~ Me - t so for 2 > 0 R(2) := ~o ~ e - ~ S t dt e Lf(Y). 
But, see Theorem 3.1 in [36] R(2) = (2I + A)-1 and hence X, satisfies the condition 
(Ill). We see also that (,~J + / ~ ) - i  = OJ + A)-1. 

To prove that X~ satisfies also the condition (H2) we use (A.10) from [16]. For 
s e n  we have A - ' A  ~= ~_ A~=A -~ and so for x E X  

p(Aisx) = [A-~Ai~x[ = [AiSA-~x[ <~ K ae °alsl[A-ax[ = K4eOAIStp(x). 

Hence A ~= possesses a unique extension, denoted by (A~=) ~ for the time being, to a 
bounded linear operator on Y,. And it is not difficult to see that A~= and (W~) ~ 
coincides on X and hence A~ satisfies (H2). [] 

REMARK 5.1. All the results of Proposition 5.1 are true if the condition (H2) is 
replaced by the following weaker one: 

(H4) Ai=~£P(X) and IA~=I ~ C for all s ~  with Is[ ~< 3 for some 6 > 0, C > 0. 

See Theorem 1.15.3 in [45]. In fact from (H4) it follows that A~=e Ea(X) for all s~ R 
and [Ai=l ~< Me ~1=1 for some M,~, > 0, but now not necessarily with 7 < n/2. 

THEOREM 5.2. Assume that X is a UMD and M-type 2 Banach space. Let {wt)t~> o 
be a d-dimensional Wiener process with respect to the filtration {~)t~>o. Let Bi , . . . ,  B d 
be linear operators in X that are bounded from D(A ~) to X ,  for some ~(0 ,½) .  Let the 
Banach space Yl-~ and the operator AI_  ~ be as in Proposition 5.1. 

1 2 Then for any uoeL2(~ ,~o ,  P;Dx~_=(~, )), fCM2(0,  T; Yi-~) problem (1.1) has a 
1 2 unique strict solution u in M2(0, T; D(A~)) c~ ~(0, T; L2(~, ~,  P; DX1 _j~, ))). In particular, 

i f  U 0 E L 2 (~, ~o ,  P; X) then the strict solution exists (in the same class as above) and is unique. 
Proof. This result is a direct application of Proposition 5.1 and Remark 4.4. [] 
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6. Hilbert Space Case 

We start with the following (basic for our further considerations) result. 

P R O P O S I T I O N  6.1. Assume that H is a Hilbert space and - A  a generator of a ~o 
semigroup on H satisfies the conditions (H1) and (H4). Then 

DA(0,2 ) = [H,D(A)]~ = D(A°), for 0 < O < 1, (6.1) 

where [H, D(A)]~ denotes the complex interpolation space between H and D(A) of order 
O, see [45]. 

Proof From Remark 3, 1.18.10 in [45] we have that (generally) [H,D(A)]~ = 
(H, D(A))o, 2 . From Theorem 1.15.3 in [45], in view of (H4), we get [H, D(A)] 0 = D(A°). 
The equality (H, D(A))o, 2 = DA(O , 2) concludes the proof. []  

The next result strengthens Proposition 5.1 in the Hilbert space setting. 

C O R O L L A R Y  6.2. Let ee(0,  1) be fixed. Let {S~} be the unique bounded extension 
of {e -tA } to Y~. Then all conclusions of Proposition 5.1 hold and moreover 
D(X~ -~) = H = D~r~(1- ct,2). In particular H = D&(½,2) and the norm in H is 
equivalent to the~following 

ixt2 = f 5  IA~e-~Axt2 dr. (6.2) 

Let us recall that in the Hilbert space setting, Theorem 4.1 remains valid if - A  is 
only a generator of analytic semigroup, see [16] and [3]. Therefore, in what follows 
we drop the assumption (H2). Thus, since C2(H ) = 1, from Theorem 4.6 and 
Proposition 6.1 we have 

T H E O R E M  6.3. Assume that H is a Hilbert space and - A, a generator of an analytic 
semigroup {e-~A}s~0 in H, satisfies the conditions (HI)  and (H4). 

Then for any linear operators B~ , . . . ,B  d satisfying (4.4) with IBI < 1, for any 
Uo ~ L2 ( ~, ~o , P; D(A~)) and f ~ M 2 (0, T; H) the problem ( 1.1 ) has a unique strict solution 
u belonging to Zr(A ). 

R E M A R K  6.1. Although D(A ~) = DA(½, 2) the proper inequality to be considered is 
(4.4). The reason for this lies in the fact the exact norm in DA(½, 2) plays an important 
role in proving Theorem 4.6. 

C O R O L L A R Y  6.4. Let H and A be as in Theorem 6.3. Assume that for some C 1 < 1, 
C 2 > 0 the linear operators BI , . . . ,  B d satisfy 
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d 
2 D(A½). (6.3) Insxl 2 < CllxtD~a~ ) + C21xl =, xE 

j = l  

Then for any uo6L2(f~,~o,P;H) and f ~M2(O, T;D(A~))n cg(O, T;L2(f2,~,,P;H)) 
the problem (1.1) has a unique strict solution u in the class 
M~(0, T; O(A~)) m ~e(0, T; L~(n, ~, e;/4)). 

REMARK 6.2. In view of Corollary (6.2) the inequality- (6.3) reads 

[A~e-'aBSxl2 dt <~ Cl[A~xl 2 + Czlx[ 2. (6.4) 
j = l  ~ 

It follows that if the operator A - m satisfies (HI)  and (H4) for some m > 0 and 
B s = (A -- m j) ~ with m s ~> 0, E s m~ ~< m then the condition (6.4) is satisfied with all its 

consequences. 
We have the same conclusion if the operators B s satisfy I(A - mj)-*B j] ~< 1 with 

m s as before. 

7. Some Examples 

The examples given here are of some interest but they arc not the most general. The 
reason is that besides the Hilbert space case, the complex interpolation method we 
have used so far gives not the best results. In Sections 10 and 11 we present more 

general treatment based on real interpolation method. 

EXAMPLE 7.1. Let X -- LP(g~ ") with p ~> 2 and A = x / - A  + m z where m > 0 and 
A is the usual Laplacian. We put D(A)= WI'P(E"), where wk'P(D) is the Sobolev 
space of LP(D) functions such that all their derivatives up to order k belong to LP(D). 
Applying the Marcinkiewicz-Mihlin Interpolation Theorem, see [43], one sees that 
the operator A satisfies the conditions (H1)-(H3).  We consider also the following 
linear operators (BJu)(x)= bs(x)u(x), x~ ~" for bfiC¢l(~ ") satisfying appropriate 
growth condition at infinity. Thus we consider the following Stochastic Partial 

Differential Equation 

du + x / - -A  + m2u d t+  ~ bs(x)u duS(t) = O, t > O, 

u(0) = u o, (7.1) 

where u o ~ Da( ½, 2) = Bp,2([~ "), see [45] for the definition and properties of the Besov 
spaces BSp,k . This equation is similar to the equation of free field found by Hida and 

Streit in [24], see also [40]. 
Since the operators B s are bounded from D(A) to D(A ~) = W"P(R ") for some 

ae(½, 1), in view of Remark 4.4 the problem (7.1) is well posed in the class Zr(A) for 
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all T > 0 ,  for any uo~L2(~,o~o,P ;B~,I). Observe also that now Z T ( A ) =  
MZ(O,T;Wl,p(R"))c~cg(O,T;L2(f~,~p; ~ , Bp,z(R ))). In a similar way, since B j are 
bounded operators from D(A ~) = W"P(N ") to X = LP(N"), we can apply Theorem 
5.2. In particular, for any uoeLZ(~,o~o,P;LP(R")) there exists a unique solution 
u ~ M a (0, T; W~'P(N ")) c~ cg(O, T; L z (f~, ~,  P; Dy~_,(½, 2))). In this moment however, we 
cannot identify the space Dye_,(½, 2) with some known functional space (besides with 
q)l-,(Da(½,2)), what follows from Proposition 5.1). 

EXAMPLE 7.2. Let D be a bounded domain in R" with sufficiently smooth boundary 
or let D be the whole R". Let --A be a uniformly elliptic operator of order 2m, with 
smooth coefficients. We take X = LP(D) for p ~> 2 and D(A) is a subset of Wk'P(D) 
satisfying some appropriate boundary conditions. It is proven in [41] then the operator  
A satisfy the conditions (HI)  and (H4). 

For  the operator B j we take any differential operators of order ~<m-  1 or 
integro-differential operators of order strictly smaller than m. Then for some 7 e (0, ½), 
B j map continuously D(A ~) (which is a subset of w~k'P(D)) into X. It means that 
Theorem 5.2 is applicable. In particular, we get existence and uniqueness result for 
stochastic partial differential equations of the form (1.1). 

As a byproduct, also in all previous Theorems and Examples, we have continuous 
dependence of solution on the data. 

8. Decreasing of Regularity by a Real Interpolation Method 

We assume that the linear operator A, in a Banach space X satisfies the condition 
(HI)  from Section 4. By {e-~A}t~O we denote the analytic semigroup on X, generated 
by - A. As in Section 5 we introduce a norm l" [- 1 on the space X defined as follows 

fx[_ 1 = IZ- lxl. 

Let Y = Y_ 1 be the completion of X in this norm. Thus X is a dense subspace of Y 
and the operator A extends to linear and bounded from X to Y. Moreover this 
extension, denoted in what follows by ~, is a linear isometric isomorphism between 
X and Y 

Putting 

we easily see that 
I o 

S ( t )  -~ f ~  ° e - ' A °  (ID- 1 (8.1) 

S(t) is an analytic semigroup on Y, its generator - A  r satisfies 

A r = ~ o A o ~  - I ,  

A ~ Ay, D(Ar)= X,  
D(A 2) = D(A), A~ = q)°A2°q) -1 

(8.2) 
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2 ° The following formulae hold 

(Y,,X)2o p, if 0 < 8 < ~ and <p  < ~ ,  (8.3) 

= Ai (LD(A))o'v {.(X,D( )2a-~,v, i f ~ < 0 < l  and l < p < ~ .  

The first part of (8.3) follows from ([45], Theorem 1.15.2 f), since D(A) = D(A~) and 
D(Ar) = X. The second one follows from the first one by applying Theorem 1.15.2 (e) 

from [45]. Indeed 

(Y, = (Z  = . 4 ;  

= A ;  ~(Y, D(Ar))zo_ i,p = (D(Ar), D(A~))z~- 1,v = (X, D(A))20-1,p. 

In particular, by putting p = 2 and ~9 = ¼ or 19 = ¼ we obtain 

(Y, X)~,2 = (Y, D(A)),,2, 

(X,D(A))¢, z = (y, D(A))~,E" (8.4) 

Next by using the Reiteration Theorem, see [4], Theorem 3.5.4, from (8.4) we infer that 

((Y, X)½,2, (X, D(A))~,2)¢, 2 = (Y, D(A))¢,E =: (X, D(A))o, 2, 

where the last equality should be viewed as a definition of (X, D(A))o,2. 
In order to be able to proceed further we need the following 

LEMMA 8.1. Let X c Yare two Banach spaces with X being densely and continuously 
imbedded into Y Let S(t) be a ~o (resp. analytic) semigroup acting on both spaces X 
and Y Assume that Z is an interpolation space between X and Y of order ~ ~ (0, 1), i.e. 
there is a constant C > 0 such that if a linear operator T: Y-~ Y,, X - +  X is bounded 
in both spaces then T is also bounded in Z and 

Tl~(x) lTl~(r ). (8.5) lTl~(z) <~ C[ a 1-a 

Let T(t) be restriction of S(t) to Z. Then T(t) is a cgo (resp. analytic) semigroup on Z. 
Moreover, if A x and A r denote respectively the infinitesimal generator of S(t) acting 

respectively X or Y, and A z denotes the infinitesimal generator of T( t) then A x c A z c A r 

and D(Az) = (2 - At ) -  I(Z) .for 2~p(Az). 
I f  Air and AIx satisfy the condition (H4) (resp. (H3)) from Section 4, then also A] z 

satisfies (H4) (resp. (H3)). 
Proof. Obviously T(t) is a semigroup of bounded operators on Z. From (8.5) it 

follows that {T(t) - I}o,<,_< 1 are uniformly bounded in 5e(Z). Therefore, as X is dense 
in Z, to prove that the semigroup T(t) is strongly continuous, it is sufficient to prove 
it for z ~ X. Since X c Z continuously, we have 

lT(t)z - Zjz ~< C[S(t)z - Zix--~O as t - * 0  +. 
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Another method of proving the above result would be by applying the Hille-Yosida 
Theorem. This method is even better suited for proving analyticity of T(t) (in case 
when the semigroup S(t) is analytic), one has only to use an extension of the 
Hille-Yosida Theorem to analytic semigroups, for example Theorem 5.2 in Chapter 
2 of [36]. 

To prove the second part of the Lemma, let us first observe that the inclusion of 
domains is obvious. Next, we may assume that O e p ( A x ) n  p(Ar), i.e. A x I:X---~X 
and A ~ : Y - - ~ Y  are bounded. Since also A ~ [ x  = Ax ~, from (8.5) we infer that 
A ~ l z :  Z--~Z is bounded. As obviously A z 1 = A~ ~ [z, we finally have 

D(Az) = A z l ( Z ) =  A r ~(Z). 

To prove the last part of the Theorem, it is sufficient to notice that A~ ~ A~ ~ A~ 
and so by (8.5) 

it 
Ihzl,l(z) ~< CIh~l ° li'l 1-° ~e(x) r ~e(r). [] 

We now return to the situation from before Lemma 8.1. Putting 

Z = (Y,X)~.2 and T(t) = S(t)] z 

we easily have 

(8.6) 

C O R O L L A R Y  8.2. 1 ° T(t) is an analytic semigroup on Z (with a generator denoted 
by --Az), T(t) is extension of e -tA and A c A z c A t. 
2 o 

D(Az) -- (X, D(A))~, 2 = (Y, D(A2))~,2 (8.7a) 

(Z, D(Az))~,2 = (Y, D(A))~, 2 = (Y, D(A2))L2 =: (D(A), Y)o,2. (8.7b) 

3 ° A~z is a bounded operator from D(Az) to (Z,D(Az))~,2 and from (Z,D(Az))~,2 to Z. 
Proof. 1 ° and the first part of 2 °, i.e. the equality (8.7a) follow directly from the 

precedent results. Indeed, in view of Theorem 1.15.2(e) in [45] we have by (8.3) 

D(Az) = A~ I(Z) = A~ l(y, D(A~))~2 = (y, D(A~))¢. 2 = (X, D(A))¢, z. 

The equality (8.7b) follows from the Reiteration Theorem. In fact, we have the following 
sequence of equalities 

(Z, D(Az))½,2 = (Y, D(A~))¼,2 , ((Y, D(A~))¼,2 ),,z = (Y, D(A2))½,2 • 

To prove 3 ° let us first observe that in view of Lemma 8.1, from Theorem 1.15.2(e) 
in [45] it follows that 

2 --~ 2 A~-¢: (Y, D(A r))÷,2 (Y, D(A r))~,2, 

Ar  ~:(Y, D(A~))~,2 -~ (Y, D(A 2))~,2 
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are linear isomorphisms. Thus, in view of (8.7a), (8.7b), the equality A ~ l z  = A z  ~ 
(which follows directly from the definition of fractional powers) concludes the proof 
of Corollary 8.2. [] 

REMARK 8.1. The infinitesimal generator A z of the semigroup T(O has the following 
(important) property 

D(A~) = (Z, O(Az))/r, 2. (8.8) 

Indeed, At: D(Az)--* D(A~) and Az:D(Az)--~Z isomorphically, so (8.8) follows from 
part 3 ° of Corollary 8.2. 

In other words, we have constructed an extension Z of the Banach space X with 
an apppropriate extension T(t) of the semigroup e -~A, such that the generator A z of 

T(t) satisfies (8.8). 

COROLLARY 8.3. Under the assumptions of Corollary 8.2/f  (X, D(A))i, 2 c D(A~), 
then the linear operator 

A~: (X, D(A))~,2 = D(Az)--* (Z, D(Az))~,z 

is bounded. 
Proof Since A- ~ c A z 2 and ~ -~ A ]o(az) = Az, the proof follows from Corollary 8.2 

in view of the assumptions. A detailed proof is as follows. 
Since (X, D(A))~,2 c D(A ~) 

A -2: (X, D(A))~_2 --~ A-~((X,  D(A))~,2) c X. 

By 3 ° of Corollary 8.2, 

Az~: D(Az) = (X, D(A))~, 2--~ (Z, D(Az))~,2, 

and finally, as A-1 c A z 1, 

A-~ ~ Az ~. 

Hence the following equality holds 

A -&((X, D(A))~, 2) = (Z, D(Az))~, z 

and A-~: (X, D(A))&, z -*  (Z, D(Az))~, z boundedly. [] 

Since the spaces Z and (Y,D(A))~,z play such an important role in our paper they 
deserve greater attention. We shall prove 
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P R O P O S I T I O N  8.4. The norm in Z is equivalent to the Jollowin9 one 

f ; IAe dt, (8.9) ~ A x [ 2  t~ 

while the norm in (Y,D(A))+~,2 is equivalent to the following 

f ; lAe t (8.10) ~ ~A X~ 2 dr. 

Proof. Let us fix any 0~(0, 1) and let us denote by I ' l  the norm in (Y,D(A))o, 2 = 
(Y,, D(A~))e,z. From the formula (4.1) we have, for y ~ D(A~), 

lYI2 _f/Itz(1-°)~z°-taY'12dt 
= ~ay~ -Y ly  t 

: f (  = fo f+A=e 'A+ =,t:+3 "°d: 

= f ;  lA-tCbA2e-'AAyl~t3-4°dt= f ;  le-taAyl2xtz-4°dt. 

1 We conclude the proof  by putting 0 = ½ and 0 = ~ and applying formulae (8.4) []  

R E M A R K  8.2. Although the interpolation spaces can be (equivalently) normalized 
in many different ways, one of these norms plays a special role, see Section 4. It is 
the one defined by means of the integral, as in formula (4.1). If the norm in Z is 
defined as above, then the norm in Daz(-~ , 2) = (Z, D(Az))+,2 is given by 

f/ /of; IX[DA:<+.2 ~ = IAze-'aZxl 2 dt = IAe-<:+OAxl 2 ds dt. (8.11) 

By a similar argument to that one used in the proof of Proposition 8.4 we can prove 
the following (always with norms given by (4.1)). 
1 ° I f ½ ~ < 8 < l t h e n  

(Y,, D(A2))~,2 = (X,D(A))za_ 1,2 isometrically. 

2 ° I f 0 < 8 < ½ t h e n f o r x E X  

: : f (  IX{<r,D(A~)),~,2 it2( 1 _~)Ae_,Ax[ 2 dr, 
t 

tXI(Y,O(Ar)),~,2 = ltl-°e-taxl 2 , f o r  x+X. 
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Hence 

A r: (X, D(A))~. 2 --~ ( Y, D(A r))8,2 

is an isometric isomorphism. 
In the framework developed so far Theorem 4.6 takes the following form. 

T H E O R E M  8.5. Assume that X is an M-type 2 Banach space, - A  is an infinitesimal 
generator of an analytic semigroup { e-  ~A }t>~ o on X. Assume that A satisfies the conditions 
(H1)--(H3) from Section 4. Let Z and A z be the spaces described before. Assume that 

(X, D(A))~, z ~ D(A ~) 

and that the linear operators By, j = 1 . . . . .  d, satisfy 

Bj: (X, D(A)h, 2 --~ (X, D(A))o.2 is bounded. (8.12) 

Then there exists e o > 0 such that for all e e ( - e  o, e o) the problem (1.1) with Bj replaced 
by eBi possesses a unique solution u e M2(0, T; D A( ½, 2)) c~ cd(0, T; L2(f~, D A (0, 2))) for 

arbitrary u o e L 2 (f~, ~o; Da(0, 2)) and f e M z (0, T; Z). 

As we have already noted, Theorem 8.5 is a direct consequence of Theorem 4.6. The 
importance of Theorem 8.5 lies in its applicability to Stochastic PDE of the type 
(1.2). This will be seen in the next section. Below we give some sufficient conditions 

for the condition (8.12) to hold. 

P R O P O S I T I O N  8.6. Assume that Da(½,2) = (X,D(A))~.2 c D(A ~) and let a linear 

operator B satisfy the following conditions. 

A-~ B: X---~ X is bounded, 

B: D(A ~) ~ D(A ~-~), is bounded, for some ~ ~ (½, 1). 

Then B satisfies the condition (8.12), i.e. 

B: (X, D(A))~,2 --~ (X, D(A))o,2 is bounded. 

Proof We first show that the linear operator A-~B:  (X, D(A))~,2 ~ (X, D(A))~, 2 is 
bounded. Because, see [45], p. 101, (X,D(A))~, 2 = (X,D(A~))I/z~,2, it is enough to 
show that A - ~ B  is a bounded operator both in X and D(A~). Obviously, only the 
latter fact is to be proven. Since accordingly to [45] (Theorem 1.15.2), A -~ is 
isomorphism from D(A ~- ~) onto D(A~), this statement follows from the assumptions. 

We conclude the proof by writing down B = B ° A ~ ° A -~ ° B and applying Corollary 

8.2 point 3 °. []  

We finish this section by stating a result which is a direct corollary of Theorem A.7. 
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PROPOSITION 8.7. Assume that X is a Banach space of M-type 2 (resp. type 2). 
Then the spaces Y and Z defined above are of M-type 2 (resp. type 2). Moreover, 
max{Lz(Y) ,L2(Z)}  <<. L~(X) (resp. max{K2(r ) ,K2(Z)}  <<. K2(X ). In particular 
max {C2(Z), C:(Y)} ~< C2(X ). 

9. D u a l i t y  T h e o r y  

In this short section we give another interpretation of the spaces Y and Z introduced 
in the previous section, this time in terms of the dual operator A*. 

LEMMA 9.1. Assume that - A  is an infinitesimal generator of a cg o semigroup on a 
Banach space X. Then the norms in Y and (D(A*))* are equivalent and Y can be 
identified with (D(A*))*. 

Proof. Since A-1 is bounded also (A*)-1 is bounded and D(A*) endowed with the 
norm I" [D(A*) = IA*(')] is a Banach space and for x s X  we have the following 

IxlD<A.), = sup I(x,~0)[ 
[<No<a*) = 1 

= sup [ (A-tx ,  A * p > [ = l A - l x l = l x [ r .  (9.t) 
IA*oI = 1 

[] 

If X is a reflexive Banach space, in view of Theorem 10.5 in Chapter 1 of [36-1 D(A*) 
is a dense subspace of X* and - A* is an infinitesimal generator of a ~o semigroup 
on X*. Thus we have 

D(A*) c X*, and X** = (X*)* c (D(A*))*. (9.2) 

If now 0e(0, 1) and 1 < p < oe then by Theorem 3.7.1 in [4], we have (after identifying 
X** with X) 

X* D~A*~* , t ,,1-o.q = ((D(A*))*,X**)o,p = (Y,,X)o.p, 

where 1/p + 1/q = 1. Therefore, we have proven the first part of 

COROLLARY 9.2. If  X is a reflexive Banach space, then under the assumptions of 
Lemma 9.1, for any 0E(0, 1) and 1 < p < ee the following equality holds: 

In particular, 

and for any c~ e (0, 1) 

X* DtA *~* = (Y,,X)o,p. ~, f J  1 - 8 , ,q  

Z = (Y, X)+,2 = (X*, D(A*))*2 

(9.3) 

(9.4) 
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(Y D(A))~,2 = ((Y,, X)I -~,2, (X, D(A)),,2)~,2. (9.5) 

Proof It remains only to prove the formula (9.5). It is an easy consequence of the 
Reiteration Theorem and (9.3). Indeed, we have 

(Y, D(A))~, 2 = ((Y,, D(A))~ -(~/2),2, (Y,, D(A))~+(~/2),2)½,2 

= ((Y,,X)x-~,z,(X,D(A))~,2)~,2. [] 

REMARK 9.1. At the end ofthis section let us observe that in view of(9.3) we also have 

= ttX* OtA *~* (X,D(A))~,2)~, 2. (9.6) (Y,D(A))½,2 ,~ , t /)~,2, 

Thus we infer that if for some a > 0 both the spaces (X, D(A))~,2 and (X*, D(A*))~, 2 
do not depend on the operator A, then neither depends on (Y, D(A))~, 2. 

10. More Examples 

We begin this section with a simple example, which however has some of the difficulties 
of the general case and suggests ways of overcoming them. 

EXAMPLE 10.1. Consider the following Stochastic Partial Differential Equation in 
whole domain E" (with e being a real parameter and bi: E"--~ E" sufficiently smooth 

vector fields): 

d d 

du(t, x) + (1 - A)u(t, x) dt + e ~ (bj(x)' V)u(t, x) dwJ(t) = ~] 9j(t, x) dwJ(t) + f(t,  x) dt, 
.i=1 .i=1 

t > 0, x~[~" (10.1) 

u(O, x) = Uo(X), for x ~ ~" 

As the basic space we take X = LP(~ ") with p >~ 2. Moreover we put 

A = - A  + 1 with D(A) = W2'v(~"), 

B i = b~(x)V. 

According to [45] or [4] the space DA( ½, 2) is equal to the Besov space B~,z(N"). 
Moreover, the space Z can be given by Z = A(DA(½,2)) = (I - A)(Bp~ 2) = Bv-~ and 

1 0 n 
SO DA(0, 2) = (Z, D(Az))+, 2 = (Bp-~, Bv,2)~, 2 = Bp,2(lt~ ). 

Since p >/2, by [45] we have that DA(½,2) = D(A ~) = WLP(~"), with equality only 

for p = 2. 
0 

Now we want to show that Bj is a bounded operator from B~, 2 to Bp, 2. This can 
be done directly (in fact by repeating the proof from Section 8) or by verifying the 
sufficient conditions from Proposition 8.6. We choose the latter method. In the 
following two lemmata we omit the subscript j. We have the following 
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LEMMA t0.1. Assume that the vector field b: ~"---~ ~" satisfies 

b e L ® (~"; ~"), (lO.2a) 

V" b = div b e L ~ ( ~ " ;  ~). (lO.2b) 

Let the linear operator B be given by 

Bu = (b" Vu) = bi(x ) 
j = l  

a priori for u eCgl(~"; N). Let us denote J = (1 - A) ~ and assume that pe(1,  oo). 
Then the linear operator J -1B  has a unique extension to a bounded operator from 

LP(~) to L'(ff¢ ). 
Proof Let us fix p satisfying 1 < p < ~ and let q be given by lip + 1/q = 1. We 

need to show that for some C > 0 and for all ¢, lp e cd~ (~) the following inequality holds, 

I<J-1B¢,~>[ ~< Cl~blLpl~,lL¢. 

This inequality follows from the following three facts: 

J -  l : Lq(R")--~ WI'q(R ") continuously, 

B:W~'q(~")--~Lq(~ ") continuously, 

(J-~B(]),~) = - ( ¢ , d i v b J - a ~ )  - ( ¢ , B J - ~ t ) ,  O,~ecg~(ff¢"). 

The first and the second are obvious, while the third one follows from the integration 
by parts formula and symmetricity of J -  1 on cg~. []  

LEMMA 10.2. Using the notation of Lemma 10.1, /f p > n, 1 < e < 1 + 1/p and 
b e WI'P(R ", R") then the operator B is bounded from W ~'p to W ~- 1,p 

Proof It follows from the definition of Sobolev spaces, see [4], that Dj = O/Ox~ is 
a bounded operator from W "'p to W "-  1,p. Since b~ belongs to W I'p and p > n it 
follows from the Sobolev imbedding theorem that the multiplication operator v ~ b iv 
is continuous in both spaces WI'P(~ ") and LP(~"). Hence, as W ~- I'P(R") = [LP(~"); 
WI'P(N")]~ _~, it is also continuous in W ~- ~'P(N") by the interpolation principle. This 
concludes the proof of Lemma 10.2. [ ]  

Now we see that from Proposition 8.6, Lemmata 10.1, 10.2 it follows 

COROLLARY 10.3. Assume that p > n and 

b e WI'P(~ ", ~") with V' b = div b E L~(~").  (10.3) 

1 n 0 n Then the linear operator B defined in Lemma 10.1 maps continuously Bp, e (~ ) into Bp, 2 (~ ). 
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T H E O R E M  10.4. Assume that each vector field bj satisfy the condition (10.3) and that 
p > n , p > ~ 2 .  

Then there exists % > 0 such that for all e ~ ( - % ,  Co), there exists a unique solution 

u 6 M2(0, T; (B~, 2 (~"))) n cg(0, T; L 2 (•; B°,2 (~"))) 

to the problem (10.1) for arbitrary 

. - i  [R" 6M2(0, T;B°p,2(N")d). uoeL2(O.,~o;B ° 2(N")), f e M 2 ( 0 ,  T;Bp,2( )) and g 

Proof The operator - A  = 1 - A satisfies the conditions (H1)- (H3)  from Section 
4 and hence Theorem 10.4 is a direct consequence of Theorem 8.5, Corollary 10.3 

and finally Theorem 4.6. []  

The above result can be restated in a similar way to that given at the end of Section 8. 

T H E O R E M  10.5. Assume that p > n, b f i  Wz'v(R"), ~" for each j. Then there exists 
T; (B,,2(R))) c~ e o > 0 such that for all e ~ ( - e o, e o ), there exists a unique solution u ~ M 2 (0, 2 . 

cg(0, T; L2(fl; B~.2(R"))) to the problem (10.1) for any 

2 az- • i , gEM2(0, T; i , d Uo~L (f l ,~o,Bv,2(R)),  (Bp .2 (~ ) ) ) and  f ~M2(O,T;B°,2(~")). 

EXAMPLE 10.2. This example is a modification of the former one. We treat almost 

the same equation (with 1 - A replaced by -A) ,  but in a bounded domain D c E" 
with Dirichlet boundary conditions (the boundary conditions could as well be more 

general): 

d 

du(t, x) - Au(t, x) dt + e ~ (bj(x)" V)u(t, x) dw~(t) 
j = l  

d 

= ~ 9j(t,x)dwJ(t) +f ( t , x )d , t  > O,x~D (10.4) 
j = l  

u(t, x) = 0, for x ~ ~D, t > 0 

u(O, x) = Uo(X), for x ~ D. 

In order to be able to treat this initial value problem we first should describe the 
functional spaces necessary for a correct statement of the problem 10.4. Let p ~> 2 be 

a real number and 

x = I_P(D), 

A u  = - A u ,  u ~ D ( A )  = W2'V(D)c~ Wol'P(D), 
(Biu)(x) = (by(x). V)u(x), u ~ D(A). 
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Next we introduce the spaces Y and Z as in Example 10.1. Although it represents 
no difficulty on the abstract level, to identify them with concrete functional spaces, 
as it has been done in Example 10.1, requires some additional work. For doing so 
we apply Corollary 9.2. Since A* = - A  in X* = Lq(D) (1/p + 1/q = 1) with the same 
boundary conditions as A, see [36], we have 

D(A*) = W2'~(D)~ WoLq(D). 

Thus, by Corollary 9.2 

Z = (Y, X)~,2 = (X*, D(A*))~, 2 = (Lq(D), W2'q(D)(~ WoLq(D))* 2 . 

But according to Theorem 4.3.3 in [45], see also [21], 

(Lq(D), W2'q(D)n [~Lq(D))~, z = {ueS~,2(D):u[~D = 0} =/3~,2(D) =/3~,2(D), 

where the last equality follows from Theorem 4.3.2(c) in [45]. Hence, by Theorem 
4.8.1 in [45] we obtain 

Z = B~,~ (D). 00.5) 

In order to determine the space (Y,, D(A))+, z we use the second part of Corollary 9.2. 
Taking ~ small enough (a ~< rain {l/p, 1/q}, see Theorem 4.3.3 in [45]), we have 

B 2~ tD~ (X*,D(A*))~ 2 2~ (X,D(A))~,2 v,2, ,, = = Bq,2 (D). 

Hence 

(Y, D(A))+,2 = ((Y, X)I -,,2, (X, D(A))~,z)~,z, 

= iX* DtA*~* = (B2~2(D)) * = B-Z~tD ~ (Y'X)I-~,2 = (D(A*),X**)I-~,2 ~ , ~ J]~,2 p,2 I ), 

where the last equality follows from Theorem 4.8.2 in [45]. Hence we infer that 

-2~ -2, = B ° 2(D). (Y,D(A))¢. 2 = (Bp, 2 (D),Bp,2 (D))¢,z . 

THEOREM 10.6. Let  D c ~n be a bounded domain with boundary o f  class cg2 Assume 

that p > n, b e  WI'P(D) with d i v b ~ L ~ ( D ) .  Then there exists e o > 0 such that for  all 

~ ( - e o, e o ), there exists a unique solution u e M 2 (0, T;/3~, z (D)) c~ cg(0, T; L2(f~; B°2 (D))) 
to the problem (10.4) for  arbitrary 

U o e L2(~, ~'o; B°,2 (D)), g E M2(0, T; (B°.z(D)) d) and f ~ M2(0, T; B~,2 ~ (D)). 

Theorem 10.6 should be supplemented by a result, similarly as Theorem 10.4 has 
been supplemented by Theorem 10.5. But now, contrary to the previous case we not 
only need some regularity assumptions on the coefficients bj(x) but also we should 
be able to control the behaviour of bj(x) for x near the boundary 0D, so that 

o 1 
BjueBp ,2 (D ) . 2 °1 if ueBv ,  2 c~ Bp,2(D ). It turns out that the following condition 
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bj~ W2'p(D, ~")  and (bj(x), v~) = 0, for xet3D, for each j, (10.6) 

where vx denotes the outer normal to 3D at point x, is sufficient. We have 

T H E O R E M  10.7. Under the same assumptions as in Theorem 10.6 with the additional 

one (10.6), there exists  an e o such that for  all 

o 1 
Uo ~ L2 (f~, ~o;  Bp,2 (D)), 

g M (0, T; ") and f E M (0, T; 

there exists u 6 M 2 (0, T; B2,2 (D) c~/~ ~p,2 (D)) n c~(0, T; L 2 (f~;/~ ~p.z (D))), the unique solution 

to the problem (10.4). 

11. Applications 

This section is devoted to presentation of general applications of the results from 
Sections 4, 8 and 9. These results are generalizations of the two examples from Section 
10 to more general elliptic operators with more general boundary conditions. For 
the sake of completeness of the exposition, we present the precise results below. 

Let D be a bounded open domain in ~" with a boundary of class oK®. We make 
the following assumptions 

(i) The differential operator - A  

- A =  a~(x)D ~ (11.1) 
Pal ~< 2k  

is properly elliptic, see [45], 4.9.1. The coefficients a a are cg~ functions on the closure/) of D. 
(ii) A system {Cj}~= 1 of differential operators on OD is given, 

cj, (x)O (11.2) 
lal ~< m j  

with the coefficients cj,~ being ~ o  functions on OD. The orders mj of the operators 
C~ are ordered in the following way 

O <<. ml < m2 < ... < mk. 

The system {Cj} is normal, i.e. m k < 2k and 

c~,~(x)v~ ~ O, x E D ,  j = 1 . . . . .  k, (11.3) 
I~I = rn j 

where v x is the unit outer normal vector to 8D at x e 8D. 
(iii) 

.,k a(x, 4) e/) ,  ¢ e Nn\ {0}, (11.4) 
( - O  la(x,~)l # - 1 ,  x 
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where a(x, ~) = Zl~l=2k a,(x)~ ~. 
(iv) If c~(x,~)= EL,l=m~C~,~(x)~ ~ then for all xeOD, ~eTx(OD), t ~ ( - o 0 , 0 ]  the 

polynomials 

{~---,c/x,~ + rvx)}, j = 1 , . . . , k  

are linearly independent modulo polynomial {z--, H ~ (~ - r + (t))}. Here r + (t) are j = t  

the roots with positive imaginary part of the polynomial C ~ ~---, a(x, ~ + zvx) - t. 

The differential operator A gives rise to a linear unbounded operator Ap in a Banach 
space X = LP(D) with a domain D(Ap) defined by 

D(Ap)=w~2ka'cD) { W2k'P(D):C~u,~o Oformj<2k  ~} ~cj} t = u~ = - . (11.5) 

It has been shown by Seeley in [4l] ,  see also [45], 4.9.1, that for any 7 > 0 there is 
C = C.~ > 0 such that 

last ~ Ce rf'l, t ~ ,  

and therefore the operator Ap satisfies the condition (H3) from Section 4 (compare 
with [16]). 

When there is no danger of ambiguity, the operator Ap will be denoted simply as 
A. In order to be able to apply our results from Sections 4 and 8 we need to determine 
the spaces Z and (Z, D(Az))½.2, We start with computation of the latter. This is quite 
an easy task and is based on formula (9.6), From [45] Theorem 4.3.3 we have 

B2k~ (LV(D),D(A)),,2 = p,2;~cA (11.6) 

where BpZk;;{c~} {u zk~ . = eBp, z(D).Ciu]oo = 0formj < 2k, - 1/p}.Takingapositive number 
small enough (for example 0 < ~ ~< 1/2kp), in view of [45], 4.3.2 Theorem 1 we have 

in particular 

(Lg(D) ' D(A))~,2 2k~ °2k, Bp, z (O) = (11.7) = Bp,2 (O). 

Now we need some facts about the dual operator A*. Obviously 

X* = Lq(D), (11.8) 

with 1/p + I/q = l, but to determine D(A*) we need some results from the theory of 
boundary value problems. The basic references are [1], [2] and [3t] ,  but in the latter 
only the case p = 2 is treated. It follows from the above cited works (Theorem 2.1 
p. 114 in [31]) that there exists a system of n boundary operators, let us denote them 
by * * C~ . . . . .  C, such that 

C~. = ~ c*~(x)D ~, (11.9) 
[el ~ tLj 
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with the coefficients c* being c ~  functions. We assume that the orders #j of operators 
Cf satisfy 0 ~< #i < ' "  < #k < 2k and 

D(A*) = W(c~}2k'q(D) = { W 2 k ' q ( D ) : C * u t o D = O f o r # j < 2 k u  ~ - ; } .  (11.10) 

Let us recall that although the operators C~' are not defined in a unique way, the 
space in r.h.s, of formula (11.10) is uniquely determined by the operator A and the 
boundary operators C~. 

By a similar argument as before 

(Lq(D), D(A*))~,2 = uZk~ "-'q,2;(c~} = 

(Lq(D) ' D(A.))~, 2 2kct = Bq, 2 (D) = 

we have the following two formulae 

u e Bq, 2 (D): C* I~o = 0 for m~ < 2ka - , 

q,2 ~ ;~ 

where the latter holds for positive e small enough (for example 0 < a ~ I/2kq). Hence, 
if 0 < a < 1/2kq, Theorem 4.8.2(b) in [45] gives 

(Lq(O) ' ( , , - 2k~ D A ))~,2 = Bq,2 (D). 

Therefore, a repeating use of Section 4.3.2 in [45] gives 

PROPOSITION 11.1. Under the above assumptions and using the above notat ion 

(Y, O(A))i, 2 = (Z, D(Az))}, 2 = Bp°2 (D). (I 1.11) 

It remains to compute the space Z. One of the possible methods is to apply formula 
(9.4). It follows from it and from some of the formulae given before (in this section) that 

Z = (B~,2,{c~}(D))*. (11.12) 

Yet, we do not see any reasonable general formula for Z (without using a dual space). 
However let us observe that in Examples 10.1 and 10.2 the space Z is completely 

determined. 
Now we give another example. 

EXAMPLE 11.1. In this example D is as before but we take k = 1, i.e. the operator 
A is of second order. We assume that it is given in the following divergence form 

(Au)(x) 
i , j = l  i=1  

with all coefficients of cg~ class on the closure/)  of a bounded domain cg~ domain 
D and the matrix [a~j(x)] not necessary symmetric. The boundary operator C is given by 
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t~U 
(Cu)(x) = e ~ - ( x )  + fl(x)u(x), x e ~ D ,  (11.14) 

ova 

again with c~o coefficients, where the first term is the "co-normal" derivative with 
respect to A, 

c~u i ~u (x) =  ,JY" (x), 

V 1 where v~ = ( . . . . . .  v]) is the unit outer normal vector to 0D at point x ~ OD. 
We take X = LV(D), D(A) = w~ziP(D) and the operator A with domain D(A) acting 

in X via the formula (11.13). Then, see [1], [2] or [23], 

t~U 
(C*u)(x) = e ~.. (x) + fl(x)u(x) - (d(x)'v~)u(x), x ~ aD. 

uv a 
(11.15) 

In a particular case when d = 0 we may take 1°: e = 0, fl = 1 or 2°: e = 1, fl = 0. In 
the former case (Dirichlet boundary conditions) we have that Z = Bp.2 ~ while in the 
latter (Neumann boundary conditions) the space Z = (B~,2)* is even not a space of 
distributions on D, see [31] §4.7.2 Example 2. 

Now we present the main result of this section. The second part of it is concerned 
with solutions of higher regularity with respect to the first one, compare with Section 10. 

T H E O R E M  11.2. Assume that D is a bounded domain in R" with boundary 8D of  ~ 

class. Let  A be a differential operator satisfying the properties (i)-(iv) above. Let  also 
A = A v denote a linear operator in X = LV(D) with domain as in (11.5), where p >1 2. 

Assume that {w t }t>~ o is a d-dimensional Wiener process. Assume also that u o is a random 
field on D and f, g are random processes satisfying 

uo~L2( f2 ,~o;B°2(O)) ,  geME(O,T;(B°E(D))a),  f ~ M E ( O , T ; Z ) .  (11.16) 

Finally let us assume that B 1 . . . . .  B a are linear differential operators of  orders <<.k, 

B~ = ~ b~.~(x)D ~, j = 1 . . . . .  d, (11.17) 

with the coefficients b~,~ o f  c ~  class. Then there exists e o independent of  Uo, f and g 

such that for  all e e ( - e o, e o) the problem (11.18) below has a unique solution u belonging 
to M2(0, T," Bv,2;{c~}°k C~ cg(0, T; L2 (f~; By° 2 (D)))). 

d 

du(t, x) + Au(t, x) dt + ~ (eB~u(t, x) - gj(t, x)) dwJ(t) = f ( t ,  x) dt, t > O, x e D, 
j = l  

u(O,x) = Uo(X), Jbr x ~ D ,  (11.18) 

Cju(t, x) = O, for x ~ aD, t > O. 
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Moreover, if we assume (,for simplicity) that the coefficients b~., have compact support 
in D and Uo, f g satisfy the following stronger conditions 

U0 ~ L2 (~, ~Z-o ; 1 Bp,2;Ic, I(D)), 
g~M2(0, 1 a T; (Bp,2 ;~cj~ (D))), (11.19) 

f ~ M ~ (0, T; B°2 (D)), 

then the solution u to (11.18) satisfies 

u~M:(O, . °2k T, Bp.2;~cj~ c~ ~(0, T; B~.2,Ic~I(D))). 

We should stress that the regularity assumptions about the coefficients b~,, (including 
those about their supports) are only of technical nature and we have imposed them 
to avoid the discussion similar to that at the end of Section t0. 

Appendix A. Interpolation of M-Type 2 Spaces 

In this Appendix we show that the interpolation spaces between two Banach spaces 
of M-type p is again M-type p Banach space. This result, as stated above is not always 
true. It is true for complex method and for real one with parameter p. The exact 
statement is given below. 

At the beginning we give some equivalent forms of the definition of M-type 
p Banach spaces. So let us fix a Banach space X, a complete probability space (fl, ~ ,  P) 
and a filtration {~}7=o. We put 

o 9  * * * MP(X) = {t/= {t/j}~=o.Satlsfymg the conditions 1 °, 2 °, 3°}, (A.I) 

where: 

1 ° r/i is ~ measurable, for each j e M, 
2 ° ~ (q j ]~ - t )  = 0, for eachjEt~ ,  

3 ° IIr/lI~<x~:= ~ EIr/jl ~ < ~-  
j = O  

Any element r/~MP(X) is called an X-valued martingale-difference sequence, or 
shortly, a martingale difference sequence. 

LEMMA A.1. MP(X) is a closed subspace of  LP(~ × ~ , ~  ~ ~(~) ,  P x m) and so a 
Banach space. Moreover, there exists a projection YI from LP(~ x ~ ,  f f  >~ ~(M), P x m) 
onto MP(X). Here ~(t~) is the a-algebra of all subsets on t~ and m is the counting 
measure on (t~, ~(~)) .  

Proof. We denote the space LP(fl x M, ,#  ~ ~(M), P x m) by LP(fl x M). For given 
~ L P ( f l  x ~) we put 

t/i -- E(~(-. J)T~) -- E(~(-, J ) t ~ -  t), 
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where as usually i f -1  = {~"~' ~}" Obviously ,  the sequence r / =  {~]j}j°°= 0 satisfies the 

condi t ions 1 ° and 2 ° above.  
W h a t  concerns 3 ° we have by Jensen Inequal i ty  [Flr/J ~< 2PfFI¢ ( . , j ) ]  ° and hence 

j = O  j = O  

Therefore,  the just  defined m a p p i n g  H:LP(f~ x N)~{- - - .qeMP(X)  is linear and 

bounded.  Moreover ,  if { e MP(X) then f rom 1 ° and 2 ° it follows easily tha t  I I{  = ~, 

and hence H is a projection.  [ ]  

A sequence q~ MP(X) will be called finite iff there exists a na tura l  n u m b e r  n such 
that  r/j = 0 for al l j  > n. Such a sequence will also be denoted by {r/j}~.= o . The  subspace 
M~i,(X ) of all finite r/~ MP(X) is dense in MP(X). 

P R O P O S I T I O N  A.2. For a given Banach space X, probability space (f~,~,P) ,  a 
~-ff go filtration {~'j}j=o of ~r-subalgebras of ~ and a real number p >1 1 the following three 

conditions are equivalent. 
(1) there exists a constant C > 0 such that for any X-valued martingale { M , } , ~ ,  

suprFlM, I p <<. C ~ ~_[M, - M,_ l l  p. (A.2) 
n ?I=O 

(2) there exists a constant C > 0 such that for any finite X-valued martingale 
difference sequence = {nj};'=o M"(X),  

J ~< C j=o NzlqJ" (A.3) 

(3) there exists a constant C > 0 such that for any r / =  {~/j}r~o ~MP(X), 

~=o~j p 
sup, F J ~< Cj=o  ~lt/jlP" (A.4) 

Moreover, if C i denotes the smallest constant C such that the condition (i) above holds, 

then C 1 = C 2 = C  3. 
Proof (2)=*-(3). I t  is obvious,  also C 3 ~< C 2. 
(3) ~ (2). The  linear ope ra to r  tr: M ~ , ( X )  ~ t/--,  £ r/r ~ LP(O) is bounded,  by (3). Since 

M~in(X ) is dense in MP(X), there exists a unique extension of tr to a bounded,  l inear 
ope ra to r  tr:MP(X)--+LP(O). Hence  (2) holds, and C 2 ~< C 3. 

(3) =~ (1). If  M r is a mart ingale ,  we put  r/j = M r - Mj_  t for j ~< n. 
(1) => (3). If (r/r} is a mart ingale-difference sequence, by put t ing Mj  = qj + Mj_  1, 

j ~< n and M i = M ,  for j > n we obta in  a mart ingale.  Hence,  (3) follows f rom (1). [ ]  
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DEFINITION A.I. A Banach space X is called an M-type p iffthere exists a constant 
C > 0 such that for any probability space (fl, ~,, P) and any filtration {~} the condition 
(1) in Proposition A.2 is satisfied. The smallest such constant C is denoted by Cp(X). 

COROLLARY A.3. A Banach space X is of M-type p iff there exists a constant 
C > 0 such that for any probability space ([2, ~,, P) and any filtration {~}  the condition 
(2) (or (3)) in Proposition A.2 is satisfied. The smallest such constant C is denoted by Lp(X). 

THEOREM A.4. I f  the Banach spaces X c Y, with X continuously and densely' 
imbedded in Y, are of M-type p, and 0e(0, 1) then the complex interpolation space 
[Y, X]s and the real interpolation space (Y, X)s,p are of M-type p. 

Proof. We use the characterization of M-type p Banach spaces in terms ofcontinuity 
of the operator tr: MP(X)---~ LP(~ x N, X) given by Corollary A.3. Then Theorem A.4 
is a direct consequence of Theorem 1.17.1 in [45], Lemma A.1 and Theorem 1.18.4 
in [45]. Indeed, from Theorem 1.18.4 we have 

[LV(f2 x N; Y),LV(f~ x N;X)]a= LP(D, x N;[Y,X]~), 

(LP(f) x N; Y),LV(f2 x N;X))a. , = L'(fl  x N;(Y,X)s,,). 

Therefore, from Theorems 1.17.1, 1.t8.4 and Lemma A.1 we have 

[MY(Y), MP(X)]0 = MV([y X]o), 

(MY(Y), M'(X))o,v = Mv((Y, X)o,,). 

Applying the interpolation property together with Corollary A.3 concludes the proof. 
[] 

REMARK A.1. Similarly as is noted in Remark 1, 1.18.4 [45], in the real interpolation 
method we cannot replace p by a different number. 

QUESTION A.1. It follows from Corollary A.3 that Lp(X) is equal to the norm of 
the operator tr acting in ~(MP(X);LP(~ x N;X)). Can we obtain a nice formula for 
Lp((Y, X)~,p) and Lp([Y, X]0) in terms of Lp(X), Lp(Y) and ~? The complex method 
is exact so we have Lp([Y,X]o ) = Lp(Y) 1-°Lp(X)°. See also Theorem A.7. 

The following result is not of interpolation type, but with conjunction with the 
previous one yields that the Besov spaces are of M-type 2. 

LEMMA A.5. Assume that for Banach spaces X and Y there exists a finite family 
{ i}i=lA m of bounded linear operators from X to Y such that the following inequalities hold 

ltxlt 2 ~< K,Y~lAixl 2 ~< K1K211x[l 2, x e X ,  (A.5) 
i 
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where 11-[1 and [.1 denote respectively the norm in X and E 
Then, if Y is an M-type 2 Banach space then also X is of M-type 2. 
Proof Assume that M, is an X-valued martingale. Then, as for any i, AiM" is a 

Y-valued martingale, we have by (A.5) 

~[[M,[[ 2 ~< K1 ~ ~ZIAiM,[2 ~< K 1 C 2 ( Y ) ~  ~ EIA~M~ - AiMj[ 2 
i i j 

= K~c~(Y)Z ~ ~IA, (Mj  - Mj_~)t  2 < K~K~C~(Y)~ EItMj - Mj_~II ~. 
j i j 

This allows us to infer that also X is of M-type 2. []  

COROLLARY A.6. The Sobolev spaces Wk'v(R ") with k e Z ,  p >>. 2 and the Besov 
spaces Bv,z(N n) with s~N,  2 <<, p < oo,are all of  M-type 2. 

Proof As it is unambiguous, we will not write in this proof the space R". We start 
with Sobolev space W k'p with k ~ N. Since W °'p = L p we may assume that k >~ 1. 

Then putting A~ = D" for c~ = (cq,. . . ,  %) such that lal ~< k we see that the couple of 
spaces X = W k'v, Y = L p satisfy the assumptions of Lemma A,5. Indeed, with 

lul  = l u l L , ,  

1 Iz, l- 
llull = ttutlw~,p = D~ul ~ p 

kl~t~<k ) 

and hence 

2 2_e 

I*tl~k I~tl~k I~l~<k 
2 2 2 

E lo ul = E lf lz 
Taf~<k kl~t[<k J \ [al~<k/ 

By Applying Lemma A.5 we infer that W k'p is of M-type 2. To proceed further we 
denote by J~ = (1 - A) ~t2. Since for negative k e Z ,  W k'p = j -2k (w-k 'P )  (by the lift 

property, see [4], Theorem 5.2.7 or [45] Theorem 2.3.4) we conclude the proof in the 
case of the Sobolev spaces. 

The case of Besov spaces follows immediately from [4] Theorem 6.2.4, the first 
part of this Corollary and Theorem A.4. [ ]  

Let us observe that the above proof gives also that for a bounded domain D c ~" 
(with boundary sufficiently regular) the Sobolev spaces Wk'p(D) with k ~ N and p ~> 2 
are of M-type 2 and by Theorem 4,3,1 in [45] such are the Besov spaces B~,q(D) with 
s > 0 ,  p~>2. 
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R E M A R K  A.2. In the framework of Lemma A.5 the space X can be renom~ed in 
such a way that 

C2(X ) = C2(Y ). (A.6) 

Indeed, it is sufficient to take 

Illxlll = { ~  ]Aixl2} e . 

Then (A.4) implies that III" 11t is equivalent to the original norm in X and the proof of 
Lemma A.5 yields the equality (A.5). 

T H E O R E M  A.7. Assume that X is an M-type p Banach space and - A is a generator 
of an analytic semigroup on X such that Oep(A). Then for any 0e(0, 1) the space 

DA(O,p) is also of M-type p and 

L2(DA(O, p)) <~ L2(X ). (A.7) 

Proof Although the first part follows from Theorem A.4, we observe that if the 
norm in DA(O,p) is given by (4.1) then the whole statement follows readily from the 

definition by using (4.t). [ ]  

REMARK A.3. In a completely similar way one can study interpolation of type p 
Banach spaces. All the preceding results remain true if M-type p property is replaced 
by type p one. It follows from the simple observation that X is of type p iff for any 
n s N and for any Bernoulli sequence e: f~---~ { -  1, 1} the linear operator 

T~:X"+x = (xl , . . . ,xn)-+ i e~xieLP(fLX) 
i=I  

is bounded. If X" is endowed with a norm l" t such that Ixl p = Z~ ]x~T p then obviously 

IIT[[ p ~< K,(X).  

Appendix B. L p Space with p >i 2 is of M-Type 2 

In this Appendix we intend to show that the spaces L p with 2 ~< p < ~ are of M-type 
2. We start with the following 

L E M M A  B.1. I f  (D, dx) is a measure space, e l , . . . , e , : f 2 - ~ { - 1 , 1  }, n~N* are 
symmetric i.i.d, random variables, p = 2k, k ~ N* then 

1 
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and considering 

concludes the proof. 

Now by putting 

The equality 

p 

IlfillL~ ~ 2p. = = Y~ IIf~lk;, 
I#[=k  [ 

Xp = L2(3~,Le(D)); Yp =- LP(~;LP(D)) 

we see that (B.1) is equivalent to 

]lT, ll~e(x,,r~) ~< 1 for any pe2N*. (B.2) 

By means of a simple interpolation argument we may deduce that in fact (B.2) holds 
for all p >/2. Indeed, ifp e [2, ~ )  then p = Oq + (1 - O)s for some s < q s 2[~*, 0 ~ (0, 1). 
Since the complex interpolation method is exact, see [4], Xp = [Xs, Xq] o and 
Yp = [Y~, Yq]0, the inequalities IIT~[I ~ 1, IIT~II < 1 yield IlYpll < 1. 

Thus, we have proven 

COROLLARY B.2. Inequality (B.1) holds true for any pe[2 ,  ~). 

Now we recall a definition of a type 2 space, see [37] and of UMD space, see [8]. 

DEFINITION B.1. A Banach space X is of type 2 ifffor any finite sequence 

gl . . . . .  e.:Fl -+ { -  1, 1} 

[] 

for any sequence .1"1 . . . .  , f ,  e LP(D). 
Proof By the properties of e i we have 

~_ = eifi(x ) d x =  ~- ~ e~'f~l.. .e~"f2"dx 
i = 1 L P ( D )  Ictl = 2 k  

d D  [~(= 2 k  d O  I~t = k 

Next, the HoJder inequality gives So HfZ~'(x) dx ~< H {SDlf~(x)[ 2k dx} ~'/k and therefore 

eti 

It, I'  {io }* = U & . ( o ) .  
i L P ( D )  I~l=k " l a l = k  i 
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of symmetric i.i.d, random variables and for any finite sequence x1,... , x n of elements 
of X, the following inequality holds, 

/E , ~  e~x~ x ~< gi=~ llx,/12x, (B.3) 

for some constant K > 0. 
The smallest constant K for which (B.3) holds will be denoted by Kz(X).  

DEFINITION B.2. A Banach space X is a UMD space iff for any X-valued 
martingale difference sequence rl = {r/j)~= ~ and for any e ~ { -  1, 1}" 

for some constant fl and some pc( l ,  ~).  
The smallest constant fl for which (B.4) holds will be denoted by tip(X). This 

definition is p independent, see [8]. 

PROPOSITION B.3. I f  (D, dx) is a measure space and pE[2, or) then LP(D) is a 
Banach space of type 2. Moreover, the constant K2(LP(D)) is equal to 1, i.e. 

i = 1 L P ( D )  i = 1 

Proof The Jensen inequality gives 

(n:llE,,f~ll~p(o) }~ = lie eifi[IL2(f~;LP(D)) <~ 112 gifillLP(n;LP(D)) 

and we conclude by applying Corollary B.2. [] 

We would like to underline the fact that for X = LP(D) the smallest constant for which 
the inequality (B.5) holds true is 1. Moreover, t3p(Lr(D)) =/3p(ll~), see [8]. 

PROPOSITION B.4. I f  a UMD Banach space X is also of  type 2 then it is of  M-type 

2 as well. 
n ~ n Proof Letr/ {r/i}i= l be an X-valued martingale difference sequence. Let~ = { ~)i=1 

be a sequence of independence from r/, symmetric i.i.d. { -1 ,  1)-valued random 
variables. Since r/i = eieirli and {eirh}~'=l is a martingale difference sequence, the 
properties of conditional expectation and UMD property of X yield 

where f12 = fl2(X) • Taking the mean value gives 

tE IIZ~,II = ~</~2 ~llZ~in, ll z. 
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Now,  since X is of type 2, if K 2 = K2(X ) we have 

~(l[~ir/,llEl~/) ~< g2~ll~hll 2, a.s. 

Therefore, taking expectat ion again we get 

[EI[~ ~/,[12 ~< fl2g2~l[rl,ll 2, 

which completes the proof. [ ]  

F r o m  Proposi t ions  B.3 and B.4 we immediately have 

T H E O R E M  B.5. I f  (D, dx) is a measure space and pe  [-2, ~ )  then LV(D) is an M-type 
2 Banach space. 

Moreover, the followin9 inequality holds 

Cz(LP(D)) <~ fl2(LP(D)). (B.6) 

Q U E S T I O N  B.1. W h a t  is the best value of C2(LP)? 

Because of  its role in the preceding sections, we believe this question to be of some 

importance.  
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