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Abstract. A notion of strong Caccioppoli set is defined for bounded Euclidean domains. It is shown that 
stationary (normally) reflecting Brownian motion on the closure of a bounded Euclidean domain is a 
quasimartingale on each compact time interval if and only if the domain is a strong Caccioppoli set. A 
similar result is shown to hold for symmetric reflecting diffusion processes. 
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1. Introduction 

Let D be a bounded domain in R a and let m denote Lebesgue measure on D, normalized 
so that m(D) = 1. The Euclidean closure of D will be denoted by/ ) .  Let Hi(D) denote 
the set of functions f in LZ(D, m) that have distributional derivatives c~f/axi, i = 1, . . . ,  d, 
that are also in L 2 (D, m). Define the symmetric positive definite bilinear form 8 on Ha(D) by 

1;o o~(f,g) = ~ Vf'Vgdm, f,g~Hl(D), (1.1) 

where V denotes gradient and • denotes vector dot product. By Fukushima ([12] 
Example 1.2.3), the pair (Hi(D), #) is a symmetric Dirichlet space on LZ(D, m). There 
is an associated stationary Markov process with continuous sample paths in/) ,  which 
is called stationary (normally) reflecting Brownian motion o n / 9  (cf. [18]). In this 
paper we give a necessary and sufficient condition on D for this stationary process 
to be a quasimartingale on each compact time interval. To describe this more precisely, 
we shall define quasimartingales in this context and the notion of strong Caccioppoli set. 
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DEFINITION 1.1. A continuous d-dimensional process Z =  {Zt, t~>0} is a 
quasimartingale on [0, T], T <  o% if and only if E[IZtl ] < oo for each t~ [0, 7'] and 

s u p E [  ~ IE[Z , ,+ , -Z t ,  l ~ , ] , l < o o ,  
t i , t i  + l e l t  

where the sup is over all finite partitions re:0 = t o < tl < "'" < t, = T of [0, T], and 
{~}  denotes the filtration generated by Z. We shall say Z is a quasimartingale if it 
is a quasimartingale on [0, T] for each T >  0. (Here we depart slightly from the 
conventional terminology of DeUacherie and Meyer ([7] VI.38).) 

PROPOSITION 1.1. A continuous d-dimensional process Z is a quasimartingale if 
and only if it has a decomposition of the form 

Z , = Z  o + M , +  Yt, t />0,  (1.2) 

where M and Y are continuous d-dimensional processes starting from zero and relative 
to the filtration generated by Z, M is a local martingale satisfying 

sup {El IM,^ r l]:z is a stopping time} < oo for each T >>. O, (1.3) 

and Y is an adapted process whose total variation on any compact time interval is 
integrable. This decomposition is unique. 

Sketch of proof The decomposition is unique because it is a continuous semimartingale 
decomposition. Using this uniqueness and our definition of a quasimartingale, one 
sees that it suffices to consider the process Z stopped at Te  [0, oo). For this process, 
the "if" part follows from the Krickeberg-Kazamaki decomposition of an L 1_bounded 
local martingale into a difference of positive local martingales [7, VI.35], together 
with Rao's characterization of quasimartingales as differences of positive supermartingales 
([7] VI.40). For the "only if" part, one uses Rao's characterization again and the 
Doob-Meyer  decomposition of positive supermartingales. • 

DEFINITION 1.2. The bounded domain D is called a strong Caccioppoli set if there 
is a positive constant C such that 

- - a m  .%< Cllgll~, i = 1 . . . .  ,d, (1.4) 
t~x i 

for all geHl(D)c~ Cb(D), where IF gll~o = supx,D Ig(x)l and Cb(D ) denotes the space of 
real-valued, bounded continuous functions on D. 

REMARK. Our notion of strong Caccioppoli set is a refinement of the geometric 
measure theoretic notion of Caccioppoli set [•3]. The bounded domain D is a 
Caccioppoli set if it satisfies (1.4) for all g ~ C~ (R a) with I[g[[~o = sup~R~ [g(x)[, where 
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C~ (R d) denotes the set of all once continuously differentiable real-valued functions 
defined on R d that have compact support. An example in Section 5 shows that the 
strong Caccioppoli sets are a proper subclass of the Caccioppoli sets. 

The main result of this paper, which is proved in Sections 2 and 3, is Theorem 1.1 
below. A similar result is proved for symmetric reflecting diffusions in Section 4. 

THEOREM I. 1. The stationary reflecting Brownian motion on D is a quasimartingaIe 
if and only if D is a strong Caccioppoti set. 

To put Theorem 1.1 in perspective, we now briefly review previous work on the 
problem of when reflecting Brownian motion in a bounded domain is a quasimartingale. 

When the boundary of D is C2-smooth, it is well known that there is a continuous 
strong Markov process X associated with the Dirichlet space (Hi(D), ~) and it has a 
Skorokhod semimartingale decomposition starting from any point in / ) :  

X, = Xo + B, + f l  n(X~)dL~, t >1 O, (1.5) 

where B is a d-dimensional Brownian motion martingale additive functional of X, n 
is the inward unit normal vector field on OD, and L is a positive continuous additive 
functional of X with associated (Revuz) measure proportional to surface measure tr 
on dD. When the initial distribution of X is set equal to m, this yields a realization 
of the stationary process referred to in Theorem 1.1, which is a quasimartingale since 
the measure tr is finite. 

Conditions for reflecting Brownian motion in a non-smooth domain to be a 
quasimartingale have only recently begun to be investigated. When the boundary of 
D is non-smooth there need not be a continuous strong Markov process on /) 
associated with the Dirichlet space (Hi(D), ~). However ([12] Theorems 6.2.1, 6.2.2), 
there is such a process if the Dirichlet space is regular o n / )  (see Definition 1.3 below). 
Moreover, Fukushima [11] has shown that there is always a suitable compactification 
of D, called the Mart in-Kuramochi  compactification, on which there is a continuous 
strong Markov process associated with the Dirichlet space (Hi(D), ~). On the other 
hand, as mentioned above, there is always a continuous stationary Markov process 
on / )  associated with this Dirichlet space (of. [18]). Some of the work described below 
deals with quasimartingale/semimartingale properties of the strong Markov process 
associated with (Hi(D), 8), whilst some deals with the stationary Markov process. 
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DEFINITION 1.3. The Dirichlet space (H~(D), 8) is regular o n / )  if H~(D) n C(D) is 

dense both in (nl(D),x/~l) and in (C(/)),ll'll~), where e l ( f , f ) =  8(f , f )+ (f,f)~, 
(., .),, is the inner product on L2(D, m), and II'[l~ denotes the uniform norm on the 
space C(/)) of continuous functions on L3. Convergence in H~(D) with respect to the 

norm ~ will be described as convergence in ¢l-norm. 

When D is a bounded Lipschitz domain, the Dirichlet space (Hi(D), ¢) is regular on 
/) ([1] pp. 54, 66-67). In [2], Bass and Hsu showed that for a bounded Lipschitz 
domain D, the continuous strong Markov process o n / )  associated with (HI(D), 8) 
has a decomposition of the form (1.5) for all starting points i n / )  except those in a 
set of capacity zero. Since the boundary of a bounded Lipschitz domain has finite 
surface measure, we again have in this case that the stationary reflecting Brownian 
motion is a quasimartingale. 

In [18], Williams and Zheng used a weak convergence construction of stationary 
reflecting Brownian motion o n / )  to obtain a sufficient condition for this process to 
be a semimartingale (in fact, their results imply it is a quasimartingale, although they 
did not explicitly state this). A consequence of their results is that if the boundary 
dD of D has finite (d - 1)-dimensional upper Minkowski content ([9] §3.2.37), i.e., if 

m({x ~ ~a:d(x, 00) < e}) 
lim sup < oo, (1.6) 

etO g 

then the stationary reflecting Brownian motion o n / )  is a quasimartingale whose local 
martingale part is a Brownian motion. This result has been extended by Pardoux 
and Williams [15] to stationary symmetric reflecting diffusion processes. Recently, 
Chen [5] has given more general sufficient conditions for reflecting Brownian motions 
(and symmetric reflecting diffusion processes) to be quasimartingales. He considers 
bounded domains D such that there is an increasing sequence {D,} of smooth 
subdomains of D with uniformly bounded surface measures such that D = w,D,. In 
particular, domains having boundaries of finite (d - 1)-dimensional lower Minkowski 
content (replace sup with inf in (1.6) for the definition) satisfy this condition. Under 
the bounded surface measure condition described above, Chen shows that when the 
Dirichlet space (Hi(D), 8) is regular on / ) ,  the associated continuous strong Markov 
process o n / )  has a decomposition of the form (1.5) starting from all points in / ) ,  
except for those in a set of capacity zero, when n is a generalized normal vector field 
and a is a generalized surface measure on OD. Whether the Dirichlet form is regular 
o n / )  or not, Chen's results imply that under the bounded surface measure condition 
the stationary reflecting Brownian motion o n / )  is a quasimartingale. We note here 
that the results described in this paragraph still hold when "x e R d" is replaced with 
"x e D" in the definitions of upper and lower Minkowski content. 
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All of the above results concern sufficient conditions for reflecting Brownian motion 
on a bounded domain to be a quasimartingale/semimartingale. Recently, Williams 
[t7] considered the problem of finding a geometric necessary condition for reflecting 
Brownian motion on/5 to be a semimartingale. Assuming the Dirichlet space (Hi(D), ~) 
to be regular on/5, she showed that a necessary condition for the associated continuous 
strong Markov process on /5  to be a semimartingale (for all starting points except 
those in a set of capacity zero), whose locally bounded variation part has an associated 
smooth vector measure with finite energy integral, is that D be a Caccioppoli set (see 
the remark following Definition 12). The finite energy integral condition in fact 
ensures that the stationary reflecting Brownian motion is a quasimartingale. The 
present paper grew out of efforts to refine and prove a converse of Williams' [17] result. 

Our paper is organized as follows. Sections 2 and 3 deal with necessary and sufficient 
conditions on D for the stationary reflecting Brownian motion on /5 to be a 
quasimartingale. In Section 4, we generalize these results to symmetric reflecting 
diffusion processes. In Section 5, some sufficient conditions for a bounded domain 
to be a strong Caccioppoli set and for a Caccioppoli set to be a strong Caccioppoli 
set are given. An example is also given to illustrate that D being a Caccioppoli set 
is not necessary for the stationary reflecting Brownian motion in /:5 to be a 
semimartingale. This leaves open the natural question: What is a necessary and 
sufficient condition for stationary reflecting Brownian motion on /5 to be a 
semimartingale? 

For the terminology of quasi-continuous, quasi-everywhere (q.e. in abbreviation), 
excessive function, capacity, smooth measure, additive functional, etc., used in this 
paper, we refer the reader to Fukushima [12]. A finite signed measure will be called 
smooth if and only if its total variation measure is smooth. The reader will note that 
coordinates of processes are indexed by superscripts so as not to conflict with the 
use of subscripts for the time index. The coordinates of other vector objects are 
indexed with subscripts. 

2. Necessary Condition 

We are concerned in this section with the "necessity" portion of Theorem 1.t. The 
key to our discussion is a convenient realization of the stationary reflecting Brownian 
motion, which we now describe. 

As noted in Section 1, the Dirichlet space (Hi(D), ~) need not be regular on/5.  
However one can embed D as a dense open subset of a suitable compact metric space 
D* in such a way that (Hi(D), ~) becomes a regular Dirichlet space on D*, i.e., 

Hi(D) f~ C(D*) is dense in (Hi(D), ~ )  and in (C(D*), II'll ~), where II" [l~ denotes the 
supremum norm on C(D*). We use a particular compactification D* here, namely 
the Mart in-Kuramochi  compactification introduced by Fukushima in [ 11]. Associated 
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with (Hi(D), g) is a strong Markov process 

X* = (X*, t t> 0; Px, x ~ D*). 

The "association" between X* and (HI(D), g) is expressed as follows: Writing (Tt, t f> 0) 
for the transition semigroup of X*, we have 

8 ( f f )  = l imt-a( f  f - TiT)m, TeHa(D), 
t~O 

and HI(D) consists precisely of those functions in LZ(D, m) for which the indicated 
limit exists. We extend m to a measure on D* by defining m(D*\D)= 0, thereby 
identifying L2(D, m) with L2(D*,m). We shall recall below a few facts about X* that 
are relevant to the present discussion; for full details the reader is referred t 0 [ 1 t] and [ 12]. 

The transition probabilities of X* are absolutely continuous with respect to m. 
Consequently the notions "set of capacity zero" and "polar set" coincide. Thus, a 
property or statement holding quasi-everywhere holds outside some polar set. 

The process X* is a diffusion. More precisely, if we adjoin a cemetery state ~ to 
D* as an isolated point, then t~-*X* takes values in D * u  {~} and is continuous 
Px-a.s. for all x~D*. In fact, there is a polar set A o c D*\D such that 

Px(X* = x, X*~D* for all t i> 0) = 1, for all x~D*\A o. 

(The elements of A 0 are "branch points" and have only nuisance value.) 
We set P,, = Sn* P~m(dx), and we denote expectations with respect to P~, P,, by 

E~, E m, respectively. It follows from the discussion in the last paragraph that the 
paths of X* are D*-valued and continuous P,,-a.s. The lifetime of X* is infinite for 
q.e. starting point, so that T~I = 1 q.e. This together with the symmetry of T t on 
L2(D *, m) implies that m is a stationary distribution for X*. 

Each f~HI(D) has an m-equivalent version f t h a t  is quasi-continuous on D*. As 
such, f ' i s  uniquely determined q.e., and t~--~f(X*) is continuous on [0, ~ )  P~-a.s. for 
q.e. starting point x ~D*. In what follows, each element of Ha(D) is understood to 
be represented by its quasi-continuous version; for this reason we suppress the tilde 
from our notation. 

Crucial to our discussion is Fukushima's decomposition ([12] §5.2): Given 
fEHa(D), there is a martingale additive functional M satisfying Mo = 0 for q.e. x, 
and a continuous additive functional of zero energy N, such that 

f(X*) = f ( X * )  + M  t + U t, t >1 O, P~,-a.s. for q.e.x. (2.1) 

Here and elsewhere the term "additive functional" means additive functional of X*, 
and in saying that N is of zero energy we mean 

lim t -  1Em(N2 ) = O. 
t~O 
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The coordinate maps D ~ x = (x 1 . . . . .  xd) ~-~ xi, i = 1, 2 . . . . .  d, are elements of Hi(D). 
We write q~ for the quasi-continuous extension of x ~-~ xz to all of D* and set 
q~ := (q~l . . . . .  q~a). Evidently 

m({xeD:q~(x) ~ x})  = O, (2.2) 

and t~--~Xt:= qg(X*) is continuous on [0, 0o) P~-a.s. for q.e. x tD*.  Since m is a 
stationary distribution for X*, 

Pm(XrCD for some rational r >/0) ~< ~, em(x,~ D) 
r rational 

2 P,.(X*e{xeD:q~(x) # x}orX*(sD) = O. 
r rational 

Combining this with the path-continuity of X we deduce that 

P,.(Xt~D for all t ~> O) = 1. 

The process (Xt, Pro) is stationary in view of (2.2) and the fact that m is the stationary 
distibution of X*. Moreover, appealing to (2.1) we obtain the decomposition 

X t = X  0 + B  t+Vt ,  t>~0, (2.3) 

where B is an ~a-valued continuous martingale additive functional satisfying B o = 0, 
and V is an Rd-valued zero-energy continuous additive functional. The covariation 
of B is simply (B  i, BJ)t = t.  c~i~ , (cf. [ t2]  5.2.32). Thus B is a d-dimensional Brownian 
motion martingale in the natural filtration of X*. Also, by ([12] Theorem 5.3.4), the 
process V is constant during those intervals of time for which X* is in D. 

CONVENTION.  Henceforth, we will use (X t, Pro) as our realization of the stationary 
reflecting Brownian motion o n / )  associated with (Hi(D), g). 

To study V more closely we require the following lemma, which is essentially Lemma 
22 of [5]. Consider a continuous additive functional N of zero-energy. In Fukushima's 
terminology ([12] p. 143), N is of bounded variation if for q.e. x ~ D*, P~-a.s. the paths 
of N are of bounded variation on each compact time interval. If N is of bounded 
variation, then we can write N = N ÷ - N - ,  where N + and N -  are positive continuous 
additive functionals. This decomposition is unique if we impose the side condition 
dN ÷ ^ dN-  = 0. Choosing this unique decomposition, let # ÷ and ~t- denote the 
smooth measures associated with N ÷ and N - ,  respectively. If #+ (D*) + #-(D*) < 
then # := p+ - # -  is a well defined signed measure. This # will be referred to as the 
finite smooth (signed) measure associated with N, and its total variation measure will 
be denoted by I~1. 
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LEMMA 2.1. Given f ~HI(D), let M and N be as in the decomposition (2.1). I f  N is 
of bounded variation and has an associated finite smooth signed measure It, then 

~(f'  g) = - fD* g(X)la(dx) for all bounded g e Hi(D). (2.4) 

Conversely, if there is a finite smooth signed measure # such that (2.4) holds, then N 
is of  bounded variation with associated finite smooth measure I~ and the total variation 
of  N on each compact time interval is Pm-integrable. In this case, the positive and 
negative parts of  the Jordan decomposition of  It are the smooth measures associated 
with N + and N -  where dN + ^ dN-  = O. 

REMARKS. (a) Only the first part of the above lemma is needed in this section. The 
second part is used in Section 3. 

(b) We will see in Section 3 that the validity of the formula in (2.4) for all 
g ~ Hi(D) n C(D*) already implies that the finite measure p is smooth. 

(c) Lemma 2.1 is valid for other Dirichlet spaces (Hi(D), 8) that are regular on D*. 
In particular, it applies to those treated in Section 4 below. 

Proof By ([12] Lemma 5.1.4(iii)) and an approximation argument, if A is a positive 
continuous additive functional with associated smooth measure v, then for any positive 
Borel function g on D*, 

Thus if N is of bounded variation and has an associated finite smooth measure 
# = It+ - #% then 

fn .g(x)E~[N(]m(dx)=f:ds fo .Ex[g(X*)] , (dx) ,  (2.6, 

for all bounded g ~ Hi(D). Since we are taking the elements of H:(D) to be represented 
by their quasi-continuous versions, we have tim,~oE~[g(X*)] = g(x) for q.e. x eD* 
by bounded convergence. A second application of the bounded convergence theorem 
now yields 

limt-l f. g(x)Ex[Nt]m(dx)= fD g(x)#(dx). (2.7) 
t t , .O  * * 

But the left side of (2.7) is equal to - g ( f ,  g) by ([12] Theorem 5.3.1), so (2.4) obtains. 
Under the hypotheses of the converse, by considering the positive and negative 

parts of g and employing a truncation argument ([12] Theorem 1.4.2), (2.4) can be 
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extended to all g e Hi(D). Then, modulo a change of sign, the converse assertion is a 
special case of ([12] Theorem 5.3.2) and (2.5). I I  

We are now ready for the main result of this section. 

THEOREM 2.1. Suppose the stationary Brownian motion (X,  Pro) is a quasi-martingale. 
Then D is a strong Caccioppoli set. 

Proof. We should emphasize that the filtration involved in the hypothesis "(Xt, Pro) 
is a quasimartingale" is the natural filtration of X. In order to bring the decomposition 
(2.3) to bear, we must first check that X and X* generate the same filtration, modulo 
P,~-null sets. The inclusion a{X~:0 ~< s ~< t} c a(X*:0 ~< s ~< t} is trivial. On the other 
hand, because of (2.2) we have 

P,.(X* = X r e D  for all rational r >~ 0) = 1. 

The path continuity of X* now yields 

X* = lim X r, Vt >I 0, P,,-a.s., (2.8) 
r T t , r  rational 

where the limit is taken in D*. Clearly (2.8) implies the reverse inclusion. 
For the remainder of this proof, all martingales and quasimartingales will be under 

the measure P,., unless stated otherwise. Let us write {~t } for the natural filtration 
of X*, augmented by the P,.-null sets and made right continuous. By the observation 
made in the last paragraph, X is an {~-t}-quasimartingale. Now, B in (2.3) is an 
{o~,}-martingale, and so it follows that V = X - X o - B is an {~}-quasimartingale. Let 

Vt = Mt + Y, t >~ O, (2.9) 

be the decomposition (cf. Proposition 1.1) of V into a continuous {o~ t } -local martingale 
M satisfying M o = 0 and (1.3), and a continuous {~-,}-adapted process Y that has 
P,,-integrable total variation on each compact time interval. Now, since V is of zero 
energy, its quadratic variation at any fixed time t is zero P,,-a.s. [12, (5.2.10)]. But 
the quadratic variation of V is equal to that of M, so M has zero quadratic variation 
at each fixed time t and therefore by path continuity for all t, P,,-a.s. This means that 
M is the zero martingale. Hence V:= (V 1 . . . . .  V a) = Y is a continuous additive 
functional whose total variation on each compact time interval is P,,-integrable. 

For i~{1, . . . ,d},  let A~ denote the total variation of V i on [0,t] for each t >~ 0. 
Then A ~ is additive and since m is the stationary measure for X*, there is a finite 
constant C~ such that 

E,,[A~] = C~t, t >~ O. (2.10) 
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Let U i denote the (polar) exceptional set for V i [12, p. 124]. It is easy to check that 
ps(x) := Px(A~ = oo for some t/> 0) is an excessive function for X* restricted to D*\ U v 
But ps(x) = 0 for m-a.e, x because of (2.10), hence pi(x) = 0 for q.e.x. In other words, 
Px(A~ < o%Vt ~> 0) = 1 for q.e.x. We adjoin to U i an exceptional set of points such 
that the last equality holds everywhere off the new Uv Now consider 

t ~ s ( x ) : = E ~ [ f o e - ' A : d t ] = E x [ f : e - t d A : l ,  xq~U i. (2.11) 

The second equality in (2.1 I) follows by Fubini's theorem because of the finiteness 

of A~ just established. By (2.10), 

;o :] @s(x)m(dx) =Em e - ' A  dt = Q,  

and so @~(x) is finite for m-a.e.x. However, it is clear from the second equality in 
(2.11) that ~ is a 1-excessive function for X* restricted to D*\ U s, and consequently 
it must be finite for q.e.x. It follows that E~[A~] < oo for all t, for q.e. x, and hence 
the total variation of V i on each compact time interval is P~-integrable, for q.e.x. In 
particularly, V s is of bounded variation. By (2.10) and (2.5), there is a finite smooth 
measure associated with the total variation process A ~, and so V s has an associated 

finite smooth signed measure Its satisfying 

lIt, l(D*) = E,,[A]] < ~ .  

Then, by Lemma 2.1, 

~ x d m  = 2N(~oi, g ) = - 2  .g(x)#s(dx) <~ 211gll~'lit, l(D*), (2.12) 

for any bounded g e Hi(D), and so D is a strong Caccioppoli set. • 

In the following, a vector-valued process is of bounded variation if and only if each 
of its components is of bounded variation, and a finite vector (signed) measure is said 
to be smooth if and only if each of its components is smooth. 

COROLLARY 2.1. The stationary reflecting Brownian motion ( X ,  Pm) is a 
quasimartingale if and only if V from (2.3) is of bounded variation and has an associated 
finite smooth vector (signed) measure It. In this case, (X~, Px) is a quasimartingale for 
q.e. x. Conversely, if (X ,  Px) is a quasimartingale for q.e. x, then V is of bounded variation. 

Proof The only if part of the first statement follows from the last paragraph of 
the proof of Theorem 2.1. The if part of the first statement follows from the fact that 
the sum of a continuous martingale and a continuous adapted process with paths of 
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integrable total variation on each compact time interval is a quasimartingale. The 
second statement follows similarly, using the fact from the proof of Theorem 2.1 that 
for q.e. x, the total variation of V on each compact time interval will be Px-integrable. 
For the last statement, observe that since the quadratic variation of V is zero Pm-a.s., 
it is zero Px-a.s. for q.e. x, by an argument similar to that given for the finiteness of 
E~ [A~] in the proof of Theorem 2.1. Thus, for q.e. x, the quasimartingale V = X - X o - B 
has paths of P~-integrable variation on each compact time interval. This easily implies 
V is of bounded variation. • 

3. Sufficient Condition 

In this section, D*, m, X*, Px, Pm and X are as defined in Section 2. We will show 
that when D is a strong Caccioppoli set, the stationary reflecting Brownian motion 
(X,, Pro) on /3  is a quasimartingale. 

LEMMA 3.1. Suppose D is a strong Caccioppoli set. Then there is a vector (signed) 
measure # = (#1,.. . ,#a) on D* such that for i = 1, . . . ,d,  t~l(D*) < oo and 

o~((p,,f) = - fo . f (x )# , (dx  ) for all f ~ Hi(D) n C(D*). (3.1) 

Proof. Since Hi(D) n C(D*) c Hi(D) n Cb(D), by the definition of a strong Caccioppoli 
set, there is a positive constant C such that 

off--fxidm<<,Cllf[[o~ f o r a l l f e H l ( D ) n C ( D * ) ,  i = 1  . . . . .  d. (3.2) 

Since the Dirichlet space (HI(D),¢) is regular on D*, H~(D)nC(D *) is dense in 
(C(D*), t1"1t~), and so (3.1)follows from (3.2) and the Riesz representation theorem. 

THEOREM 3.1. Fix g ~HI(D) and suppose there is a finite signed measure v on D* 
such that 

~ (g , f )  = fD.f(x)v(dx ) for all f ~HI(D) n C(D*). 

Then v is a smooth measure on D*. 

(3.3) 

Before proving Theorem 3.1, we establish the following two lemmas. For ~ > 0, let 
G~ denote the ~-resolvent of X*, and G~(x, y), x ~ D*, y ~ D, denote the resolvent density 
function relative to the reference measure m, as defined in ([11] §3). 
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LEMMA 3.2. Let f be a bounded Borel function with compact support in D. Then 
G , f  • C(D*). 

Proof By ([11] 1.6), G , f  is continuous on D. Let K denote the compact support 
of f and let U be an open set containing K such that 1.7 is compact and contained 
in D. Then by ([11] Lemma 3.1), 

sup G~(x, y) < ~ ,  
xeD*\U,y~K 

and 

G~(', y)ID.\oeC(D*\U), VyeK. 

It follows by bounded convergence that G~f = ~K G~(., y)f(y)m(dy) is continuous on 
D*\~7, hence on all of D*. • 

Let us now record four facts to be used in what follows. 

(a) 

(b) 

(c) 

If h is 1-excessive (i.e., if h is a Borel function, h/> 0, and ctG,+lh is monotone 
in ct and increases pointwise to h as ~1' ~) ,  then there is a sequence {g,) of 

bounded positive Boret functions such that Gig n T h as n---~ ~ .  This is standard, 
and can be found in Chapter II of [41. 
Cartan's lemma: If {hn } is a monotone sequence of 1-excessive functions in Hi(D) 

with 81-norms that are uniformly bounded, then hn---~h in gl-norm, where 
h := limnh,. See Proposition (5.12) in [10], for example. 
If h is a bounded 1-excessive function, then h eHl(D). This is a simple but 
important consequence of fact (a) and the symmetry of G~ on L2(D, m). Indeed 
by Lemma 1.3.4(ii) of [12], it suffices to check that 

sup0~(h, h - ctG~+ih)m < ~ .  
a t > O  

Let {g,) be as provided by fact (a). Then by the resolvent equation, 

Gig n -- ~G~+iGlg n = G~+lgn, and so 

~(h, h - ~G~+ lh)m = lim ~(Glg ~, Gig n - ~G~+ 1Glg~)m 
n 

= lira or(Gig ~, G~+ Ig,)m = lim ~(g~, G~G~+ lgn), 
t l  n 

~< lim sup (gn, Glg~)m <~ lim sup [Ihll ~ (g,, 1)m 
r l  n 

= Ilhll ® lim sup (g~, G 11), n = Ilhll ~ lim sup (Gig,, 1)m 
t l  /I  

~< Ilhll®(h, 1)m < oo. 
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(d) If f and g are bounded 1-excessive functions with f ~< g, then 

d° l ( f f )  ~< gl(g,g)- 

This follows from fact (c) and Theorem 3.2.1 (iv) of [12]. 

LEMMA 3.3. Suppose the hypotheses of Theorem 3.t hold. Then 

d°(g' P) = ~o* p(x)v(dx) for all bounded 1-excessive functions p. (3.4) 

Proof By (3.3), Lemma 3.2, and fact (c), if f is a bounded positive Borel function 
with compact support in D, then 

g(g, Glf) = fo, Glf(x)v(dx)' (3.5) 

Next, assume that f is a bounded positive Borel function on D. Let {K,} be an 
increasing sequence of compact sets whose union is D. Substitute l r . f  for f in (3.5), 
and pass to the limit as n ~ ~ .  Using Cartan's lemma and fact (d) on the left side 
and bounded convergence on the right, we see that (3.5) holds without the assumption 
of compact support for f Finally, given a bounded 1-excessive function p, we can 
appeal to fact (a) to find a sequence {f.} of bounded positive Borel functions such 
that G l f  . T p. Upon substituting f~ into (3.5), Cartan's lemma and fact (d) again allow 
us to pass to the limit, to obtain (3.4). • 

Proof of Theorem 3.t. First, note that from the definition of a smooth measure ([12] 
p. 72), since D* is compact and v is a finite measure, it suffices to show that Ivl does 
not charge sets of capacity zero. However, since subsets of sets of capacity zero are 
of capacity zero, by the Hahn decomposition of v it suffices to show that v does not 
charge sets of capacity zero. Furthermore, by the equivalence of polar sets to sets of 
capacity zero (cf. Section 2), it is enough to show that v does not charge polar sets. 
Finally, we observe that it suffices to prove that v(K) = 0 for each compact polar set 
K c D* .  Indeed D* is compact, so Ivl is Radon. Thus, if H is a Borel subset of D* 
then there is an increasing sequence {K,} of compact subsets of H such that 
tv[(H\K,)--~O as n---~ ~ ,  and then v(H) = lim, v(K,). 

For each Borel set H c D*, define the stopping times 

Tn:= inf{t > 0:X*~H}, 

Su:= inf{t ~> 0:X*~H}. 

Fix a compact polar set K c O*. Let {U,} be a decreasing sequence of open sets in 
D* with Un = [7,+1 for all n, and n , U ,  = K. A simple real variable argument shows 
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that S x = T limn Tu,. Each of the functions p~(x):= Ex[exp( -  Tv,)] is 1-excessive, and 
p~(x) := J, lim~p~(x) = Ex[exp(-Sx)  ] is 1-supermedian. Clearly poo(x) = 1 if x eK .  If 
x~K,  then p~(x) = Ex[exp(-TK) ] = 0 since K is compact and polar. Thus p® = 1K 
(= 0 m-a.e, on D*). Consequently 

v(K) = limn fo* pn(x)v(dx) 

= limN(#, p~), by Lemma 3.3, 
n 

= ~(g,p~), by Cartan's lemma and fact (d), 

~...~- O .  

Thus v is a smooth measure. 

THEOREM 3.2. Suppose D is a strong Caccioppoli set. Then the stationary reflecting 
Brownian motion (X t, Pro) is a quasimartinoale. 

Proof We know from Theorem 3.1 that the finite measures #~, i =  1 . . . .  ,d, in 
Lemma 3.t are smooth measures. Note that (Hi(D), ~) is regular on D*. Thus for any 
bounded function f ~ HI(D), there is a sequence {f~} c Hi(D) n C(D*) such that {f~ } 
converges to f both in 81-norm and quasi-everywhere on D* (cf. [12] Theorem 3.1.4), 
and by ([12] Theorem 1.4.2(v)) we may assume that each fn is bounded by Ilfll~- 
Then, on replacing f by fn in (3.1) and letting n--+ oo, we obtain 

d~(q~i'f) = - f o *  f(x)l~i(dx) for all bounded f eHI(D). (3.6) 

Recall the decomposition (2.3) of X. By the converse part of Lemma 2.1 and (3.6), 
for each i, the total variation of V i on each compact time interval is Pm-integrable. Thus, 
X is a quasimartingale under Pm (cf. Proposition 1.1). • 

Now by Theorem 3.2 and Corollary 2.1, V in the decomposition (2.3) of X is of 
bounded variation with an associated finite smooth vector (signed) measure ~t. It 
follows from the divergence theorem by letting f in (3.6) range over smooth functions 
with compact support in D that # is supported on the boundary OD* = D*\ D. Let 

d 

v = y~ I~',1, 

d#~ 
~bi- d r '  i = l , . . . , d .  
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We define the "surface measure" a on OD* by 

[ a \1/2 
a(dx) = 2~i~1 [(~i(X)[ 2 )  v(dx), (3.7) 

and the "unit inward normal" at x e OD* by 

((4,~(x),:::, 4,d(x)) 
/ [  d \1/2 

n(x )=(n l ( x ) , . . . , nd (x ) )= t !  '~b/(x)[ 2 

d 
if Z I~,(x)? > o, 

i=1 

d 
if Z kbi(x)] 2 = 0. 

i=1 

(3.8) 

Thus, #i(dx) = ½ni(x)a(dx), i = 1,. . . ,  d. 

REMARKS. (a) The normalizing factor 2 in the definition of o- ensures that our 
generalized divergence theorem (3.10) will have a familiar form. 

(b) For the precise sense in which n is an inward unit normal see ([8] §5.7.2). 

Let L denote the positive continuous additive functional associated with the finite 
smooth positive measure ½a. Then by ([12] Theorem 5.1.3, (5.3.8)), we have for q.e, 
x, Px-a.s., 

v, = ; i  n(x*) dL~, vt/> o. 

Thus we have the following Skorokhod decomposition for X. 

THEOREM 3.3. I f  D is a strong Caccioppoli set, then for q.e. x ~ D*, we have 

X t = X o + B t + f ln (X*)dLs ,  Vt >>, O, Px-a.s., (3.9) 

where B is a Brownian motion martingale additive functional and L is a positive 
continuous additive functional with associated finite smooth measure ½a. (All of the 
additive functionals are with respect to the strong Markov process X* on D*.) 

For a bounded function f~HI(D) ,  by (3.6) the following generalized divergence 
formula is valid: 
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REMARK. Consider the case where D is a bounded Lipschitz domain. We will see 
in Corollary 5.1 that D is then a strong Caccioppoli set. Bass and Hsu [3] showed 
that D* for a bounded Lipschitz domain is j u s t / ) ,  the Euclidean closure of D. It 
follows easily from the divergence theorem (cf. [8] p. 209) that for a bounded Lipschitz 
domain D our definitions of tr and n coincide with the usual ones, up to a scale factor 
used to make m(D) = 1. In particular, the surface measure on dD is a smooth measure 

(this was also previously observed by Bass and Hsu [3]). 

4. Extension to Symmetric Reflecting Diffusion Processes 

The results of Sections 2 and 3 will now be extended to a large class of symmetric 
reflecting diffusions. As before, D c R a is a bounded Euclidean domain. Each diffusion 
in the class under study is determined by a symmetric matrix-valued function 
A = (ao): D ~ ~a ® ~d. Furthermore, we assume that each of the functions aij is an 

element of Hi(D) and that there is a constant 2 > 1 such that 

1 ~  a d 
[¢i12~< )-" a,j(x)¢iCj~<2 ~ I¢il 2 f o r a l l ( ~ l , . . . , ¢ a ) ~  d, xED. (4.1) 

i=1 i , j=l  /=1 

In particular, each alj is a bounded function on D. Our work in this section concerns 
the form 8 defined on Hi(D) by 

1 aij(X)~xi ~xjm(dx), fg6Hl(D). (4.2) 
8(f, g) = ~ ,,1=1 

As before, m is the normalized Lebesgue measure on D. Clearly (4.1) implies that 

2-x folvf12dm<-.28(f,f)<..2 f lvf12dm, f~HI(D). 

Hence, the form 8 is equivalent to that treated in Section 2. In particular this implies 
that (H~(D), 8) is a Dirichlet space and that it is regular on the Mar t in-Kuramochi  
compactification D* introduced in Section 2, and the diffusion X* on D* associated 
with (H~(D), 8) has the same classes of polar sets, smooth measures, and quasi-continuous 
functions as the reflecting Brownian motion of Sections 2 and 3. (As a rule notation 
introduced in earlier sections for the reflecting Brownian motion will now serve the 
analogous role for X*.) 

Just as before, we let ~o = (~o t . . . . .  ~%): D* --~/9 denote the quasi-continuous extension 
of the identity map on D, and we set X := ~0(X*). Fukushima's decomposition of X 

(cf. (2.3)) now reads 

X , = X  o + M  t +  V t, t~>0, (4.3) 
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where M = (M ~ . . . .  , M e) is a continuous N~-valued martingale additive functional of 
X* satisfying M o = 0 and with covariation 

(M~,MJ)t  = f l  aij(X*)ds, t >>, 0, (4.4) 

and V is a continuous Nd-valued zero-energy additive functional of X*. (Formula 
(4.4) results from a trivial modification of ([12] Example 5.2.1, esp. (5.2.32)).) 

The measure m is an invariant measure for X*, and (X t, Pro) is a realization of the 
stationary reflecting diffusion o n / )  associated with (Hi(D), 8). 

We begin with the analogue of Theorem 2,1. 

THEOREM 4.1. Suppose the stationary reflecting difJhsion(Xt, Pm) is a quasimartingale. 
Then D is a strong Caccioppoli set. 

Proof  Arguing exactly as in Section 2, the quasimartingale property of (X  t, Pro) 
implies that the process V in (4.3) is of bounded variation and that the associated 
smooth measure # = (#1,..., #d) has finite total variation. Appealing to Remark (c) 
following Lemma 2.1, we see that 

°~(~°i'f) = - fo* f(x)gi(dx)'  for all bounded f e Hi(D), i = 1 . . . . .  d. (4.5) 

At this point we note that D is a strong Caccioppoli set if and only if there is a 
positive constant C such that 

fD div(h) am ~< Cllhli ~o, (4.6) 

for all h = (h 1 . . . . .  hd) with hieH~(D)c~ Cb(D), i = 1, . . . ,d.  Here 

1 L[hll~ :--= sup [hi(x)l z . 
x f~D i = l  

Fix such an h and define g = (gl . . . . .  gd) := h" A - 1  Our hypotheses on A imply that 
the components of the matrix A-1 are (bounded) elements of HI(D). Thus the 
components of g are also (bounded) elements of Hi(D), because of ([12] Theorem 
1.4.2). Therefore 
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d 

;Ddiv(h)drn=fos=t--(~augi~dmsxski= 1 ,I 

iirrog, foOa,,7___ : I I a i , - - d m  + ~g, dm/ 
,:~j=~LJ~ axi 

~2 ~] ,(<p,,g,)+ ~] ~] llg, ll~o ~" aa,, ,:, ,:, s:, 3,,I-D-7~ am. 

The first term in the last line above is bounded by a constant multiple of [Igll~, because 
of (4.5). The second term is dominated by 

[fol~°,,r~m]": i IIgLo 
i , j  = 1 

Now (4.1) implies that 

1 
Ilgll® -< Ilhltoo -< ,qlglloo. 

Thus (4.6) holds, and D is a strong Caccioppoli set. I I  

We proceed now to the converse of Theorem 4.1, leaving it to the reader to formulate 
the analogue of Corollary 2.1. 

THEOREM 4.2. Suppose D is a strong Caccioppoti set. Then the stationary reflecting 
diffusion (X t, Pro) is a quasiraartingale. 

Proof By the proof of Theorem 3.2, there is a finite vector (signed) smooth measure 
P = ~1,...,/~a) on D* such that 

;o -2 dm = - f(x)#i(dx) for all bounded f eHl(D), i = 1 . . . .  ,d. (4.7) 

If f is a bounded function in Hi(D) then 

¢(~°i' f )  = i a u dm 
j = l  

f l ) ~  1 a F f S a u d m  =~- i ~oj),,~-~ z=,jo ox, 2i=1 -= 

;o ";o : -  i i 
j = l  * '= 

= -- t f dv i ,  
JD 

where 
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1 ~ gai~dm" (4.8) dvi = j=i ~ aijdldj -b ~ j = l  OXj 

Since aij~Hl(D), $D[Oaij/dxjl dm <~ II~%/Oxjll2 < ~ .  Consequently, the second sum 
in (4.8) defines a finite smooth signed measure. Thus each v i is a finite signed smooth 
measure. The theorem now follows from Lemma 2.1, Remark (c). • 

We close this section with the skorokhod decomposition for X. For the statement 
of the result, recall the generalized surface measure tr and inward unit normal vector 
field n defined in Section 3. 

THEOREM 4.3. I f  D is a stron O Caccioppoli set, then for q.e. x ~ D* we have Px-a.s., 

X: i ~" f l  * J l ~ f iOai j  * ) d a  = X o + 7o(X~ )dB~ + ~ cxj 
j = l  j=l 

+ ~ [-'aij(X*)nj(X*)dL ~, Vt >i O, i =  1 . . . . .  d. (4.9) 

J 

j = l  do 

Here B = (B 1 . . . . .  B a) is a Brownian motion martingale additive functional of  X*, (-/~(x)) 
is the symmetric positive definite d x d matrix whose square is A(x), and L is the positive 

i continuous additive functional of  X* with associated smooth measure ~a. 
Proof. Combining (4.8) with (3.7) and (3.8), we obtain 

d 1 ~ 3aq 
1 y, a jnjd,  + T xdm. dv~ = ~ j=l j=l 

Thus by Lemma 2.1 and uniqueness, the zero-energy term V in the decomposition 
(4.3) can be expressed as 

Vt = Z aij(X*)nj(X*)dL s + -~-= (X*)ds, (4.10) 
j = l  

where the right member is well defined since the associated smooth measure v is of 
finite total variation. Let (~:q(x)) be the matrix-inverse of (Tq(x)) and define 

B t.= ~q(X,)dM~, t>10, i = l  . . . . .  d. 
]=1 

Then B = (B1,.. . ,  B d) is a vector martingale additive functional of X*, and by (4.4) 

(Bi, BJ) t = ~ijt, t >1 O, i,j = 1,. . . ,d.  
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Consequently, B is a d-dimensional Brownian motion, and clearly 

Z * = 7,j(X~ )dB~, t I> 0, i = 1 . . . . .  d. (4.11) 
j = l . 0  

The Skorokhod decomposition (4.9) results upon combining (4.10) with (4.11). • 

REMARK. A trivial time change argument shows that the results of this section are 
valid for the class of diffusions studied in [5]. In that paper the normalized Lebesgue 
measure m is replaced (both in the definition (4.2) and in the specification of the 
associated L 2 space) by p(x)m(dx), where p eH~(D) is a positive function bounded 
away from zero and infinity. 

5. Complements 

Throughout  this section, the Dirichlet form ~ is as defined in (1.1). We start by 
recording several conditions ensuring that a bounded Euclidean domain D is a strong 

Caccioppoli set. 

T H E O R E M  5.1. Suppose there is an increasing sequence {Dk)k~-_ 1 o f  smooth domains 
with union D, such that the total masses of the associated surface measures are uniformly 
bounded. Then D is a strong Caccioppoli set. 

Proof Let trk denote the surface measure for D k, and let n k be the inward unit 
normal vector field o n  OO k. Recall that the Lebesgue measure m on D is normalized 
so that re(D) = 1. Accordingly, the surface measures a k are normalized by a constant 
that does not depend on k such that the divergence theorem on the smooth domain 

D k yields 

;o  dm=-fo fnkdcrk<~trk(~Dk)'llfllo~, i = 1  . . . . .  d, (5.1) 
k Dk 

for all f e  C2(/5k). Here C2(/)k) consists of those functions defined on/)k that can be 
extended to be twice continuously differentiable on some domain containing/)  k. The 
Dirichlet space (HI(Dk),Sk), where gk( fg)= ½~DkVf. Vgdm ' is regular on /)k and 
possesses C2(/)k) as a core. Thus, given a bounded function f~Hl(Dk) there is a 
sequence {f,} c C2(/)k) that converges to f both in gk norm and q.e. on O k. By 
truncating if necessary with a C 2 cutoff function we can assume that each f ,  is bounded 
by Ilfll® (cf. [12] Theorem 1.4.2(v)). Substituting f ,  into (5.1) and then passing to the 
limit as n--* ov we obtain 

fD ff--~fx dm for all bounded f ~Hl(Dk), i= 1 d. ~< 6k(~Ok)" Hf[[oo 
k 
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But i f f  ~ Hi(D) c~ Cb(D), then the restriction o f f  to D k lies in HI(Dk) c~ Cb(Dk). Therefore, 

f Oo-~dm=limfD~xdm<-sup'r~(~D~)'l[fllo~. 
k~oo k k>~l 

Hence D is a strong Caccioppoli set. • 

COROLLARY 5.1. I f  the bounded domain D c ~a satisfies the condition 

lira inf m({x ~ D:d(x, ~D) < e}) < ~ ,  (5.2) 
e,~O 

then D is a strong Caccioppoli set. In particular, any bounded Lipschitz domain is a 
strong Caccioppoli set. 

REMARK. Condition (5.2) holds if the boundary of D has finite (d - 1)-dimensional 
lower Minkowski content, i.e., if (5.2).holds with x e R d in place of x ~D. 

Proof If (5.2) holds, then by ([5] Lemma 2.5) the hypothesis of Theorem 5.1 is 
satisfied. For the last conclusion, note from Federer ([9] Theorem 3.2.38) that a 
bounded Lipschitz domain in Ra has a boundary of finite (d - 1)-dimensional (lower) 
Minkowski content and hence (5.2) holds. • 

The results of Sections 2 and 3 lead one to ask whether the semimartingale property 
of a stationary reflecting Brownian motion implies that the associated domain is a 
Caccioppoli set. The following example provides a negative answer to this question. 

EXAMPLE 5.1.* Let D be the bounded planar domain obtained by smoothing the 
corners of the domain (presented in polar coordinates) 

{(r, 0 ) : 0 < r < l , 0 < 0 < z c } \  (r,0): ~<r~< , 0 < 0 ~ <  
k 

~1{  1 1 ~z } )  
w (r, 0 ) : ~  ~< r <~ 4k + 2' 4 ~< 0 < k 

in such a way that OD is C 2 smooth except at the origin. Clearly D is a Jordan 
domain. Using the boundary correspondence theorem for conformal mappings, it is 
easy to check that the Dirichlet space (HI(D),g) is regular on /3  (see [6]). For any 
positive integer k ~> 1, let 

* Z.Q.C. learned this example from James Jenkins. The domain D is a Jordan domain  with a boundary  
point (the origin) that  is not  rectifiably accessible from the interior of the domain. 
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Then D k is a bounded Lipschitz domain, and so (HI(Dk), gk) is regular on/5k (cf. [16] 
p. 181, Theorem 5). By the remark at the end of Section 3, the surface measure for 
D k is a smooth measure with respect to (H'(Dk), ¢k). Note tha t /5  c~ {(r, O):r > 1/4k} 
is relatively open both in /sk and in 15. Thus, by ([12] Theorem 4.4.2), (HI(Dk), ¢k) 
and (Hi(D), ~) have identical classes of zero-capacity subsets of/5 n {(r, O):r > 1/4k}. 
If we let a k and n k denote the restrictions t o /5  c~ {r > 1/4k} of the surface measure 
and unit inward normal vector field of Dk, then cr k is a smooth measure relative to 
the Dirichlet space (H'(D),8). Clearly o" I (resp. n z) restricted t o / s n  {(r, O):r > 1/4k} 
equals cr k (resp. nk), provided 1 > k. Thus we can define 

a := lim ak, n := lim n k. 
k---r o0 k ~  

It is easy to check that a (which is the usual surface measure for D) is a smooth 
measure relative to Hi(D). Moreover, n (which is left undefined at the origin) is the 
inward unit normal vector field on 0D. Let X be the continuous strong Markov 
process on /5  associated with the regular Dirichlet space (Hi(D), ~) on/5. We know 
that X has a decomposition of the form (2.3). Fix k ~ N and f = (fl, f2) with fi e C~(R 2) 
and supp(fi) = {(r, O):r > 1/4k}, i = 1, 2. By the divergence theorem, 

fD d i v ( f ) d m = - ; o  f ' n k d a k = - - f n  f .nda.  (5.3) 
k D k  k 

Note that the class of functions f~ occurring above is ~l-dense in ~-k := {9 ~ Hi(D):9 = 0 
q.e. on/5\ Dk}, since the latter coincides with {O ~ H~(D) :O = 0 q.e. on/5 n {(r, O):r <<, 1/4k}}. 
Using the conformal mapping of D onto the open unit disk (and the fact that this 
mapping admits a continuous extension to/5), one can check that the origin is of 
zero capacity for (Hi(D), ~) since the image of the origin under the mapping is of 
zero capacity for the reflecting Brownian motion in the closed unit disk. Thus {/sk } 
is a nest in the sense of Fukushima ([12] (5.3.12)-(5.3.13)), so we can apply ([12] 
Theorem 5.3.2) to deduce that X is a semimartingale with decomposition 

X~= X o + B t+  fln(X~)dL~' Vt >l O, (5.4) 

P~-a.e. for q.e. x ~/5. Here B is a Brownian motion martingale additive functional 
and L is the positive continuous additive functional associated with the smooth 

1 measure ~a. However, D is not a Caccioppoli set. Indeed 

lim a(/sk) = ~ ,  
k'-+ oo 



REFLECTING BROWNIAN MOTIONS 241 

while by (5.3) 

sup ~ div(f) dm = a(/)k), 
f ~r~(k) JD 

where Cg(k) is the class of functions f = (fl, f2) with fi e C~ (R E), supp ( f )  c {(r, 0): r > 1/4k }, 
i = 1,2, and Ilfll® ~< 1, 

We conclude this section with a brief comparison of the notions of "Caccioppoli set" 
and "strong Caccioppoli set". The former concept is measure theoretic in nature: if 
two domains differ by a set of Lebesgue measure zero and if one is a Caccioppoli 
set, then so is the other. The latter is more geometric in character, since Hi(D) may 
change significantly if D is altered by a set of Lebesgue measure zero. Our intuition 
tells us that the sample path of a reflecting Brownian motion X should "feel" the 
geometry of the boundary of the underlying domain. One may view the results of 
Sections 2 and 3 as confirmation of this intuition. 

In the next example we exhibit a bounded domain D which is a Caccioppoli set 
and for which the stationary reflecting Brownian motion is a semimartingale but not 
a quasimartingale. In view of Theorem 3.2, this example shows that the class of strong 
Caccioppoli sets is properly contained in the class of Caccioppoli sets. 

EXAMPLE 5.2. Let D be the unit disc in the plane from which a spiral curve spinning 
to the origin has been removed (the origin is considered to be one end of the spiral 
curve and accordingly is not in D). More precisely, consider 

O = {(r,O):r < 1}\({(r,O):r = 0-1,0 ~> 1} w {(r,O):r = 0}). 

Clearly D is a Caccioppoli set, since the unit disc is a Caccioppoli set and the deleted 
spiral ? is of Lebesgue measure zero. Note that the length of ~ is infinite. To discuss 
the reflecting Brownian motion in D we need to recall the following concept from ([6] (1.4)). 

DEFINITION 5.1. The manifold distance 6(x,y) between two points x, y E D  is the 
infimum of the lengths of piecewise C ~ curves in D connecting x and y. 

Let /5  be the completion of D relative to the manifold metric 6. It is clear that the 
subspace topology which D inherits f rom/5 coincides with the Euclidean topology 
on D, and that ~/~ = 13\ D is homeomorphic to the unit circle. In the terminology of 
[6], D is a (simply connected) pseudo Jordan domain. Therefore, by ([6] Theorem 
2.3), the Dirichlet space (Hi(D), g)  is regular on / ) .  For ke  N let 

D k = Dn{ ( r ,O) : r  > k - l } .  

Then D k is a pseudo Jordan domain whose boundary has finite 1-dimensional lower 
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Minkowski content and hence by Corollary 5.1, D k is a strong Caccioppoli set. Let 
/sk denote the completion ofD k relative to the manifold metric in D k. Then (Hi(Dk), ¢k), 
where ek(f,g) =½SOk Vf 'Vgdm,  is regular o n / )  k (see [51 [6]). It follows that the 
surface measure o- k for/sk, as defined in Section 3, is a smooth measure. By a similar 
argument to that presented in Example 5.1, the four points on 8/5k where the spirat 
strikes the circles of radius one and k-1 form a set of zero capacity for (Hi(Ok), e k) 
and hence are not charged by the smooth measure a k. From the generalized divergence 
theorem on  D k (cf. (3.10)), it follows that the surface measure a k for /5k consists of 
arclength on the circles of radius one and k-1 together with arclength along both 
sides of the curve ~k ~ -  {(r,O):r = O-l ,k  -1 <,% r % 1} (each point on ?k splits into two 
different points in (9/5k). The inward unit normal vector field n k on  ~L~ k has an analogous 
description. The measures a k are consistent, i.e., a k = a~ on /skC~ {(r,O):r > k -1} 
provided 1 > k. Define 

a = lim ak, n = lim n k, 
k- - r  oo k--* oo 

on/5. Let ) (  denote the continuous strong Markov process on /5  associated with the 
Dirichlet space (Hi(D), ~) which is regular on /5. For  i = 1 . . . .  , d, let X i = q~(X), 
i = 1 . . . .  , d, where (0~ is the quasi-continuous extension of D ~ x ~-~ x i to all of/5. Then 
by the same kind of argument as used in Example 5.1, but with the generalized 
divergence theorem on/sk in place of (5.3), we conclude that X has the semimartingale 
decomposition 

Xt = X°  + Bt + f l  n(X~)dL~, t >>. O, 

Px-a.s. for q.e. x e/5, where B is a Brownian motion martingale additive functional 
of )(  and L is the positive continuous additive functional of )~ associated with the 

1 smooth measure ~a. By (2.5) 

E,,[Li] = ½a(/5) ~> arclength(?) = oo, 

so X cannot be a quasimartingale under the stationary measure pro. 
Under certain conditions, the notions of Caccioppoti set and strong Caccioppoli 

set coincide. 

T H E O R E M  5.2. Let D c R a be a bounded domain such that C~(~ d) is 81-dense 
in Hi(D). Then D is a Caccioppoli set if and only if it is a strong Caccioppoli set. 

Proof. Suppose that D is a Caccioppoli set. Then there is positive constant C such that 

fD Og dm < Cllg]l~, i =  1 . . . . .  d, (5.5) 

for all g e C~ (a  d), where Ilgl]® = supxE.d Ig(x)l. By hypothesis, C~(I~ a) is el-dense in 
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Hi(D), so that given g~ Hi(D)c~ Cb(D ) there is a sequence (gn} c C~(~ d) converging 
to g in ~1 norm with [Ignllo~ ~< Ilgll~ for all n. Substituting gn into (5.5) and letting 
n--,oo, we see that (5.5) holds for all g~H~(D)n Cb(D ). Therefore D is a strong 
Caccioppoli set. • 

REMARK. Let Hi(D) and HI(R d) be endowed with the norms induced by ~1 on D 
and R d respectively. A domain D in ~d is said to be an extension domain for the 
Dirichlet space (Hi(D), B) if there is a bounded linear operator 

T:HI(D)---~ HI(~ a) 

such that TfhD = f  for any f~HI(D). See, for example, 1-14]. Since C~(R a) is dense 
in H~(~a), it follows that C~ (~a) is dense in H~(D) whenever D is an extension domain 
for the Dirichlet space (HI(D),B). Examples of extension domains are bounded 
Lipschitz domains and (e, 6) domains (ef. [14-1 Theorem 1). 
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