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Dormant Instability, and 

If the coexistence of two phases at the transition temperature is kept under 
observation for a long time, then one observes that the system is not exactly in 
equilibrium and a very slow evolution driven by surface tension is taking place. 
Theoretically, one should eventually see a spatially homogeneous state, but the 
time for settling down is so long that what one actually observes is "motion 
towards a stable state." The complexity of the spatial distribution of the two 
phases keeps decreasing but appears to be stable for very long periods of time 
with intermittent periods of fast motion when there are small inclusions of one 
of the two regions embedded in the other phase. For a simple reaction diffusion 
model, it is shown that this phenomenon can be explained by investigating the 
flow on the attractor and the unstable manifolds of equilibria. 

KEY WORDS: Singular perturbations; transition layers; metastability; integral 
manifolds. 

1. I N T R O D U C T I O N  

It  is a lmos t  c o m m o n  experience tha t  two phases  of  the same substance at  
the t rans is t ion  t e m p e r a t u r e - -  for instance, l iquid and solid at  the wett ing 
t e m p e r a t u r e - - m a y  coexist  in a region,  giving rise to very compl ica ted  
structures.  This is in agreement  with the fact that ,  a t  t he rmodyna mic a l  
equi l ibr ium,  the two phases  have the same free energy and  therefore any 
spat ia l  d i s t r ibu t ion  of  the two phases  is a minimizer  of the to ta l  free energy. 

A simple ma thema t i ca l  model  for descr ibing this s i tua t ion  is ob ta ined  
by assuming tha t  the free energy F ( T , u )  of the substance,  besides 
depending  on the t empera tu re  T, is also a funct ion of  an "o rder  parameter",  
u tha t  is re la ted  to the mic roscop ic  s t ructure  of the substance.  F o r  each 
value of  T, the funct ion F(T, .) is supposed  to have two min ima  at  u =  - 1 ,  
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u = 1, corresponding to the two phases of the substance, and a maximum at 
u = 0, representing some unstable microscopic state. It is also assumed that, 
for some To to be identified with the transition temperature, the following 
inequalities hold (see Fig. 1): 

F(T,-1)<F(T, 1) for T < T o ;  F(T,-1)>F(T, 1) for T>To. 

Under these assumptions, the total free energy of the substance contained 
in a bounded region O at constant temperature T, 

r = fQ F(T, u(x)) dx (1.1) 

has, if T #  To, a unique global minimizer u = 1 or u = -1  corresponding to 
T > To or T < To. The situation is completely different in the case T = To, 
which is the case of our interest. In fact, in this case, the functional (1.1) 
has infinitely many minimizers given by 

u(x) = 1 for 

u(x) = --1 for 

where S c g2 is any measurable set. 

x e S  
(1.2) 

x �9 ~2\S 

If the coexistence of the two phases at the transition temperature is 
observed for a long time interval, then one sees that the system is not 
exactly in equilibrium and that a very slow evolution is taking place. This 
evolution is driven by the surface tension on the interfaces separating the 
two phases that tends to reduce the area of the interfaces and therefore 
slowly drives the system toward a homogeneous state where only one of 
the two phases exists. Thus, even if the temperature is equal to the transient 
temperature, what one should finally see is a spatially homogeneous stable 
state. This may be theoretically true, but the time that the system takes to 
settle down in homogeneous equilibrium is so long, when measured with 
the ordinary time scale, that what one actually observes is not the system 
in a stable state but "motion toward a stable state." Thus, it appears that a 
thorough understanding of the real behavior of the system cannot be based 
only on the knowledge of the stable states, but must be dynamic. In 

; ! ! + i / 
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Fig. 1. Free energy as a function of the order  pa r ame te r  u. 
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understanding this dynamics, unstable equilibria, rather than stable ones, 
are likely to play the most important role. The need for a dynamical 
description also is stressed by the fact that the system exhibits a rather 
interesting phenomena that we may call dormant instability. As we have 
said, if one forgets the effects of the very small driving forces that try to 
reduce the interfaces, the system appears to be in a stable state. The system 
will appear to be stable for a very long time, but not forever, because the 
effects of the slow evolution accumulate so that the system reaches a state 
where small inclusions of one of the two phases are imbedded in large 
regions of the other phase. When this happens, the system becomes more 
unstable and its evolution, which has been extremely slow for a very long 
time, starts to be much faster. In a time interval that is short when com- 
pared with the long period of slow evolution, one of the small inclusions 
disappears and the system seems to have settled down in a new stable state. 
But again this state is not exactly an equilibrium, and slow evolution again 
takes place, leading the system to a situation where small inclusions are 
present and instability shows up again annihilating some other small 
inclusion. This intermittent behavior, which may repeat thousands of times, 
is exactly the mechanism by which the complexity of the spatial dis- 
tribution of the two phases keeps decreasing until the system, after a very 
long period of time (which, from a practical point of view, may be regarded 
as infinitely long), reaches a stable homogeneous state. 

From the point of view of applied mathematics, these phenomena are 
certainly interesting to study and the goal is to understand the nonlinear 
mathematical mechanism behind them. In this paper, by discussing a 
simple model, we want to show how ideas from the geometric theory 
of evolutionary equations may provide a framework for a possible 
explanation of this mechanism. 

To account for the interfacial forces, one needs to add to the total free 
energy an extra term that penalizes large interfaces. In the setting of the 
simple mathematical model considered above, a possible description of this 
interfacial energy that is widely accepted and has good physical foundation 
(Bongiorno et aL, (1.976)) is obtained by adding to (1.1) an extra term 
proportional to ~[Vu[ 2 that penalizes high gradients of the order 
parameter u. With this extra term, the total free energy takes the form 

where F(u)=F(To, u) and e is a parameter that measures the relative 
importance of the surface energy and it is assumed to be very small 
(e << 1). We remark that, regardless of the smallness of e, the set of 
absolute minimizers of q~ is quite different from the one defined by (1.2). 
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In fact, in agreement with the real situation, the only absolute minimizers 
of ~b~ are the constants u = 1, u = -1 .  If ~ is convex, the only minimizers of 
�9 ~ are u = 1, u = - 1  (Matano, 1979; Casten and Holland, 1978). 

Several approaches, based on microscopic models (Benassi and 
Fouque, 1988; Presutti, 1987) or on thermodynamical considerations 
(Gurtin, 1986a, b) have been used to derive equations for the evolution of 
the interface between two phases. To describe what we believe is the 
explanation of the phenomena of dormant instability from the point of 
view of geometric theory of differential equations, we take the simplest 
dynamics that one can associate with the functional q~; namely, we take 
the gradient system defined by the functional ~b,. If, as we shall do in the 
following, one restricts the discussion to the one-dimensional case 
s = [0, 1 ], this amounts to considering the scalar parabolic equation 

u, = e2Uxx + f(u), 

ux(O, t) = ux(1, t ) = 0  

xe(0, 1) 
(1.4) 

where f =  -dF/du. 
We believe that more sophisticated dynamical models like, for 

instance, the one corresponding to the Cahn-HiUiard equation (Novick- 
Cohen and Segal, 1984) will share, with the simple Eq. (1.4), the qualitative 
behavior that we are going to describe. 

In the following, after discussing in Section 2 how Eq. (1.4), for a very 
small value of the parameter ~, may exhibit phenomena like slow evolution 
and dormant instability, we derive in Section 3 a linear equation for the 
approximate description of the "slow-motion manifolds." By solving this 
equation, we obtain explicitly a system of ordinary differential equations 
for the motion of the "internal layers" that in our unidimensional model 
play the role of the interfaces. 

2. A DYNAMICAL M O D E L  FOR D O R M A N T  INSTABILITY 

We begin by recalling some of the known facts about Eq. (1.4); we 
shall assume that f is a C 2 function that is odd and has a second derivative 
that only vanishes at u = 0. 

Equation (1.4) defines a nonlinear semiflow {S,: X-*X,  t>~0} on 
several function spaces; for instance, we can take X =  H 1 or X =  C~[0, 1] 
where C~[0, 1] is the set of C 1 functions with zero derivatives at x = 0 ,  1. 
This semiflow admits a "global attactor" A~c X; that is, a set A c X that 
is compact, connected, and invariant under S,(StA~=A,) and attracts 
bounded sets of X in the sense that, for any given bounded set B c X and 

> 0, there is a t- depending on B and 6 such that t ~> t- implies that S,B 
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is in a g-neighborhood of A~ (Hale, 1988). The set of equilibria of (1.4), 
that is, the set E~ of solutions of the boundary value problem, 

g2Uxx+f(u)=O, x~(0,  1) 

~x(0)=u~(1)=0 
(2.1) 

depends on e. Besides the homogeneous equilibria uoo---0, unstable, and 
Uo = -1 ,  rio = 1, stable, if ei = (f'(O))m/2~zi, i = 1, 2 ..... and e, +a ~ e < e,, E~ 
contains exactly n pairs of nonconstant equilibria u~, fi~, = -u~,  1 ~< i~< n. 
The equilibria u,,, fi~ bifurcate from the zero equilibrium at e = e~ and have 
exactly i zeros at x = 1/2i, 3/2i ..... 1 - 1/2i (see Fig. 2). We shall assume that 
u~(0) < 0. When ~ ~ 0, u~, approaches a step function with values -1 ,  1, 
-1,... and jumps at the zero of u~,. The attractor A t has a simple charac- 
terization in terms of equilibria and their unstable manifolds. In fact, it can 
be shown that the a-limit set of any orbit defined and bounded in the past 
is a single equilibrium (the same is true for the co-limit set of any orbit) 
(Hale, 1988; Henry, 1983) and this implies 

A~= ~ W(u) (2.2) 
u E  E~ 

where, for any equilibrium u, W(u) is the unstable manifold of u. It is also 
known that the dimension of W(u~i ) and W(fi~,) is exactly i. 

The above characterization of the ~- and co-limit sets of orbits of (1.4) 
also implies that A~ is the union of orbits connecting pairs of equilibria. 
Therefore, the main step in the description of the topology of the orbits on 
A t consists in solving the following problem: Given u - ,  u + ~ E~, is there a 
solution q~(t) defined in ( - ~ ,  ~ )  such that q~(t)--,u +- as t-~ + ~ ?  This 
problem has been completely solved (Henry, 1985; Brunovsky and Fiedler, 
1988a, b) and it is known that u~, connects to u~j(fi~j) if and only if i > j  (see 
Fig. 3). The fact that connections between equilibria are always in the 
direction of reducing the number of zeros is a manifestation of a general 
property of Eq. (1.4): the number of zeros of solutions of (1.4) is non- 
increasing with time (Matano, 1982; Angenent, 1988). 

Besides the above results for Eq. (1.4), we also have the following 
conjectures. We let zu be the zero set of a function u; d(x, z~) the distance 

Fig. 2. The equilibria ul,  u2, and u 3. 
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Fig. 3. The connections on the attractor. 

between x and z~; ~u~ C~[-0, 1] the set of functions that have only simple 
zeros, z~r162 and let N6.LffB) be an open &neighborhood of a set 
B c  C~[0, 1] with respect to the La-topology. 

L Almost all solutions with a nontrivial zero set develop transition 
layers and approach a step function with values - 1 and + 1 in the sense that, 
given t~ 6 ~ and a number 6 > 0 ,  there exist g > 0  and [ >~ 0 such that, for  

d ( x , z ~ ) > 6 ,  ~ ( x ) > O = ~ l l - ( S t t p ) ( x ) [ < 6 .  

Similarly, for  ~t(x) < 0 and 1 replaced by - 1, the same statement holds. 

This conjecture is quite reasonable because, in order that diffusion can 
become effective when e is very small, it is necessary that high gradients 
exist. Therefore, one can expect that the first thing that happens is that the 
evolution of u at any point x is approximately ruled by the equation 
f i ( x )= f (u (x ) ) ,  u ( x ) (O)=~(x )  (where x appears as a parameter); this 
clearly implies the above statement for some t- independent of ~ in (0, g). 

IL For any integer i, 0<e<G- ,  and any number 6 > 0 ,  let OW(uJ  be 
the boundary of  W(u~,) and let 

w~(u~,) = W(u~,)\N~,L~(~W(u~,)). 

Then there is an g> 0 such that, for  0 < e < g and ~ ~ W6(u~), 

(i) q) has exactly i zeros in (0, 1) 
(ii) (J is near to a step function with values - 1  and + 1, 

d(x, z~) > 6 ~ 1 -I(~(x)l  <6. 

This conjecture is suggested from the fact that, like u~i, all functions in 
W(u~,) near u~ must be approximately step functions with values - 1 and 1 
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and exactly i transition layers. It is also to be expected that, for e <<  1, the 
fact that - 1  and 1 are stable fixed points for the equation f i = f ( u )  will 
imply that the only possible evolution for a function of this type is through 
"motion of transition layers" driven by diffusion. This type of evolution 
should last until either one of the transition layers approaches a small 
L2-neighborhood of W(uJ.  

IIL The energy q5 is almost constant on W6(uJ  in the sense that, if  
M~ is the maximum of  the difference q~(u~i ) - ~b~(u) for u E W6(u~i) and m~ is 
the minimum of  the same difference for u ~ ~ W(uJ ,  then 

lim--=M~ 0. 
e~0 mr 

This conjecture says that, for e <<  1, the decreasing of q~ on W ( u J  is 
almost all concentrated near the boundary of W ( u J  and is based on the 
fact that, for functions in W6(u~,), the main contribution to the energy 
comes from the transition layers and depends upon their number rather 
than upon their positions. Thus, the energy should have very small 
variations on W~(u~,) and, relatively, very large variations near &W(uJ  
where two or more transition layers come together and disappear. 
Therefore, we can expect the motion to be very slow on W6(u~,) and 
relatively much faster near &W(u~,), which should act like a "waterfall" for 
the flow on W(u~,) (see Fig. 4). We shall call W6(u~,) a "slow-motion 
manifold." 

Carr and Pego (1988) have provided detailed estimates on the energy 
that should give a justification of this conjecture. 

On the basis of the previous conjectures, one can derive the following 
dynamical interpretation for the phenomena considered in the introduction. 

(a) For  e <<  1 and for a large set of initial conditions in ~g, the 
solution, before approaching one of the two stable equilibria, comes close 

Figl 4, 

44 ~ 

W(fi~2 ) for e << 1. Dotted lines correspond to slow motion, solid lines to fast motion. 
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to the attractor near the unstable manifold of some equilibrium u,i. At this 
point, the solution is approximately a step function with values - 1  and 1 
and, in the physical situation that we want to model, corresponds to a 
distribution of i + 2 homogeneous regions of the two coexisting phases. 

(b) Once the solution is near W(uO, the motion follows that of the 
slow manifold of u~, passing through a sequence of quasi equilibrium states 
until it finally reaches a small neighborhood of ~W(u O. 

(c) At this point, instability shows up and one or more transition 
layers disappear in a time interval that is very small when compared with 
the time that the solution has been dormant on the slow manifold of u,i. 
This quick reduction of the number of transition layers near the boundary 
of W(u 0 corresponds dynamically to the fact that the solution approaches 
the unstable manifold of an equilibria u,j with a lower number of zeros. 

(d) Once the solution is near W(u,j), one has a long period of slow 
motion followed by a short period in which the solution jumps from the 
unstable manifold of u~j to the unstable manifold of u,~ and so on until, 
after this intermittent unstable behavior has repeated i times, the solution 
ends up with at most two zeros with the next fast motion leading to one of 
the two homogeneous stable equilibria. See Fig. 5. 

(e) When e--* 0, the dimension of the attractor approaches oo and 
the attractor contains equilibria with unstable manifolds of larger and 
larger dimension. Thus, for e <<  1, i can be very large and the sequence 
slow motion-fast motion may repeat itself thousands of times. 

The behavior of solutions of (1.4) described in (a) (e) has been con- 
firmed by numerical experiments performed by B. Pego and successively by 
M. McKinney. These numerical experiments have also indicated that, for 
e < <  1, the speed on the slow-motion manifold should behave like 
exp( -c /e ) .  

�9 , t J  , 

. s  

Fig. 5. Qualitative time evolution of spatial pattern along the orbit r in Fig. 5. Fast motion 
from 1 to 2, 4 to 5, and 9 to 10; slow motion from 2 to 4, and 5 to 9. 
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3. A M A T H E M A T I C A L  A P P R O A C H  TO S L O W - M O T I O N  
MANIF OLDS 

From the dynamical description of the phenomena of dormant 
instability discussed above, one sees that rigorous results on this subject 
require a description of the unstable manifold of u~, for z ~ 0. There are 
several features of this problem that make it very interesting, but also quite 
difficult. First of all, discussing Eq. (1.4) for e ~ 0 is a singular perturbation 
problem. Moreover, one needs to describe the complete unstable manifold 
W(u~); that is, one has to solve a global problem that also is complicated 
by the fact that, as we have seen, one expects quite different behaviors of 
W(u~) depending on the distance from OW(u~). The aim of this section is to 
suggest a possible geometric theory for showing the existence of slow- 
motion manifolds and deriving a system of ordinary differential equation 
for describing the flow on them; that is, the dynamics of transition layers. 

It is natural to try to set up the problem so that it looks like a pertur- 
bation problem. The basic observation is the following: 

It is possible to construct a vector field that, for a <<  1, is close in 
X =  H 1 to the vector field defined by (1.4) and has a slow-motion manifold 
that can be explicitly computed. 

To construct this vector field, we let v: ( - o o ,  oo) be the solution of the 
problem 

e2vxx+ f ( v ) = O ,  x e ( - ~ ,  oo) 

lira v (x )=  _+1, v(0)=0.  
x ~ + o O  

(3.1) 

This solution exists and is unique as a consequence of the assumption 
F ( - 1 ) = F ( + I ) ,  which implies the existence of a heteroclinic orbit con- 
necting ( -  i, 0) to (1, 0) in the phase plane (v, vx). Clearly v depends on e 
and is actually a function of x/e. To keep the notation simple, we don't 
indicate this dependence on e of v and of all other functions that we shall 
consider in the following. 

Let 0 < ~ l < ~ 2 < . . . < ~ n < l  be n variables; ~=(~1 ..... ~n); F =  
{ ~ 1 0 < ~ 1 <  " - - < ~ < 1 }  and Go = --~1, ~ n + l = 2 - - ~ n  . Let r/e= 
(~i+ 1 + ~)/2, ~i = (~g+ 1 - ~i)/2 for 0 ~< i ~< n, and let U( ., .  ): F x [-0, 1 ] ~ 
be defined by U(~, x) = ( - 1 )~+ I v(x - r ~/i- 1 ~< x ~< r/i, 1 ~< i ~< n. 

This definition implies that U(~,. ) is a continuous function with a 
piecewise continuous first derivative that jumps at q~, 1 ~< i ~< n - 1 (Fig. 6). 

The map ~ ~ U(~, .) defines an n-dimensional manifold i f o H  1. The 
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jumps [Ux(r of Ux(~,') at t M l~< i~<n-1 ,  and the derivatives 
Ux(~, 0), Ux(~, 1) define n +  1 functions ~b;: f f ' ~  

~o(U(~,. )) = u~(~, 0) = v~(~0) 

~b,(U(~, . ) )=  U~(~, 1 )=  ( - 1 )  "+~ vx(~,) (3.2) 

(gi(U(r .))= [Ux(~, qi)] = 2 ( - 1 )  ~ Vx(~) 1 <~ i<~n - 1 

where we have used the definition of U and the fact that v is an odd 
function. We can assume that these functions have been extended to all of 
H I and consider the following formal evolutionary problem 

u, = eUxx + f(u),  

ux(O, t) = Oo(U), 

Eux(,,, t)] = r 

x~(O, 1) 

Ux(1, t) = ~b.(u) 

l <~i<~n-1. 

(3.3) 

if" is obviously an invariant manifold for Eq. (3.3) and a slow-motion 
manifold. In fact, any function in if" is an equilibrium solution for (3.3). 
Moreover, the vector field defined by (1.4) can be regarded as a pertur- 
bation of the vector field defined by (3.3). In fact, one obtains Eqs. (1.4) by 
simply replacing in (3.3) the functionals ~bi with the zero functional, and it 
is easy to see that the functionals ~bi have, on any compact set K c  if', a 
bound of the type C e x p ( - c / e )  with C, c positive constants, and c 
depending on K. It is therefore to be expected that, for e ~ 1, Eq. (1.4) has 
an invariant manifold W near if', and W should be identified with the 
slow-motion manifold W~(uJ of the above discussion. The manifold W 
should be a graph over 1~. Therefore, we try to construct a tubular 
neighborhood of W coordinated by (4, V) with V orthogonal to if" by 
setting 

u =  u(~, . ) +  v 
(3.4) 

(V, U~(~, . ) )  =0,  l<~i<~n 

where ( . , . )  is the standard inner product in L 2 and the vectors Ui(r 
the derivatives of U(~, �9 ) with respect to r span the tangent space to if" at 

' ! i  t " , 

Fig. 6. The graph of the function U((, .). 
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U(~, .). The natural idea at this point would be to derive from Eq. (1.4) a 
system of two differential equations for the two unknowns (4, V) and try to 
apply integral manifold theory to prove the existence of an invariant 
manifold of (1.4) near lie. We don't pursue this idea here, but, assuming 
existence, we compute a first approximation for W and for the differential 
equations describing the flow on it. 

A function # ~ V(~, .), with ~ in some region FpcF,  defines an 
invariant manifold W for (1.4) if and only if the vector field e2Uxx+f(u ) 
computed at U(~,-)+ V(~,-) belongs to the tangent space to W at ~. Since 
this tangent space is the span of the vectors Ui(r . )+  Vi(r .), this is 
equivalent to the existence of a function ~ c ( ~ ) =  (C I (~ )  ..... Cn(~))e~n 
such that 

(Ui-~Vi)ci=e2(Uxx-~-Vxx)q-f(U~-V), x e  (0, 1), ~EFp 
i = l  

vx(~, o )=  -u~(~ ,  o) 

Vx(~, 1)= -Ux(~, 1) (3.5) 

[ V~(~, r/~)] = - [ U~(~, r/~)],  l<~i<~n-1 

(V(~, .), U~(~, . ) )  = 0  1 <<.i<~n. 

This equation is to be considered as an equation for the two unknowns 
~ V(r ~ ~ c(~) that describe the invariant manifold and the flow on 

it. Since V=0,  c = 0  is a solution of (3.5) with the conditions on Vx 
replaced by 

Vx(~, O)= Vx(~, 1)= [Vx(~, ~i)] = 0  

and, for e <<  1, the functionals ~b i are very small, in order to obtain 
approximate expressions for ~ V(~,-), ~ c ( ~ )  we shall treat V,c as 
small quantities. Thus, instead of (3.5), we shall discuss the following 
problem that can be considered the linear version of (3.5): 

• Uici=e2Vxx+f'(U) V, 
i = 1  

v~(~, o )=  - u~(~, o) 

V~(r 1)= -Ux(~, 1) 

[ Vx(~, ~;)] = - J U A n ,  ~,)], 

<V(~, .), Ui(#., . ) ) = 0  l<<.i<~n 

where we have used the fact that 
linear problem (3.5), the solution 

x~(O, 1), r  

l <~i<~n--1 

(3.6) 

e2Ux x +f (U)= 0. In contrast to the non- 
of which seems to be problematic because 
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it is not obvious what the right spaces should be and because problems of 
loss of derivatives arise, the linear problem (3.6) can be explicitly solved. In 
fact, we have the following theorem in which Fp = F is the open subset of F 
defined, for small p > 0, by 

~i>p, ~/< 2~i 1 - P  
(3.7) 

~i<2~i+~-p 

g is defined by 

f 
u 

g(u)=2(F(u)--F(-1))= - 2  f (3.8) 
--1 

v(s)=O(exp(-(l(e)s)), s>0,  and z(s ) means z(s)=z(a) for any a<s. 

Theorem. Given p >0 small, there is an ep >0 such that, for any 
e<ep, eq. (3.6) has a unique solution ~ ~ V(~, .), ~ ~e(~) for ~ F p  with 
V(~, .) such that U(~, .)+ V(~, .) is twice continuously differentiable. 
Moreover, V(., .), c(.) are C t functions and 

( ;o V ( ~ , x ) = g l / 2  ~i_~fli  g 3/2..~_~i g-3/2 gl/2 
u=v(x-~)  

qi_l <~x<~qj, l <~i<~n (3.9) 

~2 { ( 2___p~ ~ i ) _ e x p (  .2___ff_~ ~i_l)} (l + z(p_)) ' c i ( ~ ) = s ~ K  2 exp - e s 

i<~i<~n (3.10) 

where 

-~--~,,i_lexp --?{i- ,  -~,exp ----~ie (l+z(p-) 

/~,(~) = (-1)'p2K2 {exp (-2--~ ~, 1) + exp ( -  -~ ~0} (1 + ' ( P - ) )  

~i(~) = ( - 1 )  i c'(~) 
8 

~2=_f,(_1)__ -f'(1), K= gl /2=  g,/2 
--1 

.(y_--~,)/- 

Before proving this theorem, we state that, on the basis of Eq. (3.10) and of 

and 
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the definition of (i, the equation ~ = c~(() governing the time evolution of 
the layers for e ~ 1 takes the form 

4i=~ K 1 - -7  - -7  

l<~i<~n-1 {3.11) 

~ n = e g - ~ 2 K 2 { e x p ( - 2 / ' t ( 1 - ~ n ) ) - e x p ( - ~  ( ~ n - ~ n K  e 1))}. 

As expected, ~i = (2 i -1 ) /2n  is a fixed point for the dynamics defined by 
these equations. From Eq. {3.11), we also see that the speed of transition 
layers is bounded in Fp by Cexp(-c/~)  for some C, c > 0 .  Moreover, the 
speed increases with the number of layers. It is also interesting to notice 
that the dynamics on the slow-motion manifold involves several time scales 
and e <{ 1 implies that the closest transition layers will get closer and closer 
(and eventually annihilate each other) before the other layers can move 
appreciably. There are other features of Eqs. (3.11) that perhaps should be 
pointed out. The Jacobian matrix J{{) of the right-hand side of (3.11) at 
any point { is a Jacobi matrix with negative off-diagonal elements. 
Therefore, the number of sign changes in the sequence ~1,..., {n along 
solutions of (3.11) cannot decrease [Fusco and Oliva (1988)]. This has 
obvious implications on the dynamics of the layers. Also, one can derive 
from Eqs. (3.11) and (3.9) asymptotic formulae for the first n eigenvalues 
2n < 2n 1 < .-. < 21 and eigenvectors wn, wn_ ~,..., w~ of the linearization of 
(2.1) at u~. In fact, 

. .  113 K 2  

with 

El i1 = = = ' if n > 3 .  A 1 4; A 2 ; A n ; 

' '--1 
Therefore, if vi is the ith eigenvalue of A n and h;= (hi1,..., hin)' is a 
corresponding eigenvector, 

2 i = - ~  K~ exp v~, l<~i~n 

w~= (Uj+ ho, l <~i<.n 
j= l  
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where ~ -- ~ means computed  at ~ =  (1/2n, 3/2n ..... 1 - (1/2n)). It is easy to 
check that A~ is a positive definite matrix. This implies that )~i > 0 as expec- 
ted because u~, is unstable. Also, we expect the 2g to be distinct and this 
follows from the fact that  the vg are distinct because A is a Jacobi matrix 
[Gan tmache r  (1959)]. Moreover ,  wi should have i -  1 zeros in (0, 1). This 
follows from the following facts: Us[ ~ = ~ is like a pulse centered at (2j - 1 )/2 
and it is positive if j is even (negative if j is odd); V s is a small correct ion 
and it is known from the theory of Jacobi matrices that  the number  of sign 
changes in the sequence hgl, h i2  ..... h~ is exactly n - 1, n - 2,..., 0. 

Figure 7 shows the phase portrai t  of Eqs. (3.11) for n =2 .  

Proof.  F rom the definition of U(r  it follows that 

U i ( ~ , x ) = ( - 1 ) i v x ( x - ~ g ) ,  r//_, < x  < r// (3.12b) 

Ui(~, x)  = O, x ~ Jr~i-l, r/i]. 

Thus, for r/e_l<x<r/i ,  the summat ion on the left-hand side of (3.6) 
reduces to ( - 1 ) i  v ~ ( x -  ~g) ci(~). This implies that  the coupling between the 
function V in two subsequent intervals (r/i- 1, r/g), (i7/, r/i+ 1) is only through 
the jump condit ion at r/g which rclates V~(r r/+ ) to V~(~, r/7 )- These jump 
conditions are 

V~(~, r/+ ) - Vx(~, t 5- ) = ( - 1 )  i+ l [vx( -~g)  - Vx(~g)] = 2 ( - 1 )  g v~(~;). 

This suggests that one could introduce n - 1  extra unknowns ag, 
1 ~< i ~< n - 1 and require that  

Vx(~, r/i +- 1)--- -aivx(~i-1) 
(3.13) 

Vx( ~, r/ ~ ) = - b  gv x( ~i) 

/ 
/ 

/ 

/ 

/ 
j -  

cbO 
/ "  

Fig. 7. 
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with h i=  ae+ L + 2 ( -  1) e+ 1. This requirement will automatically imply that 
the jump conditions are satisfied. Therefore, we obtain in each of the inter- 
vals (v/i_1, r/i) an equation that yields ci and V as functions of the extra 
unknowns that must be then determined by requiring that V is continuous 
at x = r/i, 1 ~< i ~< n -  1. If we make the change of variable x ~ x -  ~e, set 
? i=  ( - 1 ) e + l c i  and recall (3.12b), (3.13), the equation for V in the interval 
(r/i-1, v/i) takes the form 

-vx? i=eZvxx+f ' (v )V ,  - ~ i _ l < X < ~ i  

Vx(-ffi_ 1) = -aivx(~i_l) 
(3.14) 

v x ( ~ i )  = - b i v x ( ~ i )  

fc' Vvx dx = 0 
- _ i -  

where we have assumed that a l = b . = 0  and have used the fact that 
f ' ( v ) = f ' ( U )  because f '  us even. The n - l  conditions expressing the 
continuity of V at r/i can be written as 

V(~i) = V(-~i)  (3.15) 

where Vis the solution of (3.14) and V denotes the solution of (3.14) with i 
replaced by i +  1. To solve (3.14), we let x(v) be the inverse of the function 
v(x) and change variables to x=x(v).  Since v is the solution of (3.1), we 
have 

~2Xt t  

(x,) 3 +f(v)  = 0 (3.16) 

where ' means derivation with respect to v. Also, from (3.16) and the 
definition of g, we get 

/3 2 

(x,)2 = g. (3.17) 

Thereforel taking into account that g ' =  -2 f ,  we obtain 

2 X It 

5 V"--e 2 - -  V' + f ' V =  g V " - f V '  + f ' V =  (gV' +fV) ' .  
( x ' )  2 ( x ' )  3 

It follows that, if we let v ~ = v ( - ( i _  1); v* = v((i), Eql (3.14) can be rewrit- 
ten as 

865/1/1-7 
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(gV' + fV ) ' =  ~' _ _  gl/2, v~ < v < v *  

V'(v ~ = -ai  (3.18) 
Vt(1)ff ) = - b  i 

I; =o 
From this equation and the fact that the fundamental solution at s of the 
equation gy' + fy  = 0 is given by (g(v)/g(s)) m, we obtain 

~ s 

V=gl/2{~i+fli fo g-3/2 ?-jo (g-3/2fogl/2)} 

where ~i, f,- are integration constants that together with 61 are to be deter- 
mined by requiring V to satisfy the boundary conditions and the integral 
condition in (3.18). Explicitly, these conditions come out to be 

1/2)o + f ipO + ~ QO = 
~ ~ i ~ f g ~ a i 

, Ci 
-~i(fg-1/2) * + fliP + ~ Q* = -be (3.19) 

~i(R* - R ~ + f i(S* - S ~ _ci  (T* - T ~ = 0 g 

where the superscripts O, * mean computated at v ~ v* and 

P=g 1--fg-1/2flg-3/2; O=fg-1/2[V(g-3/2fO 1fo'g1/2 

R ffgl/2; s:~V( 1/2f s -3/21" z:ff(gl/2ff(g-3/2fogl/2)). 
= 0o \ g  ~o g / '  

(3.20) 

We also define 

gl/2 f f  3/2. L =  g , M= gm g-3/2 gl/2 . (3.21) 

On the basis of (3.20), (3.21) and the definition of g, it is quite standard to 
get the following estimates for v near 1. 
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fg 1/2=#(1 +0(1 -v ) )  odd 

1 
P = ~  (#(1 - v))-2(1 +0(I  - v ) )  even 

K 
Q= - -5  (#(1-v))-2(1 + 0 ( l - v ) )  odd 

R = K(1 + 0(1 - v)) odd 

1 
S =  - - -  (ln(1 - v) + 0(1)) even (3.22) 2# 2 

K 
T= - - -  (ln(1 - v) + 0(1)) odd 2p 2 

gl/2 = #(1  - -  V)(1 + 0(1 - -  V)) even 

1 L=--(1-v)-l(l +O(1-v)) odd 2# 2 

K 
M = - - ( 1 - v )  1 (1+0(1-v) )  even 2# 2 

where we have also indicated for each function if it is odd or even. By 
integrating Eq. (3.17) and by a simple analysis, one obtains 

1-V=Klexp(--~x)(l+z(x)), x > 0  

(3.23) 

l+v=Klexp(~x)(l+r(-x)), x<0 .  

From the estimates (3.22), (3.23), it follows that Eqs. (3.19) have a unique 
solution given by 

#K~ 
e, = ~_k_7 {_ae ~,_ 1 exp ( _  .~  ~i_ 0 + bi~. exp ( _  2@ ~. )}  

fl,= -tzZK2 {a, exp(- 2~e ~i_l)+biexp(- g@~e) } (.3.24) 

+'c(~i+2~i-l)+r(~i 1 +2~i) 

ci= g#2I~"{aiexp(--el*~i-1)--biexp(--2#~i)}K a g -7" 
+ T(~i + 2~i-- 1) + ~7(~i-- 1 + 2{,). 
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By means of the expressions of ~i, ]~i~ Ci and of the estimates (3.22), we can 
write the n -  1 Eqs. (3.15) in explicit form: 

V ( ~ i ) =  - b i K  1 exp ( -  -~i )+z(2~i  1) -t- z(2~i) = V(-~i)  
\ 

(3.25) 

= a i + t K l e x p ( - ~ i ) + z ( 2 ~ i ) + z ( 2 ~ i + l ) ,  l ~ i < ~ n - 1 .  

If, as we have assumed, r e F , ,  then these equations imply that 

ai+l = -b i+z (p - ) ,  l<~i<~n-1. 

Therefore, by recalling that bg = ai+ 1 - 2 ( - 1 )  i, we have 

a~= - ( - 1 ) i +  z(p), i = 2,..., n 
(3.26) 

bg= - ( -1 ) i+z (p ) ,  i =  1,..., n -  1. 

By introducing these values of ai, b~ into (3.26) and by recalling that 
a l = b n = 0 ,  6g=(-1)/+~cg, the proof is easily concluded. �9 

Let us turn to the question of the existence of an invariant manifold 
for Eq. (1.4) on which the qualitative properties of the flow are similar to 
those described by the differential Eqs. (3.11). One natural approach is the 
following. Let V~162 .) be the function given in the theorem and let 

w l =  {g(r . )+ v~162 .), ~ E r ,} .  

The set W ~ is a manifold in H 1. Let us try to construct a manifold of 
solutions of (1.4) near W 1. Introducing normal coordinates 

u = u ( ~ , .  ) + v ~ 1 6 2  .) + v ~ 

(V1, Ui+ V~ )=O , l <~i<~n 

and proceeding as before, we obtain such an invariant manifold if there 
exists a function V 1 and constants d~= dr(C), 1 ~< i<~n, such that 

t~idi + (V ~ + V~)(c~ + d~) = ~2V~ + f ' (U  + V ~ V 1 + 0([ V~ ~) + O(I Vii 2) 
i 1 

with the auxiliary conditions 

V~(~, 0) = 0, V~(~, 1 ) = 0  

( V  1, Ui(~ ' )~_ 0 " V i (~ ,  . ) )  = 0 ,  l<~i<~n. 
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A proof of the existence of a solution to these equations has not been given. 
Of course, one also could consider the differential equations for (4, V ~) and 
at tempt to use integral manifold theory to obtain an invariant manifold 
near W 1. This method also has not been carried to completion. 

We conclude this paper with some remarks about  the work of Carr 
and Pego (1988). Using the coordinate system (3.4) for a slightly different 
approximate manifold W, they discussed properties of the differential 
equations for 4, V. More specifically, using the fact that the linearization in 
the V-equation is exponentially asymptotically stable with a decay rate 
bounded away from zero with respct to e, they obtain good bounds on the 
energy and show that solutions are crossing the lateral boundary of a 
tubular neighborhood of a part  of W from the outside to the inside. They 
also observe that the time evolution of the transition layers have the same 
qualitative properties as Eq. (3.11). 

A C K N O W L E D G M E N T  

In the process of developing the ideas in this paper, the authors have 
benefited from conversations with J. Carr and R. Pego while at Heriot- 
Watt  University. 

N O T E  A D D E D  IN P R O O F  

Since this paper was written, the first author has been able to show 
that an exact integral manifold does exist near the refined approximate 
manifold W1 by the application of integral manifold theory to the differen- 
tial equations or 4, VI. It is our understanding that Carr and Pego have 
obtained similar results using their approach. 

R E F E R E N C E S  

Angenent, S. (1988). The zeroset of a solution of a parabolic equation (preprint). 
Benassi, A., and Fouque, J. P. (1988). Hydrodynamic limit for asymmetric simple exclusion 

processes. Ann. Probability 16 (to appear). 
Brunovsky, P., and Fiedler, B. (1988a). Connecting orbits in scalar reaction diffusion 

equations. I. In Dynamics Reported, Vol. 1, John Wiley, New York, pp. 57-89. 
Brunovsky, P., and Fiedler, B. (1988b). Connecting orbits in scalar reaction diffusion 

equations. II. J. Differential Equations (to appear). 
Bongiorno, V., Scriven, L. E., and Davis, H. T. (1976). Molecular theory of fluid interfaces. 

J. Colloid Interface Sci. 57, 462-475. 
Cart, J., and Pego, R. L. (1988). Metastable patterns in solutions of u t = eZu~x--f(u ). Comm. 

Pure Appl. Math. (to appear). 
Casten, R. C., and Holland, C. J. (1978). Instability results for reaction diffusion equations 

with Neumann boundary conditions. J. Differential Equations 27, 266-273. 



94 Fusco and Hale 

Fusco, G., and Oliva, W. M. (1988). Jacobi matrices and transversality. Proc. R. Soc. 
Edinburgh (to appear). 

Gantmacher, F. R. (1959). The Theory of Matrices, Vol. 2, Chelsea, New York. 
Gurtin, M. E. (1986a). On the two-phase Stefan problem with interfacial energy and entropy. 

Arch. Rational Mech. Anal. 96, 199-241. 
Gurtin, M. E. (1986b). On phase transitions with bulk, interfacial, and boundary energy. 

Arch. Rational Mech. Anal. 96, 243-264. 
Hale, J. K. (1988). Asymptotic behavior of dissipative systems. Math. Surv. Monogr. 25. 
Henry, D. (1983). Geometric theory of semilinear parabolic equations. Lect. Notes Math., Am. 

Math. Soc. 840, Springer-Verlag, New York. 
Henry, D. (1985). Some infinite-dimensional Morse-Smale systems defined by parabolic 

partial differential equations. J. Differential Equations 53, 165-205. 
Matano, H. (1979). Asymptotic behavior and stability of solutions of semilinear diffusion 

equations. Publ. Res. Inst. Math. Sci. 15, 401-458. 
Matano, H. (1982). Nonincrease of lap-number of a solution for a one-dimensional semilinear 

parabolic equations. J. Fac. Sci. Univ. Tokyo [Sect. 1A[ 23, 401-441. 
Novick-Cohen, A., and Segal, L. A. (1984). Nonlinear aspects of the Cahn-Hilliard equation. 

Physica D 10, 278-298. 
Presutti, E. (1987). Collective behavior of interacting particle systems. In Proceedings of the 

First Worm Congress of the Bernoully Soc&ty, Tashkent, USSR, September 1986, Vol. 1, 
VNU Scientific Press, Utrecht, The Netherlands, pp. 295-413. 


