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1. Introduction 

There has been a considerable mathematical interest in the partial differential equation 
div( IVul p- 2 Vu) + f(u) = 0 and its immediate generalizations. The so-called p-harmonic 
differential operator div(lVulv-2Vu) also appears in many contexts in physics: 
non-Newtonian fluids (dilatant fluids have p > 2, pseudoplastics have 1 < p < 2), 
reaction-diffusion problems, non-linear elasticity (for example torsional creep), and 
glaceology (p = 4/3), just to mention a few applications. We are interested in an 
eigenvalue problem, apparently first studied by F. de Th61in in 1984, cf. [17]. Little 
is known about the non-linear cases p ~ 2 compared to the vast amount of knowledge 
for the Laplace operator (p = 2). 

The first eigenvalue 2v = 2v(f~) of the p-harmonic operator is here defined as the 
least real number 2 for which the equation 

div([Vu[p-2Vu) + 2[u[V-2u = 0 (1.1) 

has a nontrivial solution u with zero boundary data in a given bounded domain f~ 
in the n-dimensional Euclidean space. The first eigenvalue is the minimum of the 
Rayleigh quotient 

f IVulPdx 
= inf J u_ _ _  . 4v , f (1.2) 

L lul" dx 
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Here 1 < p < oo, and in the linear case p = 2 one obtains the principal frequency of 
a vibrating membrane, cf. [15]. We shall often use the term principal f requency  for 
the non-linear cases as well. If u is a solution to Equation (1.1) then the function 

v(x, t) = u(x)e - xt/(p- 1~ 

satisfies the evolution equation 

~lvl p- 2 v = div(iVvl p_ 2 Vv) (1.3) 
dt 

at least formally. (The function w = [vlP-Zv is a solution to the more well-known 
parabolic equation 3w/~t  = ( p -  1 ) l -Pd iv ( lw l2 -P lVw[P-ZVw)  describing a kind of 
nonlinear diffusion, cf. I-3].) 

The differential equation (1.I) is interpreted in the weak sense and all functions in 
the Sobolev space Wo~'P(f~) are admissible in (1.2). See Definition 2.1. The solutions 
to Equation (1.1) are known to be of class 1,~ Cto c (f~), i.e., their gradients are locally 
H61der continuous. The first eigenfunctions are essentially unique in any bounded 
domain: they are merely constant multiples of each other. Moreover, they have no 
zeros in the domain and they are the only eigenfunctions not changing signs. The 
uniqueness for arbitrary bounded domains was proved in [8]. The radial case has 
been studied by F. de Thtlin in [18] and a good reference for C2-domains is ([16] 
Theorem A.1). 

The main objective of our paper is to study the convergence of the first eigenfunctions 
in connection with the inequalities 

lim 2, ~< ,lp = lim As, 
s ~ p - -  s ~ p +  

proved in Theorem 3.5 and Corollary 3.4. In other words, we explore the behaviour 
of the positive solution up e W0 t 'p (f~) to the equation div(tVup I p -  2 Vup) + 2p [up l p- 2 up = 0, 
as p varies continuously. 

This is all the more interesting there being some anomaly when p < n (n is the 
dimension of the underlying Euclidean space). In very irregular domains the situation 
lim s_~ p_ 2~ < Ap is possible as a consequence of a strange convergence phenomenon. 
The eigenfunctions converge to a positive solution of Equation (1.1) having boundary 
values zero, yet in a sense that is slightly too poor. The limit function is in the Sobolev 
space WI'P(D) and in every Wo~'P-~(f~), E > 0, but not in the required W0~'P(f~). It is 
not admissible in (1.2). Needless to say, a delicate balance is needed to construct a 
domain causing such an effect. Our example in Section 7 is based on a well-known 
Cantor set. However, in giving a proof that the above mentioned phenomenon really 
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occurs, we have needed the Wiener criterion and the Kellogg property*. Therefore 
Section 4 is devoted to these advanced concepts. As a byproduct we mention a result 
about uniform convergence in Wiener regular domains (Theorem 6.1). 

Some of our results are immediate. For example, the convergence 

lim ~n]Vu~ - VuplPdx = 0 
s ~ p +  

for the gradients of the properly normalized eigenfunctions is proved in Section 3 
merely by the aid of Functional Analysis in Sobolev spaces, that is without using the 
differential equation in any essential way. Yet we think that such proofs are of some 
interest, the fascinating feature being that "the ground is cut from under one's feet': 
as p varies the appropriate LP-space or Sobolev space changes. There is no fixed 
convenient energy norm to use, at least not for p growing. Indeed, it is possible that 
IlVup 11~ +~ = ~ for every c > 0. (We have used similar methods before in a simpler case [7].) 

Section 6 is about uniform convergence, as p varies. Deep results in regularity 
theory (see [2] and [19]) are used to show that the eigenfunctions and even their 
gradients converge locally uniformly to a positive solution of Equation (1.1). However, 
this can be the 'wrong' solution! See Theorem 6.3 for the exact formulation. 

Let us finally mention that the best constant in the Poincarr-Friedrichs inequality 

f kojVdx <, Cf~lVcplVdx (1 < p  < oo) 

is the reciprocal of the principal frequency: C = 1/2p. Here ~0 e C~ (I)), f2 being a 
bounded domain. (See [4], Eqn (7.44), p. 164.) 

2. The Differential Equation 

in defining the eigenvalues for the p-harmonic operator in a given bounded domain 
c R" we shall interpret Equation (1.1) in the weak sense. 

2.1. DEFINITION. We say that )~ is an eigenvalue, if there exists a continuous 
function u ~ Wol"~(f~), u ~ 0, such that 

f lVulp-2Vu'Vrldx=AfnlulP-Zurldx (2.2) 

whenever q ¢ C~ (f~). The function u is called an eigenfunction. 

* N o t e  added in proof: The referee has observed that the Kellogg property is not really needed here. It can 
be replaced by a direct calculation. We take the opportunity to thank him for this remark. 



2 0 2  PETER LINDQVIST 

The Sobolev space Wol'P(f~) is the completion of C~ (f~) with respect to the norm 

INI = (It/t" + IVrttP)dx~ • 

See 1,22]. The continuity of u is a redundant requirement in the definition: the weak 
solutions of Equation (2.2) can be made continuous after a redefinition in a set of 
measure zero. This is standard elliptic regularity theory. One even has u ~ C~oc (f~) for 
some ~ > 0, cf. [2] and [19], but this Hrlder  continuity of the gradient is a deep result. 

The eigenvalues are positive and the least of them*, say 2p, is obtained as the 
minimum of the Rayleigh quotient 

fn  IVulP dx 
2p = inf I[Vvli['(a) = inf , (2.3) 

v [IvllLp(a) v tvlPdx 

the infimum being taken among all v e Wo~'P(f~), v ~ 0. Alternatively, one can further 
restrict the class of admissible functions to C~(f~). The minimization problem is 
equivalent to Equation (2.2) with 2 = 2p. 

To any bounded domain f~ there is a first eigenfunction up > 0 corresponding to 
the least eigenvalue 2p. The existence is standard Calculus of Variations, cf. I-t8], and 
the strict positivity follows from the Harnack inequality (1,20] Theorem 1.1) applied 
to the non-negative minimizing function lupl. The first eigenfunctions are essentially 
unique in any bounded domain: they are merely constant multiples of each other. 
The uniqueness for arbitrary bounded domains was proved in [8]. The first 
eigenfunctions are the only eigenfunctions not changing signs. 

Throughout this paper the first eigenfunction up is normalized by 

{;o Ilufl, = [uplPdx = 1 (2.4) 

and required to be positive. By the above mentioned uniqueness this determines an 
unambiguous up. 

In very irregular domains the boundary values (zero) are not attained in the classical 
sense, when p ~< n, but one always has up e Wo~'P(f~). (This is an essential point in the 
situation lim s_. p_ 2 s < 2p.) 

Note that, iff~ 1 = f~2, then we have )op(f~l) >~ 2p(f~z) for the corresponding principal 
frequencies. This can be read off from the Rayleigh quotient. Equality is possible, 
although f~l ¢ f~2. The elementary bounds 

* Note added in proof: In the non-linear cases it does not  seem to be known whether all higher eigenvalues 
can be obtained through a variational principle. 
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v, ~1/, + 1)mesf~ 
mes f~J ~< ~ ~< (n r "+ %, (2.5) 

are convenient (v, is the volume of the unit ball in R", i.e. 2rc"/Z/nF(n/2), and r is the 
radius of the largest ball contained in f~), but any estimates of this kind will do for 
our purpose. 

3. Some Fundamental Properties 

Most results in this section are derived in an elementary way. That is, we use only 
Functional Analysis in Sobolev spaces but no deep properties of the eigenfunctions 
(except their uniqueness). The eigenfunctions are unique when normalized by Ilup[l~ = 1 
and up > 0 so that 

)~P = ;n IVup[P dx. (3.1) 

The H61der inequality yields the following monotony for the principal frequency. 

3.2. THEOREM. For any bounded domainf~ we have p2~/~ <~ s2~/', when 1 < p < s < ~ .  
Proof To see this, choose any ~9 e C~ (f~), ~ i> 0. Then ~ = O~/P is admissible in 

the Rayleigh quotient for 2p. H61der's inequality yields 

P 

_ s J *s "Iv°l" 

( ; , , , , ,ax) ' '  " 

s J~Sdx) (JlVOl*dx)} 
~<- 

p / f \ l /p 
I J O  "dx)  

(f )'" IVOl~dx =s_ 
p { (" \1,,, • 

1 JO~'dx) 

(3.3) 

Taking the infimum over all admissible ~k >i 0, we arrive at the inequality p,~,;/P ~ S,~)s Is. 
(One can avoid the restriction to positive test-functions by choosing q~ = 101 s/p- 1~ 
from the beginning.) []  
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REMARK. It is intuitively clear that the inequality in the theorem is strict. One way 
to establish that p2~/p < s),~/~ is to perform the previous calculations with ~b = u, > 0. 
Then an equality t,,~p-~l/P = s2~/, with s > p would imply that ~o = u~/p is an eigenfunction 
Cup. A direct, but lengthy calculation, shows that this does not agree with the 
differential equation: u~/p is not a solution. Another way of obtaining a contradiction 
is to observe that equality holds in the H61der inequality used in (3.3) only if lug( 
and FVu,[ ~ are proportional in I). Such a proportionality between u s and [Vu,[ is out 
of the question. 

3.4. COROLLARY. lim 2 s ~< 2p ~< lim 2~. 
s ~ p - -  s -*p+  

Proof. As a monotone function in s the expression s2~/~ has one-sided limits. So 
does 22. [] 

Observe that if lim~ ~ p 2~ exists, then this limit must be equal to 2 v. As we will see, 
the cases s ~ p -  and s--* p + can be very different. This dichotomy is prevalent in 
irregular domains. 

3.5. THEOREM. For any bounded domain 

lim 2~ = 2p. 
s ~ p +  

Proof. For any ~ s C~(~) we have 

f IVq~l ~ dx 
d~ 

~< f kol, dx 

Thus 

f ]V~o[ p dx 

Taking the infimum over all admissible q~ we find that lim~_~p+ 2 2 ~< 2p. Now the 
result follows by Corollary 3.4. [] 

Some cautiousness is needed in the next result, since the possibility that 

f~ rVup[~dx = 09 (s > p) 
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for every s > p cannot be excluded in very irregular domains. 
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3.6. THEOREM.  The strong convergence 

lim fnIVu~ - Vuvf dx = 0 
s~p+ 

(3.7) 

is valid for any bounded domain f~. 
Proof By the H61der inequality and the normalization lJu~ll~ = 1 we have 

f lVu 7 dx ~< (mes f2)P/s2~ -P/~ (3.8) 

for s/> p. This uniform bound for the LP-norm implies that some sequence u~l, u . . . . . .  
converges weakly in WI'P(t~) to a function u in Wl'v(f~). Here sj---~p+. The limit 
function u is in Wol'P(fl), as every u~j is in this space. By the Rell ich-Kondrachov 
Compactness Theorem tlu~j - ullp+ 1/n~ 0 (the actual convergence is better than this, 
but the exponent p + 1/n will do). See [22]. The normalization Ilullp = 1 follows. 

Let us identify u. By the weak lower semicontinuity and the H61der inequality we obtain 

f ]VuJVdx<~lim f [Vu~jJVdx<~!!m f [Vu~J~dx (3.9) 
j --, oo . j-*oo 

and taking the normalization into account we have 

yn IVulP dx 
~< li___m_m 2~j = 2p 

~l ul p dx J -~ ~ 

by Theorem 3.5. But u ~ Wo~'P(f2), that is, u is admissible in the Rayleigh quotient for 
)~v" By the uniqueness of first eigenfunctions we have that u = Up. The limit function 
is the same for all weakly convergent (sub)sequences. Thus u~---~up at least in LP(f~) 
as s---~p+. 

For the strong convergence (3.7) we use Clarkson's inequalities related to uniform 
convexity, cf. ([1] Theorem 2.28, p. 37). Consider the case p i> 2 first. The desired 
result follows from Clarkson's inequality 

fnVuP2 Vu~lPdx + ~ Vup 2- Vus- Pdx <~-~f + ~fnlVuslPdx,1 

since 
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and 

In Vuv ; Vu~] vdx 

~fl Up + U s v 
1 2  I dx 

r 
lim l IVu~tVdx ~< )~p 

s + p +  Jn 
by (3.8). Remember that 

lim ~lup+U~Vdx fn :+ ,+  Jnj  2 I = tu, l V = l  

by the normalization. 
In the case 1 < p < 2 one uses Clarkson's inequality 

I 1 

1 

1 dx}P- 1 

in a similar way to obtain (3.7). [ ]  

When s approaches p from below the adjusted version 

lim f lVus - Vuvl~dx = 0 (3.10) 
S---~ p - -  

of the theorem is false, if p ~< n. In this case the above method surely produces a 
positive solution u e WI'P(f~) to the differential equation (1.1) with 2 = lim~. v_ 2 s and 
[IVu~ - Vull-+ 0, as s approaches p from below through some subsequence. Moreover, 
u is in W0x'~(fl) for every s < p. The failure is that u need not belong to Wol'P(f~). An 
example is given in Section 7. 

A thorough analysis shows that the defect tim,_~ v_ )., < 2v must be ruled out in 
the proper counterpart to Theorem 3.6. Some care is needed, since the situation that 
IlVu~llp = ~ for every s < p cannot be excluded. We conjecture that (3.10) holds if 
and only if lim, _, v_ 2 s = 2v. We have not been able to prove the full conjecture. 

3.11. THEOREM.  For any bounded domain f~, the convergence (3.10) implies that 
lim~+ p_ 2~ = ;~p. 
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Suppose that (3.10) is true. Then Vu~-+Vup in LP-~(t~), E > 0, by the H61der 
inequality. Using this fact and again the H61der inequality we have 
IIVupllp_, <<. (mesf~)~/(P-~)lim~_~p_ tlVu~ll~. Hence IlVupltp ~< lim~_,p_ IIVu~l[~, that is, 
)t ~/p ~< lim~_, p_ ~x/~ by the normalization. Together with Corollary 3.4 this leads to p - -5  

lim~ _. p_ 2~ = 2p. 
We conjectured that the assumption about the limit function is superfluous in the 

next lemma. The difficulty is to obtain the seemingly plain normalization 

r I% + u,l" 
lim ~ i  ~ d x = l .  

s ~ p - -  

3.12. LEMMA. Suppose that lims_, p_ 2~ = 2p. Then each sequence of real numbers 
tending to p from below contains a subsequence such that 

~[Vu~j - VulSJdx = 0 (sj---> p - )  (3.13) lim 
j --+ oo • 

for some junction u s W l'p(f2). I f  u s Wd'P(f~), then u = up. In any case 2 v = ~a IVul p dx 
and tlullp --- t. 

Proof The norms ItVu~ll, are uniformly bounded and so are afortiori the norms 
IIVu~tl~_~, E > 0. A standard diagonalization procedure enables us to find a function 
u s  Wo'-'(f~) for all ~ > 0 and to construct indices Sl < Sa < s3 < " ' , l i m s j  = p, such 
that (1) Vu~--* Vu weakly in each fixed L p- ~(f~) and (2) u~j--~ u strongly in LP(f~) (the 
Rell ich-Kondrachov Compactness Theorem). In particular, 

IlVulip_, ~< lim [[Vu~jllp_, ~< (rues f~)c/<p-,) lim IlVu~ll~ 

= (mes [~)'/(P-')2~ :p. 

Thus Vu s LP(~'~) and IIVutlp ~< 2~ :p. The correct normalization Ilullp = 1 is preserved. 
Thus 2p = tlVull~ and 

lim dx = 1. (3.14) 
j ~ m  

So far our assumptions have virtually not been needed, but on the other hand, we 
have not shown that us W~'P(f~), although us W~'P(~) and us Wol'P-~(f~), for each 
c > 0. We can identify u as the right eigenfunction up, under the additional assumption 
that u is in Wo~'P(~), thus proving that in this case the limit is independent of the 
particular sequence s~, s2, s3 . . . .  converging to p. 

Using Clarkson's inequality 

f~] Vu 2 + f n  2 2fnlVulSdx+ fnlVu~l~dx' (3"15) 
+ Vu s Sdx V u -  Vu~ Sdx <<. 1 
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s ~> 2, once more and taking the normalization and (3.14) into account, we conclude that 

- - / ' t  - s~ 1 1 
l i m 2 ~ +  lim JnlVu Vu,j dx~< + - l i m ~  

in the case p > 2. By assumption lim 2~ = 2p. Hence IlVu - V %  ll~ --, 0. 
The case p ~< 2 is similar, the only change being in Clarkson's inequality. []  

4. The M a x i m u m  o f  the Eigenfunct ions  

It is intuitively clear that the eigenfunction up is globally bounded in f~ and the proof 
is evident, if fi possesses some geometric regularity at the boundary. However, there 
are continuous functions in Wol'P(~), 1 < p ~< n, that arc unbounded! Therefore it is 
worth mentioning that a proof can be produced by the well-known method given in 
([9] Lemma 5.1, p. 71). Unfortunately the knowledge that max lupl < ~ is not enough 
for us. We need a bound that is uniform in p, when llupllp,~ ~< 1. To achieve it we 
must keep track of various 'constants' and we had better write down a proof. 

4.1. LEMMA. The inequality 

Itupll~,, ~ 4n;L~/Plluptll,, (4.2) 

is valid for the eigenfunction up in any bounded domain f~ in R ~. 
Proof. The function ~/p(x) = max{up(x) - k, 0} is in the Sobolev space Wol'P(fl) for 

any constant k. Hence r/p will do as test-function in (2.2) and so we obtain 

where 

f a  IVupIpdx = )°P f a  u~-I(uP -- k )dx  (4.3) 
k k 

A k = {x ~ f~ ] up(x) > k}. 

Of course A k depends on p. Clearly k ' m e s A  k <<. llupll, and mesAk--*0, as k---~ oo. 
By the elementary inequality a p- 1 ~< 2 p- 1(a - k) p- ~ + 2 p- ~k p- ~ we have 

The Poincar~-Friedrichs inequality yields 

/'1 ~p/n ;A(up-k)Pdx~mesAk) fAlVu/dx, 

(4.4) 

(4.5) 
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when applied to each component of the open set A k. See ([4] Eqn (7.44), p. 164), 
where the better constant nF(n /2 )2 - ln -" / :  is given instead of 1/2. 

Combining (4.3) and (4.5) and then using (4.4) we arrive at 

[1 - 2p-2,~p(mesAk) p/2] f (up -- k) ~ dx <~ 2t'-2kpSl(mesAk) pin ~ (up-  k)dx. 
,1.4 k J Ak 

Here 2 p- 22p(mes A k ~'/" ~< 1/2, when k >t k 1 = 2 "tp - 1)/P2~/P ii% II 1- Using Hrlder's inequality 
and dividing out we finally obtain the estimate 

9.~ 1/(p- )k(mes Ak) 1 +~=-~ (4.6) (up -- k) dx ~< --v 
k 

for k >~ k 1. This is the inequality needed in ([9] Lemma 5.1, p. 71) to bound ess sup up. 
Indeed, for 

f ( k ) =  f~  (up-k)dx= f mesA, dt 
k 

we have i f (k)  = - m e s  Ag, and hence (4.6) can be written as 

f (k) <. 2,~/~p- ~ ~ k ( - f '  (k)) 1 + P/"~P- ",  

when k i> k 1. If f is positive in the interval [kl, k], integration leads to 

k~/(1 + E) _ k~ll(1 + ~) <~ [22pll~p- 1) ] 1/~l + ~ [ f ( k  1 )E/(1 + E) _ f(k)El(1 + E) ] 

where E = p/(p - 1)n. This clearly bounds k and hence f ( k )  is zero sooner or later. 
The quantitative bound for k is seen to be 

k ~< 21 +2n(p- 1)/p).~/pltupltl, (4.7) 

since f ( k  0 ~< f(0) = Itupllx. Thus f ( k )  = 0, if (4.7) is not fulfilled, i.e., ess sup up is not 
greater than the right-hand side. This is the desired result (4.2). [] 

5. The Wiener Criterion and the Kellogg Property 

The classical Wiener criterion is necessary and sufficient for a solution to the Laplace 
equation Au = 0 to attain its prescribed continuous boundary values at a given 
boundary point. It is formulated in terms of electrostatic capacity [21]. The sufficiency 
of the (appropriately modified) Wiener criterion was proved by Maz'ja [11] for 
non-linear equations of the type div(IVuW z Vu) --0. This result was further extended 
by Gariepy and Ziemer [5] to fairly general equations including our case 
div(IVulP-ZVu) + 21ulP-2u = 0. The so called p-capacity plays a central role here. 
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Suppose that A is any open bounded set in R" and that K c A is compact. Define 

capp(K, A) = inf f [V~o[ p dx, (5.1) 
tp ,,/A 

the infimum being taken over all functions tp e C~ (A) such that (p >t 1 in K. This is 
the p-capacity of the capacitor (K,A). If K 1 c K 2 c A 2 c A1, then 
capp(K1, A 0 <<. capp(K z, A 2). The inequality 

{capq(K,A)~ 1/q ~cap,(K,A)~ ~/', 
mesA J ~<( mesA J i f l < q ~ < p < o %  (5.2) 

follows from H61der's inequality. There is a striking difference between the cases p > n 
and p ~< n, namely, the p-capacity is never zero (for a non-empty K), when p > n. 

For the capacitor consisting of two concentric spheres the expression 

(-On-- 1 
capp(B(xo, r), B(x o,R)) = / (.~ , -  1 \ p -  1 (5.3) 

is known, cf. [11] or ([12] p. 106). Here • - 1  = 2~"/2/F(n/2) is the surface area of 
the unit sphere in R". Observe that capp(B(xo, r),B(x o, R)) is a continuous function 
of p and that 

capp(B(xo, r), B(x o, 21")) ~ r"-P. 

Letting p---~ 1 + and p---, oo in (5.3) we obtain the sharp bounds 

- -  ltp 1 ~cap, (B(xo, r), B(x o, 2r))~ 1 
2"~ < ( ~ J < -r (5.4) 

using (5.2). 
In order to formulate the Wiener criterion we return to our domain f~ and fix an 

arbitrary boundary point x o e 0~. The auxiliary quantity 

capp(B(x o, r)\ f~, B(x o, 2r)) 
~,p(Xo, r) = capp(B(x o, r), B(x o, 2r)) 

is proportional to 

r p-" capp(B(xo, r)\ f~, B(xo, 2r)). 

We have 0 ~ 7p(x o, r) ~< 1. The Wiener integral 

f 1 7p(Xo, r)l/~p- i) r-  1 dr W.(xo) 
3o 
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measures how much boundary the domain f~ has in a potential theoretic sense near 

the point xo. The boundary point x o is called regular, if Wp(xo) = o~. At such boundary 
points the eigenfunctions take the right boundary value in the classical sense. If 
Wp(xo) = ~ ,  then 

lim up(x) = O. 

(The divergence of the integral is also known to be necessary* when p > n - 1 or p = 2.) 

5.5. THEOREM.  Suppose that up is the first eigenfunction in f], up > O. I f  x o ~ df~, 
then 

% ( x ) < < . C l e x p ( - C 2 f ? T p ( X o , t ) l / ' P - x ~ t - ~ d t ) ,  (5.6) 

when x e ~  and Ix - Xot < r <~ R. Here C 1 and C 2 are positive constants depending 
only on n, p and the maximum of  up in f~ c~ B(xo, 2R). 

I f  0 <<. up <~ M for each p in the range [ct,/3], 1 < ~ < 13 < 0% then 

sup C 1 < ~  and inf C 2 > 0 .  

Proof. This is essentially ([51 Theorem 2.7, p. 31). The constants in the proof of 
Gariepy and Ziemer are easily calculated in our case and they are seen to depend 
on p in the desired way. These expressions are not very illuminating themselves. For  
example one gets 

C 1 ~< 2R(2 + ~ 1-~p]l/(P-1)~] + max up(x). 
Ix-xol~2R 

The straightforward calculation of C 2 as in [5] is lengthy and in our special case it 
seems likely that the procedure could be shortened. However, such improvements 
are not essential. [ ]  

Let us analyze (5.6) in the favourable case p > n. Write B t = B(xo, t). Then 

( p  - n~, -1 
capp(Br\ fl, B2r)/> capv({Xo }, B2r) = C0n-1 \ p  __ l J  r ' -  p 

by (5.3), Using (5.3) again we see that 

7p(Xo, r)l/tp- 1) >i 1 - 2 ~p-n)/~l -p) = c(n,p) 

*Note added in proof; T. Kilpelainen has kindly informed me that the manuscript "The Wiener Test and 
Potential Estimates for Quasilinear Elliptic Equations" by T. Kilpel/iinen and J. Mal~, proves the necessity 
for all values of p, 1 < p < to. 
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at each boundary point x o. (Unfortunately, c(n,p) approaches zero, as p--*n+.) 
Integrating we find that (5.6) becomes 

up(x)<~Cl(!X~RX°')~ ( p > n )  (5.7) 

where x ~ f~ and tx - Xot < R. Here ~ is the positive number c(n, p)C 2. The constants 
C 1 and ~ do not depend on the boundary point chosen. Needless to say, this uniform 
H61der estimate at the boundary can be achieved by simpler tools in this favourable 
situation, when p > n. 

Essentially the same method yields a similar boundary Hrlder  estimate for any 
p > 1 in domains satisfying the exterior cone property. A sharper result is given in 
the proof of Theorem 6.1. 

Those boundary points Xo for which the Wiener integral converges, i.e. Wp(xo) < o% 
are called irregular. They form the irregular set Fp. It may be empty (as is always 
the case, when p > n), but it can never be large, according to the Kellogg property 
proved by Hedberg and Wolff. See [6] for this deep result. The Kellogg property 
means that the Sobolev p-capacity of Fp is zero. 

It does not seem to be known whether Fp is a Borel set or not. Fortunately, a 
weaker version of the Kellogg property, avoiding the complications in the structure 
of Fp, is sufficient for our counter example in Section 7. Namely, every compact set 
K in F v has zero capacity: given any E > O, there is a function q~ ~ C~ (f~) such that 
O <<. q~ <. l, ~o = l in K, and 

fR (I~OIP + IV~olP)dx ~. < (5.8) 
n 

The integrand in the Wiener integral, practically speaking, grows with p. Consequently, 
Wp+,(Xo) = ~ for every c > 0 / f  Wp(x0) = ~ .  This is included in the well-known 
inequality below. 

5.9. LEMMA. For 1 < q < p < ~ we have 

?t nq  1 

~'~(Xo, r)q--~ ~< 2~x~p(Xo, r)p: 1. 

Proof Denote D r = B(xo, r)\ f~ and B, = B(x o, r). By (5.2) we have 

1 1 

)'capp(D,,Bz~)~e---=-f ~,,q-1),p-1, ~cap~(D,, B2,)~q--=T + v-q. 

1 p - - q  

~'caPp(D,, B2,!tp --=T )'capp(B~, B2,)lp~q- 1)~- 1) 
~<~ ~o,_1(2r)" J ~ o9,_1(2r)" J 

Dividing by [capq(B,, B=,)/m,_ 1(2r)"] 1/~q- 1) we arrive at 

(5.10) 
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y,(Xo,r)~-I <<. 7,(Xo,r)Pz-~capq(B,,Bz,)~ ~ 

( 'g.51(2r)" J ) 

after some arithmetic. Now the inequalities (5.4) yield the constant 2 n~/(~- 1) [] 

6. Uniform Convergence 

The normalized eigenfunctions u s need not converge uniformly in the whole domain, 
not even in the case s---->p+, when p ~< n. A simple counterexample in the case p = n 
is provided by the punctured unit ball f~ = {x ~ R" I 0 < Ixj < 1}. Now lim:,_~ o u~(x) = 0 
for s > n but limx ~ o u,(x) ~ O. 

In regular domains the situation is better. The analogue of the theorem below for 
equations of the type div(tVulp-2Vu) = 0 is credited to Martio. Actually, a much 
simpler version is sufficient for our example in Section 7. 

6.1. THEOREM. Suppose that Wp(xo) = ~ at every boundary point x o of f~. Then 
u~--~ up uniformly in ff as s---~p +. The same holds as s---~p-, if for some q < p, 
Wq(xo) = oo at every boundary point x o EOD,. 

Proof Suppose first that p < s < p + 1. For x E ff, Ix - Xo[ < r ~< 1, Theorem 5.5 
and Lemma 5.9 yield the estimate 

u~(x)<~Cxexp(-2np/~P-~)c2 f f  Yp(Xo, t)l/~P-1)t-ldt), (6.2) 

where the positive constants C 1 and C 2 depend only on n and p. This shows that the 
family {us [p < s < p + 1} is uniformly equicontinuous in ~. To be more precise, take 
c > 0. To each boundary point ~ there is a radius r e such that u~(x)< E/2, when 
x ~ B(~, re)c~ ~. The open balls B(~, re) cover the boundary Off, even their centers do 
it. By compactness there is a finite subcover. The construction yields a 6, (=  the 
smallest of the radii) such that us(x) < c/2, when x e f and dist(x, 0f~) < fiE. Restricted 
to any compact set in f~ (here we have the set dist(x, 0f~) >~ ~, in mind) the function 
family is uniformly equicontinuous according to the local H61der-continuity estimates. 
This is standard elliptic regularity theory. Altogether, this proves the desired 
equicontinuity. The family is uniformly bounded by Lemma 4.1. 

By the theorem of Ascoli the convergence is uniform in ff, at least for a subsequence. 
But Theorem 3.6 shows that all subsequences have the same limit, namely up. 

The case s---~ p -  is proved in the same way, but with p replaced by q in (6.2). Note 
that this estimate also implies that the limit function u = lim u s of any subsequence 
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in Ascoli's theorem takes the boundary values zero at each boundary point. This 
shows that u ~ Wo~'P(f~). According to Lemma 3.12 u is the right function, that is up. 

[] 

It is not difficult to show that the eigenfunctions u s converge locally uniformly, 
though they might converge towards the wrong solution of the equation 
div(IVul"-2Vu) + 21ul~-2u = 0, the failure being due to effects near the boundary. 
However, much deeper knowledge is needed to establish that also their gradients 
converge locally uniformly. 

6.3. THEOREM. Given any sequence converoin9 to p, there is a subsequence s 1, s 2, s a . . . .  
and a weak solution u to the equation div(IVulp-2Vu) Jr );lulp- Eu -- 0, ,~ = limj_,~o 2~j, 
such that usj--~ u and Vu~--~ Vu locally uniformly in f~. (It is possible that u is not u~ !) 

Proof By an advanced result in regularity theory u~ is in C]o~'(f~). According to 
1-19] or ([2] Theorems 1 and 2) we have the following estimates: given any compact 
set K in f~, there are constants Lr, Mx,  and e(s) > 0 such that 

IVus(x)l ~< M x, IVu~(x) - Vu~(y)l ~< LKIx -- yl ~¢s) (6.4) 

when x, y e K. Here L K, MI¢, and ~(s) depend only on s, n, K and the maximum of 
u~ in f~. But the uniform bound for max ]%! in Section 4 shows that the constants 
depend only on s, n, K. The dependence of s for the constants in these estimates is 
of a continuous nature: The family (Vu~}r is equicontinuous when s is restricted to 
any fixed dosed interval [a, b] in ] 1, oo[. Especially, inf,~,~ b 0~(s) > 0, when K is fixed. 
This requires a thorough analysis of the regularity proofs and some minor adjustments 
are necessary especially when n e]a, b[. We skip this lengthy routine verification, 
here. The resulting local convergence of gradients is not used later. 

Choosing an exhaustion of f~ with compact sets and using a standard process of 
diagonalization we can construct a sequence sl, s2, s3 . . . .  of indices converging to p 
and a function u~C~(f~) such that u~j---*u and Vusj--*Vu locally uniformly in f~. At 
each step of the construction the theorem of Ascoli yields a subsequence. The 
normalization prevents the sequence from degenerating: u ~ 0. 

By Equation (2.2) 

; IV%l~-ZVus/V~ldx f lVulP-ZVu'V~ldx 
lim 2~ = lim = 

J ~  f n l u , y ~ - Z % n d x  f luJV-2undx 

(6.5) 

whenever q ~ C~°(t)), because of the uniform convergence in the support of the 
test-function r/. This means that div([Vulp-2Vu) + 21u[P-Zu = 0 in the weak sense, 
where 2 = lim 2s~. Since each u s > 0, we have u ~> 0 by the construction and hence 
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u > 0 by the Harnack inequality. This is a specific property of the first eigenfunctions. 
Only the first eigenfunctions are positive [8]. This means tha t / f  2 is an eigenvalue, it is 2p. 

We have come to a delicate point. Although u is the solution to the right equation 
it is not always the right eigenfunction u v. The example in Section 7 will explain this 
strange phenomenon as one caused by the boundary values: although u belongs to 
Wi'p(~) and to every Wol'V-~(fl), E > 0, it may fail to be in Wol'p(f~). Neither does 

the above construction show that lims_,p2 s would exist, the reason being that u 
depends on the particular sequence s~,s2,s3,. . . .  Therefore nothing further comes 
out of this proof. [] 

7. A Domain with lims_.,p- Zs < Zp 

Given any p in the range ] l , n ]  we shall construct a domain with lims_~p_ 2~ < 2p 
and analyse what happens to the corresponding eigenfunctions, as s----~ p - .  To this 
end we need a very small set, yet of positive p-capacity. It will be constructed as a 
Cantor set according to a precise criterion, originally due to Nevanlinna, cf. [13], 
and later extended by Ohtsuka, cf. [14], and others. To be on the safe side we have 
included the following lemma. 

7.1. LEMMA. Suppose that 1 < p <~ n. Then there is a compact set  Fp such that 

cappFp > 0 and capsF p = 0, when s < p. Moreover, Fp can be constructed as a Cantor set. 

Proof Suppose that 11,12,... a re  positive numbers with 2/j+1 < lj. Let us first 
construct a set on the real line. Let A l = [0,/1], A2 = E 0 , / 2 ]  • [-11 - -  /2, I l l  . . . . .  The 
set Aj is the union of 2 j -  i disjoint dosed intervals of length lj. Delete an open segment 
in the middle of each of these 2 j -  ~ intervals so that each of the remaining intervals 
has length t~+ 1. The union of these 2 j dosed intervals is Aj+ 1. The set A = ~Aj  is 
compact and of linear measure zero. 

To obtain a set in R n, just take the Cartesian product A x A x --- × A, i.e., 

F v = N Aj × Aj × " "  × Aj. 
j = t  

This set is compact. We choose 

. P -  . . . . .  

J"-P (1 < < n) lj = 2Jn/(n_p) , p 

if p < n. Then 2l~+ 1 < lj for j = 2, 3 , . . . .  The construction for the border-line case 
p = n is given in ([10] Example 4.7 and Corollary 4.5, p. 116). 

By the afore-mentioned extension of Nevanlinna's criterion capsF p > 0 if and only 
if the series 
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for  

convergent sum 

i = I  

converges. Here 1 < s < n. See ([12] §7.2.3, Proposition 5, p. 358). The above sum is 

2 ~s- ~ )¢n- , )  

l~n - s) 
1= i j ( s -  i)( .-p) 

1 < s ~< p. This is clearly divergent, when s < p, but for s = p we have the 

This proves the lemma. 

j = i  

[] 

The set Fp has Lebesgue measure zero. (Actually, the Hausdorff dimension is n - p.) 
The constructed Cantor set Fp lies in the open cube 0 < x I < 1,... ,0 < x, < 1. 

Now we are ready for the counter example. Let Q denote the open cube 
Ixll < 1 , . . . ,  Ix.I < 1. Then ~ = Q\Fp is a domain and the Cantor set Fp is part of 
the boundary of t). We shall show that lim,_~ p_ 2p < 2~ and that the normalized 
eigenfunctions up in f~ converge towards the 'wrong' function. The idea is very simple. 

a and u~ are essentially different functions. u~ in f~, when s < p. Second, up First, us = 
Third, "Q---~" Q uniformly in Q, the cube Q being a very regular domain. Combining /'~s Up 

these facts we have that up = u~--+ up e ~ u~ as s---~ p - ,  the convergence being uniform 
in ~q. Because the eigenfunctions are continuous, llu~ - up"tll > 0, and so not even in 
Ll(f~) does up converge to u~! 

As far as the eigenvalues are concerned, 2p = 2 e~, when s < p  and so 
lim2~ = lim2~ = 2~ since Q is regular. But 2~ < 2~, as we will see. 

To prove these statements, let us first consider the case s < p. Now cap~Fp = 0. 
We shall first show that u~ is in WoL~(f~), which implies that 

falVu rdx fQ[v. , dx 

Of course 2f ~< 2p. Hence 2p = 2~ and by the uniqueness of first eigenfunctions 
u] = up. (Remember the normalization I[u~ll~ = 1.) Since cap~Fp = 0 there is, given 

e > 0, a function q~ in C~(Q) such that 0 ~< ~0 ~< 1, rp = 1 in an open neighbourhood 
of Fp, and IIV~oll~ < e. Now (1 - ~0)u~ is in W~'~(f~) and it follows that the Wl'~-norm 
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Ilu~ - (1 - ~o)u~ I1 = II~Ous Q [I approaches zero, as e ~ 0. As a limit of functions in WoX'~(f~), 
u~ itself is in Wol'~(f2). 

Q ~ u~. By the Kellogg property* (Section 5) there must exist Next we show that up 
regular points in F v with respect to f~. Otherwise the condition capvF v > 0 cannot 
be fulfilled. If z o e F  v is such that Wp(xo) = ~ ,  then limx_.xoUpn(x) = 0. But by the 
Harnack inequality u~(Xo) > O, x o being an interior point in Q. By the uniqueness 
of first eigenfunctions in any domain, this behaviour clearly prevents u~ from being 
an eigenfunction also in f~. 

It is now evident that 2~ < 2~. Indeed, one can modify up near x o so that the 
Rayleigh quotient decreases while the modified function is in Wo~'P(Q). (If m > 0 is 

~ ~ by the minimum of up on the cube max{lxll,. . . ,lxnl} = 3/4, then replace up 
max {u~, m/2} near Fp. The outer boundary values on 8Q are not affected, but at least 
near x o there will be a favourable change for the Rayleigh quotient. Namely, for the 
modified function the LP-norm has increased strictly and the LP-norm of the gradient 
has decreased.) 
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