Comparaison des semi-groupes et des résolvantes d'ordre α associés à des opérateurs différentiels de type divergence*

MOHAMED SELMI

Université de Tunis - II, Faculté des Sciences de Tunis, Campus Universitaire, 1060 Tunis, Tunisie.

(Reçu: 27 novembre 1991; accepté: 21 septembre 1992)

Abstract. We prove that the densities of the semi-groups of order α , $0 < \alpha < 1$ associated with differential operators of second order and of divergence type, and the density of Riesz semi-groups of order α are comparables.

We give a necessary and sufficient condition such that the semi-group of order α and its resolvent family and their perturbated with a nonnegative and regular Radon measure are comparables.

When $\alpha = 1$, we prove that the semi-group of brownian motion and its perturbated with a radial and nonnegative measure are comparables if and only if the measure generates a bounded potential, but the result is not true if the measure is not radial.

Mathematics Subject Classifications (1991). 31B35, 35P05, 47F05.

Key words. Resolvents, comparable semi-groups, perturbed Green functions, exact regular measure.

1. Introduction

Nous considérons la famille d'opérateurs différentiels du second ordre de type divergence à coefficients mesurables et uniformément elliptiques sur \mathbb{R}^n $(n \ge 1)$.

Pour un opérateur de cette famille nous notons par p(t, x, y) la densité du semi-groupe associé, G la fonction de Green et V le noyau potentiel associés. Les lettres indexés par 0 désignent les éléments correspondants à l'opérateur de Laplace Δ . Les lettres qui portent l'exposant α désignent les éléments correspondants à l'opérateur $(-L)^{\alpha}$ obtenu à partir de L au moyen de la subordination au sens de Böchner.

Dans [2], [7] et [8] les auteurs ont démontré qu'il existe $c = c(n, \lambda)$ telle que:

$$\frac{1}{C^{n/2+1}}p_0(t/c, x, y) \leqslant p(t, x, y) \leqslant C^{n/2+1}p_0(ct, x, y)$$

pour tout t > 0, $x, y \in \mathbb{R}^n$.

Les principaux résultats de ce travail sont les suivants.

^{*}Ce travail est soutenu par la Fondation Nationale pour la Recherche Scientifique.

Nous démontrons qu'il existe $c = c(n, \lambda, \alpha)$ telle que:

$$\frac{1}{C}p_0^{\alpha}(t,x,y) \leqslant p^{\alpha}(t,x,y) \leqslant Cp_0^{\alpha}(t,x,y)$$

pour tout t > 0, $x, y \in \mathbb{R}^n$.

Nous démontrons aussi que le semi-groupe associé à $(-L)^{\alpha}$ et son perturbé par une mesure de Radon positive régulière exacte sont comparables si et seulement si $G^{\alpha}\mu$ est borné.

Nous terminons ce travail par l'étude du cas limite $\alpha = 1$.

Nous démontrons que le semi-groupe du mouvement brownien et son perturbé par une mesure de Radon positive régulière exacte radiale sont comparables si et seulement si $G_0\mu$ est borné.

Mais si μ n'est pas radiale ce dernier résultat n'est pas en général vrai. Pour cela nous donnons un contre-exemple de fonction ϕ dont le potentiel de Newton associé est borné mais le semi-groupe du mouvement brownien et son perturbé par φ ne sont pas comparables pour $(n \ge 4)$.

Je remercie Monsieur le Professeur W. Hansen pour les discussions trés fructueuses que j'ai eues avec lui et pour l'intérêt et le soin qu'il a portés pour que ce travail puisse voir le jour.

Nous nous donnons la famille $\mathcal{L}(\mathbb{R}^n, \lambda)$ des opérateurs différentiels du second ordre de type divergence à coefficients mesurables sur \mathbb{R}^n $(n \ge 1)$ définis par $L \in \mathcal{L}(\mathbb{R}^n, \lambda)$

$$L = \sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} \left(a_{ij}(x) \frac{\partial}{\partial x_j} \right).$$

Nous supposons que la matrice associée $a(x) = (a_{ij}(x))_{1 \le i,j \le n}$ est symétrique $(a_{ij}(x) = a_{ji}(x))$ pour tout $1 \le i,j \le n$ et tout $x \in \mathbb{R}^n$) et que L est uniformément elliptique sur \mathbb{R}^n :

$$\lambda |\xi|^2 \leqslant \sum_{i,j=1}^n a_{ij}(x)\xi_i\xi_j \leqslant \lambda^{-1}|\xi|^2$$
 pour tout $x, \xi \in \mathbb{R}^n$.

Pour $L \in \mathcal{L}(\mathbb{R}^n, \lambda)$, nous notons par G la fonction de Green de L sur $\mathbb{R}^n \times \mathbb{R}^n$ et par V le noyau de densité G (quand les expressions existent).

 G_0 désigne la fonction de Green de Δ sur $\mathbb{R}^n \times \mathbb{R}^n$ et V_0 le noyau de densité G_0 (quand les expressions existent).

DÉFINITION 1. Soit $L_1, L_2 \in \mathcal{L}(\mathbb{R}^n, \lambda)$. Soient G^1 , G^2 les fonctions de Green de L_1 resp. (L_2) . Nous dirons que G^1 et G^2 sont comparables s'il existe une constante c > 0 telle que

$$\frac{1}{c}G^1 \leqslant G^2 \leqslant cG^1.$$

DÉFINITION 2. [13]. Soit μ une mesure de Radon positive sur \mathbb{R}^n . On dit que μ est L exacte s'il existe un unique noyau $^{\mu}V$ qui vérifie $Vf = {^{\mu}V}f + G({^{\mu}V}f\mu)$.

REMARQUE 1. Soit μ une mesure de Radon. Alors μ est Δ exacte si et seulement si μ est L exacte pour tout $L \in \mathcal{L}(\mathbb{R}^n, \lambda)$.

Démonstration. L'équivalence découle du fait que G et G_0 sont comparables sur $\mathbb{R}^n \times \mathbb{R}^n$. Pour $L \in \mathcal{L}(\mathbb{R}^n, \lambda)$ et μ une mesure régulière L exacte, on considère le noyau $^{\mu}V$ perturbé de V par μ et $^{\mu}G$ la fonction de Green associée a $^{\mu}V$ qui n'est autre que la fonction de Green de $L - \mu$.

DÉFINITION 3. Soient $L \in \mathcal{L}(\mathbb{R}^n, \lambda)$ et μ une mesure de Radon positive sur \mathbb{R}^n . On dit que μ est régulière si μ ne charge pas les semi-polaires de \mathbb{R}^n associés à la structure harmonique définie par L.

THÉORÈME 1. Soient $L \in \mathcal{L}(\mathbb{R}^n, \lambda)$ et μ une mesure L régulière exacte sur \mathbb{R}^n . Alors les fonctions de Green G et ${}^{\mu}G$ sont comparables si et seulement si $G\mu$ est borné.

Démonstration. Nous savons d'après [2], [7] et [8] que les fonctions G et G_0 sont comparables. D'autre part nous savons d'après [13] que les fonctions G et $^{\mu}G$ sont comparables si et seulement s'il existe une constante c > 0 telle que

$$\int_{\mathbb{R}^n} G(x, z)G(z, y) \, \mathrm{d}\mu(z) \leqslant cG(x, y) \quad \text{pour tout } x, y \in \mathbb{R}^n$$

ce qui est équivalent d'après [13], [16] au fait que $G\mu$ est bornée.

Nous allons nous intéresser maintenant aux noyaux de Riesz d'ordre α $0 < \alpha < 1$ associés à la famille $\mathcal{L}(\mathbb{R}^n, \lambda)$.

Nous savons d'après [5], [18] qu'il existe un unique semi-groupe $(\eta_{t,\alpha})_{t>0}$ de mesures de convolution sur $]0, \infty[$ qui vérifie

$$\int_0^\infty e^{-\lambda a} \, \mathrm{d}\eta_{t,\alpha}(\lambda) = e^{-ta^{\alpha}}$$

pour tout a > 0, t > 0, $0 < \alpha < 1$.

C'est un semi-groupe de mesures à densités par rapport à la mesure de Lebesgue sur $]0, \infty[$. Si on note $f_{t,\alpha}(\lambda)$ la densité de $\eta_{t,\alpha}$ nous avons d'après [18]:

$$f_{t,\alpha}(\lambda) = \frac{1}{\pi} \int_0^\infty \exp(\lambda r \cos \theta - t r^\alpha \cos \alpha \theta) \sin(\lambda r \sin \theta - t r^\alpha \sin \alpha \theta + \theta) dr$$

où θ est compris entre $\pi/2$ et π et

$$f_{t,\alpha}(\lambda) > 0 \quad \forall t > 0 \quad \forall \alpha \quad 0 < \alpha < 1 \quad \forall \lambda > 0.$$

Pour $L \in \mathcal{L}(\mathbb{R}^n, \lambda)$ nous notons par \mathbb{P} le semi-groupe associé, par p(t, x, y) la densité de \mathbb{P} , par \mathbb{P}_0 le semi-groupe associé à Δ et par $p_0(t, x, y)$ la densité de \mathbb{P}_0 .

Nous savons aussi d'après [2], [7] et [8] qu'il existe une constante c > 0 telle que:

$$\frac{1}{c^{n/2+1}}p_0\left(\frac{t}{c}, x, y\right) \le p(t, x, y) \le c^{n/2+1}p_0(ct, x, y) \tag{*}$$

pour tout t > 0, $x, y \in \mathbb{R}^n$.

Soient $L \in \mathcal{L}(\mathbb{R}^n, \lambda)$ et $\alpha \in \mathbb{R}$, $0 < \alpha < 1$. Nous pouvons d'après [18] associer au semi-groupe \mathbb{P} le semi-groupe d'ordre α noté \mathbb{P}^{α} au moyen de la subordination au sens de Böchner définie par:

$$P_t^{\alpha}g(x) = \int_0^{\infty} P_s g(x) \eta_{t,\alpha}(\mathrm{d}s) = \int_0^{\infty} P_s g(x) f_{t,\alpha}(s) \, \mathrm{d}s$$

pour g mesurable bornée.

Si on note $p^{\alpha}(t, x, y)$ la densité de \mathbb{P}^{α} nous avons:

$$p^{\alpha}(t, x, y) = \int_{0}^{\infty} p(s, x, y) f_{t,\alpha}(s) \, \mathrm{d}s$$

 \mathbb{P}^{α} est un semi-groupe holomorphe dont le générateur infinitesimal est d'après [18]: $(-L)^{\alpha}$. Pour $L \in \mathcal{L}(\mathbb{R}^n, \lambda)$, $0 < \alpha < 1$, on note par V^{α} le noyau potentiel associé à \mathbb{P}^{α} et par G^{α} la fonction de Green associée.

LEMME 1. Soit $\alpha \in]0,1[$, il existe une constante $c=c(n,\lambda,\alpha)$ telle que pour $n\geqslant 1$ on ait

$$\frac{1}{c}G_0^{\alpha} \leqslant G^{\alpha} \leqslant cG_0^{\alpha}$$

pour tout $L \in \mathcal{L}(\mathbb{R}^n, \lambda)$.

Démonstration. Nous avons d'après (*):

$$\frac{1}{c^{n/2+1}}P_0\left(\frac{s}{c},x,y\right) \leqslant P(s,x,y) \leqslant c^{n/2+1}P_0(cs,x,y) \quad \text{pour tout } s > 0, \text{ tout } x, y \in \mathbb{R}^n.$$

On multiplie cette inégalité par $f_{t,\alpha}(s)$ et on intègre sur $]0,\infty[$, nous obtenons en utilisant [11], [14]:

$$\frac{1}{c^{n/2+1}}\int_{\mathbb{R}^n}e^{-c^{\alpha}t|\xi|^{2^{\alpha}}+i\langle x-y,\xi\rangle}d\xi \leqslant p^{\alpha}(t,x,y) \leqslant c^{n/2+1}\int_{\mathbb{R}^n}e^{-t/c^{\alpha}|\xi|^{2^{\alpha}}+i\langle x-y,\xi\rangle}d\xi,$$

On intégre par rapport à t sur $]0, \infty[$ en utilisant le théorème de Fubini et le changement de variables $s = c^{\alpha}/t$ dans l'intégrale à gauche et $s = t/c^{\alpha}$ dans l'intégrale à droite nous aurons alors:

$$\frac{1}{c^{n/2+1-\alpha}}G_0^{\alpha}(x,y) \leqslant G^{\alpha}(x,y) \leqslant c^{n/2+1-\alpha}G_0^{\alpha}(x,y)$$

soit encore pour tout $x, y \in \mathbb{R}^n$:

$$\frac{1}{c^{n/2+1-\alpha}} \frac{1}{|x-y|^{n-2\alpha}} \leqslant G^{\alpha}(x,y) \leqslant c^{n/2+1-\alpha} \frac{1}{|x-y|^{n-2\alpha}}.$$

Remarquons enfin que $c = c(n, \lambda, \alpha)$.

Soit μ une mesure $(-L)^{\alpha}$ régulière exacte, on désigne par ${}^{\mu}G^{\alpha}$ la fonction de Green du noyau associé à $(-L)^{\alpha} + \mu$.

THÉORÈME 2. Soient $L \in \mathcal{L}(\mathbb{R}^n, \lambda)$, $0 < \alpha < 1$ et μ une mesure $(-L)^{\alpha}$ régulière exacte. Alors les fonctions de Green G^{α} et ${}^{\mu}G^{\alpha}$ sont comparables si et seulement si $G^{\alpha}\mu$ est borné. Démonstration. Comme μ est $(-L)^{\alpha}$ régulière et exacte, la fonction ${}^{\mu}G_{\alpha}$ est bien définie et nous avons $V^{\alpha}f = {}^{\mu}V^{\alpha}f + G^{\alpha}[({}^{\mu}V^{\alpha}f)\mu]$ pour f mesurable positive bornée.

Par suite d'après [13], [16] les fonctions G^{α} et ${}^{\mu}G^{\alpha}$ sont comparables si et seulement s'il existe une constante k > 0 telle que

$$\int_{\mathbb{R}^n} G^{\alpha}(x, z) G^{\alpha}(z, y) \, \mathrm{d}\mu(z) \leqslant k G^{\alpha}(x, y) \quad \text{pour tout } x, y \in \mathbb{R}^n$$

or nous avons d'après [16]:

$$G^{\alpha}(x,z)G^{\alpha}(z,y) \leq c^{n+2-2\alpha}G_0^{\alpha}(x,z)G_0^{\alpha}(z,y) \leq 2^{n-2\alpha}c^{n+2-2\alpha}G_0^{\alpha}(x,y)[G_0^{\alpha}(x,z) + G_0^{\alpha}(y,z)]$$

$$\leq 2^{n-2\alpha}c^{2(n+2-2\alpha)}G^{\alpha}(x,y)[G^{\alpha}(x,z) + G^{\alpha}(y,z)].$$

Ce qui entraine:

$$\int_{\mathbb{R}^n} G^{\alpha}(x,z)G^{\alpha}(z,y) d\mu(z) \leqslant 2^{n-2\alpha} c^{2(n+2-2\alpha)} G^{\alpha}(x,y) \int_{\mathbb{R}^n} \left[G^{\alpha}(x,z) + G^{\alpha}(y,z) \right] d\mu(z).$$

Il en résulte d'après [13], [16] que si $G^{\alpha}\mu$ est bornée alors G^{α} et ${}^{\mu}G^{\alpha}$ sont comparables. La condition $G^{\alpha}\mu$ borné est nécessaire d'après [13] car 1 est $(-L^{\alpha})$ excessive.

Soit $L \in \mathcal{L}(\mathbb{R}^n, \lambda)$, $\alpha \in]0, 1[$, on note par G_p^{α} la densité de la résolvante $\mathbb{V}^{\alpha} = (V_p^{\alpha})_{p \geq 0}$.

LEMME 2. Soit $\alpha \in]0,1[$, il existe $c = c(\eta,\lambda,\alpha)$ tel que pour tout $L \in \mathcal{L}(\mathbb{R}^n,\lambda)$ et pour tout $p \ge 0$ on ait pour tout $x,y,z \in \mathbb{R}^n$

$$G_p^{\alpha}(x,z)G_p^{\alpha}(z,y) \leq cG_p^{\alpha}(x,y)[G_p^{\alpha}(x,z) + G_p^{\alpha}(z,y)].$$

Démonstration. Si on note par $p^{\alpha}(t, x, y)$ la densité du semi-groupe associé à $(-L)^{\alpha}$ nous avons l'inégalité:

$$\frac{1}{c^{1+n/2}}p_0\left(\frac{s}{c}x,y\right) \leqslant p(t,x,y) \leqslant c^{n/2+1}p_0(cs,x,y) \quad \forall s > 0 \quad \forall x,y \in \mathbb{R}^n.$$

On multiplie par $e^{-pt}f_{t,\alpha}$ et on intégre sur $[0,\infty[$. Nous obtenons en utilisant le théorème de Fubini:

$$\frac{1}{c^{n/2+1}} \int_{\mathbb{R}^n}^{\infty} \int_0^{\infty} e^{i(x-y|\xi)-pt-C^2t|\xi|^{2^{\alpha}}} dt d\xi \leqslant G_p^{\alpha}(x,y)
\leqslant c^{1+n/2} \int_{\mathbb{R}^n}^{\infty} \int_0^{\infty} e^{i(x-y|\xi)-pt-t/C^2|\xi|^{2^{\alpha}}} dt d\xi$$

Nous utilisons les changements de variables $s = c^{\alpha}t$ dans l'expression à gauche et $s = t/c^{\alpha}$ dans l'expression à droite. Nous obtenons:

$$\frac{1}{c^{n/2+1-\alpha}}(G_0^{\alpha})_{pc^{\alpha}}(x,y) \leqslant G_p^{\alpha}(x,y) \leqslant c^{1/2+1-\alpha}(G_0^{\alpha})_{p/c^{\alpha}}(x,y) \quad \text{pour tout } x,y \in \mathbb{R}^n.$$

D'autre part d'après [16] les fonctions de Green $(G_0^a)_{pc^a}$ et $(G_0^a)_{p/c^a}$ sont comparables: il existe $c = c(n, \alpha)$ telle que

$$(G_0^{\alpha})_{pc^{\alpha}} \leqslant (G_0^{\alpha})_{p/c^{\alpha}} \leqslant c(n,\alpha)(G_0^{\alpha})_{pc^{\alpha}}.$$

En effet: soient 0 < a < b alors les fonctions de Green $(G_0^a)_{ap}$ et $(G_0^a)_{bp}$ sont uniformément comparables par rapport à p car nous avons:

$$(G_0^{\alpha})_{ap} = (G_0^{\alpha})_{bp} + ap(V_0^{\alpha})_{ap} \left[\left(\frac{b}{a} - 1 \right) (G_0^{\alpha})_{bp} \right]$$
 (1)

et d'après [16] nous avons:

$$(G_0^{\alpha})_{ap}(x,z)(G_0^{\alpha})_{ap}(z,y) \leqslant \frac{2^{n+2\alpha}}{\sin^2(\alpha\pi)}(G_0^{\alpha})_{ap}(x,y)[(G_0^{\alpha})_{ap}(x,z) + (G_0^{\alpha})_{ap}(z,y)] \tag{2}$$

ce qui entraine que:

$$ap(V_0^\alpha)_{ap}\left[\left(\frac{b}{a}-1\right)\!(G_0^\alpha)_{ap}\right]\leqslant ap(V_0^\alpha)_{ap}\left[\left(\frac{b}{a}-1\right)\!(G_0^\alpha)_{ap}\right]\leqslant \frac{2^{n+2\alpha+1}}{\sin^2(\alpha\pi)}\left(\frac{b}{a}-1\right)\!(G_0^\alpha)_{ap}.$$

Par suite si $k = [2^{n+2\alpha+1}/\sin^2(\alpha\pi)](b/a-1) < 1$ nous obtenons que:

$$(1-k)(G_0^{\alpha})_{ap} \leqslant (G_0^{\alpha})_{bp} = (G_0^{\alpha})_{ap+(b/a-1)ap}$$

soit encore $(1-k)(G_0^{\alpha})_{ap} \leq (G_0^{\alpha})_{ap+[k(\sin^2\alpha\pi)/(2^{n+2\alpha+1})]ap}$.

Soit $v = 1/k(1 + b/a)2^{n+2\alpha+1}/\sin^2(\alpha\pi)$ nous avons d'après [12], [13] et [16]:

$$(1-k)^{\gamma}(G_0^{\alpha})_{ap} \leqslant (G_0^{\alpha})_{ap} + k \cdot \nu \frac{\sin^2(\alpha \pi)}{2^{n+2\alpha-1}} ap = (G_0^{\alpha})_{bp}$$

ce qui démontre que $(G_0^{\alpha})_{ap}$ et $(G_0^{\alpha})_{bp}$ sont uniformément comparables pour tout p > 0. Il existe alors une constante $c = c(n, \alpha, c)$ telle que

$$\frac{1}{c}(G_0^{\alpha})_{pc^{\alpha}}(x,y) \leqslant G_p^{\alpha}(x,y) \leqslant c(G_0^{\alpha})_{pc^{\alpha}}(x,y).$$

Il suffit donc de démontrer le Lemme 2 pour $L = \Delta$. Or nous avons d'après [16]

$$(G_0^{\alpha})_{pc^{\alpha}}(x,z)(G_0^{\alpha})_{pc^{\alpha}}(z,y) \leqslant \frac{2^{n+2\alpha}}{\sin^2(\alpha\pi)}(G_0^{\alpha})_{pc^{\alpha}}(x,y)[(G_0^{\alpha})_{pc^{\alpha}}(x,z) + (G_0^{\alpha})_{pc^{\alpha}}(z,y)]$$

pour tout $x, y, z \in \mathbb{R}^n$, ce qui démontre le Lemme 2.

THÉORÈME 3. Soient $L \in \mathcal{L}(\mathbb{R}^n, \lambda)$, $0 < \alpha < 1\mu$ une mesure $(-L)^{\alpha}$ régulière exacte. Alors pour tout p > 0 les fonctions de Green G_p^{α} et $({}^{\mu}G^{\alpha})_p$ sont comparables si et seulement si G_p^{α} μ est borné. En particulier les résolvantes associées à $(-L)^{\alpha}$ et $(-L^{\alpha}) + \mu$ sont comparables si et seulement si $G^{\alpha}\mu$ est borné.

Démonstration. Soit p > 0, d'après [12], [13] et [16] les fonctions de Green G_p^{α} et $({}^{\mu}G^{\alpha})_p$ sont comparables si et seulement s'il existe une constante k > 0 telle que

$$\int_{\mathbb{R}^n} G_p^{\alpha}(x, z) G_p^{\alpha}(z, y) \mu(\mathrm{d}z) \leqslant k G_p^{\alpha}(x, y) \quad \text{pour tout } x, y \in \mathbb{R}^n.$$

Or d'après le Lemme 2 qui précède nous avons:

$$\int_{\mathbb{R}^n} G_p^{\alpha}(x,z) G_p^{\alpha}(z,y) \, \mathrm{d}\mu(z) \leqslant c G_p^{\alpha}(x,y) \, \int_{\mathbb{R}^n} \left[G_p^{\alpha}(x,z) + G_p^{\alpha}(y,z) \right] \, \mathrm{d}\mu(z)$$

par suite si $\int_{\mathbb{R}^n} G_p^{\alpha}(x,z) d\mu(z)$ est bornée les noyaux de Green G_p^{α} et $({}^{\mu}G^{\alpha})_p$ sont comparables. La condition $G_p^{\alpha}\mu$ bornée est nécessaire d'après [13] car 1 est $(-L)^{\alpha} + p$ surmédiane.

En particulier si $G^{\alpha}\mu$ est borné, alors pour tout p>0, $G^{\alpha}_{p}\mu$ est borné ce qui entraine que $(G^{\alpha}_{p})_{p>0}$ et $({}^{\mu}G^{\alpha}_{p})_{p>0}$ sont comparables (i.e.: il existe c>0 telle que $G^{\alpha}_{p} \leqslant c({}^{\mu}G^{\alpha})_{p}$ pour tout p>0). Ce qui prouve que les résolvantes associées à $(-L)^{\alpha}$ et $(-L)^{\alpha}+\mu$ sont comparables.

La condition $G^{\alpha}\mu$ borné est évidemment nécessare d'après la première partie de la démonstration de ce théorème pour p=0.

COMPORTEMENT DE LA DENSITÉ DU SEMI-GROUPE DE RIESZ D'ORDRE α ASSOCIÉ À $(-\Delta)^\alpha$ SUR \mathbb{R}^n

Nous savons que la densité du semi-groupe de Riesz d'ordre α associé à $(-\Delta)^{\alpha}$ sur

R" est donnée d'après [11], [14] par:

$$p_0^{\alpha}(t, x, y) = \int_{\mathbb{R}^n} e^{-t|\xi|^{2\alpha} + i(x - y|\xi)} d\xi \quad \text{pour tout } t > 0, \quad x, y \in \mathbb{R}^n$$
$$= p_0^{\alpha}(t, x - y, 0).$$

On note encore $p_0^{\alpha}(t,x) = \int_{\mathbb{R}^n} e^{-t|\xi|^{2\alpha} + i(x|\xi)} d\xi$.

C'est une fonction radiale, elle est strictement positive décroissante: ceci est immédiat si on écrit $p_0^{\alpha}(t, x) = \int_0^{\infty} p_0(s, x) \eta_{t,\alpha}(s) ds$ avec $\eta_{t,\alpha} \ge 0$. On pose $\zeta = t^{1/2\alpha} \xi$, on obtient:

$$p_0^{\alpha}(t,x) = \frac{1}{t^{n/2\alpha}} \int_{\mathbb{R}^n} e^{-|\zeta|^{2\alpha} + i(x/t^{1/2\alpha}|\zeta)} d\zeta.$$

On pose

$$a = \frac{x}{t^{1/2\alpha}} \quad \text{et } \phi_{\alpha}(a) = \int_{\mathbb{R}^n} e^{-|\zeta|^{2\alpha} + i(\alpha|\zeta)} \,\mathrm{d}\zeta$$

on a alors:

$$p_0^{\alpha}(t,x) = \frac{1}{t^{n/2\alpha}} \phi_{\alpha} \left(\frac{x}{t^{1/2\alpha}}\right)$$

 ϕ_{α} est positive, radiale, décroissante et continue sur \mathbb{R}^n .

LEMME 3. Nous avons:

(1)
$$\phi_{\alpha}(a) \simeq \frac{\pi^{n/2} \Gamma\left(\frac{n}{2\alpha}\right)}{2\alpha\Gamma\left(\frac{n}{2}+1\right)}$$

quand |a| tend vers 0.

(2)
$$\phi_{\alpha}(a) \simeq \frac{2^{2\alpha} \sin \alpha \pi}{\pi^{n+2/2}} \Gamma\left(\frac{n+2\alpha}{2}\right) \Gamma(\alpha+1) \frac{1}{|a|^{n+2\alpha}}$$

quand |a| tend vers $+\infty$.

Démonstration. (1) D'après le théorème de convergence de Lebesgue nous avons:

$$\lim_{|a|\to 0} \phi_{\alpha}(a) = \lim_{|a|\to 0} \int_{\mathbb{R}^n} e^{-|\xi|^{2\alpha} + i(a|\xi|)} d\xi = \int_{\mathbb{R}^n} e^{-|\xi|^{2\alpha}} d\xi = v_n \int_0^\infty r^{n-1} e^{-r^{2\alpha}} dr = \frac{v_n}{2\alpha} \Gamma\left(\frac{n}{2\alpha}\right)$$

où v_n est les volume de la boule unité de $\mathbb{R}^n \cdot v_n = [\pi^{n/2}/\Gamma(n/2+1)]$. Ce qui démontre (1).

(2) Comportement de $\phi_{\alpha}(a)$ au voisinage de $+\infty$. Nous allons nous servir de la formule donnée dans [18] qui peut s'obtenir en faisant recours au changement de variables en coordonnées polaires dans \mathbb{R}^n

$$p_0^{\alpha}(t,x) = \frac{4}{(4\pi)^{\frac{n+2}{2}}} \int_0^{\infty} \int_0^{\infty} s^{(1-n/2)-1} e^{-|x|^2/4s} e^{-tu^{\alpha}\cos(\alpha\pi/2)} \cos\left(su - tu^{\alpha}\sin\left(\frac{\alpha\pi}{2}\right)\right) ds du$$

$$= \frac{2|x|^{1-n/2}}{(2\pi)^{(n+2)/2}} \int_0^{\infty} u^{1/2(n/2-1)} \left[\text{R\'e } e^{i(\pi/4)(n/2-1)} e^{-tu^{\alpha}e - i(\alpha\pi)/2} K_{n/2-1}(|x|u^{1/2}e^{i\pi/4}) \right] du$$

où $K_{n/2-1}$ est la fonction de Macdonald.

On fait le changement de variable $v = |x|u^{1/2}$, on obtient:

$$p_0^{\alpha}(t,x) = R\acute{e} \frac{4}{(2\pi)^{\frac{n+2}{2}}} \frac{1}{|x|^n} \int_0^\infty v^{n/2} e^{i(\pi/4)(n/2-1)} e^{-t(v^{2\pi}/|x|^{2\alpha})} e^{-i(\alpha\pi/2)} K_{n/2-1}(ve^{i(\pi/4)}) dv$$

ce qui permet d'écrire:

$$\phi_{\alpha}(a) = R\dot{e} \frac{4}{(2\pi)^{\frac{n+2}{2}}} \cdot \frac{1}{|a|^n} \int_0^\infty v^{n/2} e^{i(\pi/4)(n/2-1)} e^{-(v^{2\alpha}/|a|^{2\alpha})e^{-i(\alpha\pi)/2}} K_{n/2-1}(ve^{i\pi/4}) dv$$

On fait le développement de

$$\rho^{-(v^{2\alpha}/|a|^{2\alpha})}e^{i(\alpha\pi/2)}$$

par rapport à v et on intégre terme à terme nous obtenons

$$\begin{split} \phi_{\alpha}(a) &\simeq \text{R\'e} \frac{-4}{(2\pi)^{\frac{n+2}{2}}} \frac{1}{|a|^{n+2\alpha}} e^{+i(\pi/4)(n/2-1)-i\alpha(\pi/2)} \int_{0}^{\infty} v^{n/2+2\alpha} K_{n/2-1}(v e^{i(\pi/4)}) \, \mathrm{d}v \\ &= \frac{2^{2\alpha} \sin(\alpha \pi)}{\pi^{n+2/2}} \Gamma(\alpha+1) \Gamma\left(\frac{n+2\alpha}{2}\right) \frac{1}{|a|^{n+2\alpha}}. \end{split}$$

Ce qui démontre (2).

THÉORÈME 4. Soit $\alpha \in]0,1[\exists c=c(n,\lambda,\alpha) \text{ telle que pour tout } L\in \mathcal{L}(\mathbb{R}^n,\lambda) \text{ on ait:}$

$$\frac{1}{c}p_0^{\alpha}(t,x,y) \leqslant p^{\alpha}(t,x,y) \leqslant cp_0^{\alpha}(t,x,y) \quad \text{pour tout } t > 0 \quad x,y \in \mathbb{R}^n.$$

Démonstration. Nous avons d'après [2], [7], [8]:

$$\frac{1}{c^{1+n/2}}p_0\bigg(\frac{t}{c}, x, y\bigg) \leqslant p(t, x, y) \leqslant c^{1+n/2}p_0(ct, x, y)$$

ce qui nous donne d'après ce qui précède:

$$\frac{1}{c^{n/2+1-\alpha}}p_0^{\alpha}\left(\frac{t}{c^{\alpha}},x,y\right) \leqslant p^{\alpha}(t,x,y) \leqslant c^{n/2+1-\alpha}p_0^{\alpha}(c^{\alpha}t,x,y).$$

Il suffit alors de montrer que $p_0^\alpha(t/c^\alpha, x, y)$ et $p_0^\alpha(c^\alpha t, x, y)$ sont comparables ce qui revient à montrer que $\phi_\alpha(c^\alpha a)$ et $\phi_\alpha(a/c^\alpha)$ sont comparables. Or d'après le Lemme 3 nous avons:

$$\phi_{\alpha}\left(\frac{a}{c^{\alpha}}\right) \simeq \phi_{\alpha}(c^{\alpha}a) \simeq \frac{v_{n}}{2\alpha}\Gamma\left(\frac{n}{2\alpha}\right)$$

quand |a| tend vers 0

$$\phi_{\alpha}\left(\frac{a}{c^{\alpha}}\right) \simeq k \frac{c^{\alpha(n+2\alpha)}}{|a|^{n+2\alpha}}, \phi_{\alpha}(c^{\alpha}a) \simeq \frac{k}{c^{\alpha(n+2\alpha)}} \frac{1}{|a|^{n+2\alpha}} \text{ avec } k > 0$$

quand |a| tend vers $+\infty$, il s'en suit qu'il existe $c=c(n,\alpha,c)$ telle que

$$c^{-1}p_0^{\alpha}(t,x,y) \leqslant p_0^{\alpha}(c^{\alpha}t,x,y) \leqslant cp_0^{\alpha}(t,x,y)$$
 pour tout $x,y \in \mathbb{R}^n, t > 0$

ce qui démontre le Théorème 4.

LEMME 4. Soit $\alpha \in]0,1[$, il existe $c = c(n,\lambda,\alpha)$ telle que pour tout $L \in \mathcal{L}(\mathbb{R}^n,\lambda)$ la densité p^{α} du semi-groupe d'ordre α associé à $(-L)^{\alpha}$ vérifie:

$$p^{\alpha}(s,x,z)p^{\alpha}(t-s,z,y) \leqslant cp^{\alpha}(t,x,y)[p^{\alpha}(s,x,y)+p^{\alpha}(t-s,z,y)]$$

pour tout 0 < s < t et $x, y, z \in \mathbb{R}^n$.

Démonstration. D'après le Théorème 4 précédent, il suffit de démontrer le résultat pour $L = \Delta$. Pour des raisons de symétrie, il suffiit de démontrer le résultat pour $0 < s \le t/2$.

En utilisant la propriété $p_0^{\alpha}(t,x) = 1/t^{n/2\alpha}\phi_{\alpha}(x/t^{1/2\alpha})$, il suffit de démonstrer qu'il existe c > 0 telle que:

$$\frac{\left(\frac{1}{s(t-s)}\right)^{n/2\alpha}\phi_{\alpha}\left(\frac{x-z}{s^{1/2\alpha}}\right)\phi_{\alpha}\left(\frac{z-y}{(t-s)^{1/2\alpha}}\right)}{\frac{1}{s^{n/2\alpha}}\phi_{\alpha}\left(\frac{x-z}{s^{1/2\alpha}}\right)+\frac{1}{(t-s)^{n/2\alpha}}\phi_{\alpha}\left(\frac{z-y}{(t-s)^{1/2\alpha}}\right)}\leqslant c\cdot\frac{1}{t^{n/2\alpha}}\phi_{\alpha}\left(\frac{x-y}{t^{1/2\alpha}}\right)$$

pour tout 0 < s < t et $x, y, z \in \mathbb{R}^n$.

Quitte à prendre x/t, y/t, z/t au lieu de x, y, z et en posant $\theta = s/t$ il suffit de démontrer:

$$\frac{\phi_{\alpha}\left(\frac{x-z}{\theta^{1/2\alpha}}\right)\phi_{\alpha}\left(\frac{z-y}{(1-\theta)^{1/2\alpha}}\right)}{(1-\theta)^{n/2\alpha}\phi_{\alpha}\left(\frac{x-z}{\theta^{1/2\alpha}}\right)+\theta^{n/2\alpha}\phi_{\alpha}\left(\frac{z-y}{(1-\theta)^{1/2\alpha}}\right)} \leq c\phi_{\alpha}(x-y)$$

pour tout $0 < \theta < 1/2$ et $x, y, z \in \mathbb{R}^n$.

On pose u = x - y, v = x - z on a alors z - y = u - v il suffit de démontrer:

$$\frac{\phi_{\alpha}\left(\frac{v}{\theta^{1/2\alpha}}\right)\phi_{\alpha}\left(\frac{u-v}{(1-\theta)^{1/2\alpha}}\right)}{(1-\theta)^{n/2\alpha}\phi_{\alpha}\left(\frac{v}{\theta^{1/2\alpha}}\right)+\theta^{n/2\alpha}\phi_{\alpha}\left(\frac{u-v}{(1-\theta)^{1/2\alpha}}\right)} \leqslant c\phi_{\alpha}(u)$$

pour tout $u, v \in \mathbb{R}^n$, $0 < \theta < 1/2$.

- (1) Si $|u| \ge 1$ deux cas se présentent:
- (a) $|v| \ge 1/2|u|$, il existe d'après [14] une constante c telle que $1/c \cdot 1/|a|^{n+2\alpha} \le \phi_{\alpha}(a) \le c \cdot 1/|a|^{n+2\alpha}$ pour tout $a \in \mathbb{R}^n$, $|a| \ge \frac{1}{2}$. Ce qui nous donne

$$\frac{\phi_{\alpha}\left(\frac{v}{\theta^{1/2\alpha}}\right)\phi_{\alpha}\left(\frac{u-v}{(1-\theta)^{1/2\alpha}}\right)}{(1-\theta)^{n/2\alpha}\phi_{\alpha}\left(\frac{v}{\theta^{1/2\alpha}}\right)+\theta^{n/2\alpha}\phi_{\alpha}\left(\frac{u-v}{(1-\theta)^{1/2\alpha}}\right)} \leq \frac{\phi_{\alpha}\left(\frac{v}{\theta^{1/2\alpha}}\right)\phi_{\alpha}\left(\frac{u-v}{(1-\theta)^{1/2\alpha}}\right)}{\theta^{n/2\alpha}\left(\frac{u-v}{(1-\theta)^{1/2\alpha}}\right)} = \frac{\phi_{\alpha}\left(\frac{v}{\theta^{1/2\alpha}}\right)}{\theta^{n/2\alpha}}$$

$$\leq c\left(\frac{1}{|v|}\right)^{n+2\alpha}\frac{\theta^{n/2\alpha+1}}{\theta^{n/2\alpha}} \leq c\theta\left(\frac{1}{|v|}\right)^{n+2\alpha}$$

$$\leq 2^{n+2\alpha-1}c\left(\frac{1}{|u|}\right)^{n+2\alpha} \leq 2^{n+2\alpha-1}c^2 \cdot \phi_{\alpha}(u).$$

(b) Si $|u-v| \ge 1/2|u|$ nous aurons

$$\frac{\phi_{\alpha}\left(\frac{v}{\theta^{1/2\alpha}}\right)\phi_{\alpha}\left(\frac{u-v}{(1-\theta)^{1/2\alpha}}\right)}{(1-\theta)^{n/2\alpha}\phi_{\alpha}\left(\frac{v}{\theta^{1/2\alpha}}\right)+\theta^{n/2\alpha}\phi_{\alpha}\left(\frac{u-v}{(1-\theta)^{1/2\alpha}}\right)} \leq \frac{\phi_{\alpha}\left(\frac{u-v}{(1-\theta)^{1/2\alpha}}\right)}{(1-\theta)^{n/2\alpha}} \leq 2^{n/2\alpha}\phi_{\alpha}\left(\frac{u-v}{(1-\theta)^{1/2\alpha}}\right)$$

$$\leq 2^{n/2\alpha}\phi_{\alpha}(u/2(1-\theta)^{1/2\alpha})$$

$$\leq 2^{n/2\alpha}\phi_{\alpha}(2^{1/2\alpha-1}u) \leq 2^{n/2\alpha}c \cdot \phi_{\alpha}(u)$$

car ϕ_{α} est radiale décroissante et il existe c > 0 telle que $\phi_{\alpha}(2^{1/2\alpha - 1}u) \leqslant c\phi_{\alpha}(u)$.

(2) Si $|u| \le 1$, comme ϕ_{α} est continue strictement positive et d'après le Lemme 3: $\lim_{\alpha \to 0} \phi_{\alpha}(a) = (v_n/2\alpha)\Gamma(n/2\alpha)$, il suffit de démontrer que l'expression:

$$\frac{\phi_{\alpha}\left(\frac{v}{\theta^{1/2\alpha}}\right)\phi_{\alpha}\left(\frac{u-v}{(1-\theta)^{1/2\alpha}}\right)}{(1-\theta)^{n/2\alpha}\phi_{\alpha}\left(\frac{v}{\theta^{n/2\alpha}}\right)+\theta^{n/2\alpha}\phi_{\alpha}\left(\frac{u-v}{(1-\theta)^{1/2\alpha}}\right)}$$

est majorée par une constante.

Or cette expression est trivialement majorée par:

$$\frac{\phi_{\alpha}\left(\frac{u-v}{(1-\theta)^{1/2\alpha}}\right)}{(1-\theta)^{n/2\alpha}} \leq 2^{n/2\alpha}\phi_{\alpha}(0) \leq c\phi_{\alpha}(u).$$

REMARQUE 2. Pour $\alpha = 1/2$ le résultat est trivial d'après [12].

THÉORÈME 5. Soient $\alpha \in]0,1[$, $L \in \mathcal{L}(\mathbb{R}^n,\lambda)$ et μ une mesure $(-L)^{\alpha}$ régulière exacte. Alors le semi-groupe \mathbb{P}^{α} et son perturbé par μ , $^{\mu}\mathbb{P}^{\alpha}$ sont comparables si et seulement si $G^{\alpha}\mu$ est borné.

Démonstration. D'après [13], les semi-groupes \mathbb{P}^{α} et $^{\mu}\mathbb{P}^{\alpha}$ sont comparables si et seulement s'il existe une constante c > 0 telle que:

$$\int_0^t \int_{\mathbb{R}^n} p^{\alpha}(s, x, z) p^{\alpha}(t - s, z, y) \, \mathrm{d}\mu(z) \, \mathrm{d}s \leqslant \tilde{c} \cdot p^{\alpha}(t, x, y) \quad \text{pour tout } t > 0, \ x, y \in \mathbb{R}^n.$$

Supposons que $G^{\alpha}\mu$ est borné, nous aurons d'après le Lemme 4:

$$\int_{0}^{t} \int_{\mathbb{R}^{n}} p^{\alpha}(s, x, z) p^{\alpha}(t - s, z, y) d\mu(z) ds \leqslant c p^{\alpha}(t, x, y)$$

$$\cdot \left[\int_{0}^{t} \int_{\mathbb{R}^{n}} p^{\alpha}(s, x, z) + p^{\alpha}(t - s, y, z) \right] d\mu(z) ds$$

$$\leqslant 2c \|G^{\alpha}\mu\| p^{\alpha}(t, x, y)$$

il suffit alors de prendre $\tilde{c} = 2c \|G^{\alpha}\mu\|$.

La condition $G^{\alpha}\mu$ borné est nécessaire d'après [13] car 1 est \mathbb{P}^{α} excessive.

Nous introduisons maintenant Γ^{α} la fonction de Green de l'opérateur $(-L)^{\alpha} + \partial/\partial t$ sur $\mathbb{R}^{n+1} \times \mathbb{R}^{n+1}$ où L appartient à $\mathcal{L}(\mathbb{R}^n, \lambda)$ et $0 < \alpha < 1$. Γ^{α} est donnée par $\Gamma^{\alpha}(t, x, s, y) = 1_{1-\infty, t[}(s)p^{\alpha}(t-s, x, y)$ où p^{α} est la densité du semi-groupe associé à $(-L)^{\alpha}$ sur \mathbb{R}^n , $x, y \in \mathbb{R}^n$, $s, t \in \mathbb{R}$.

Pour μ une mesure de Radon $(-L)^{\alpha} + \partial/\partial t$ régulière exacte nous notons par ${}^{\mu}\Gamma^{\alpha}$ la fonction de Green associée à $(-L)^{\alpha} + \partial/\partial t + \mu$ sur $\mathbb{R}^{n+1} \times \mathbb{R}^{n+1}$.

Nous avons alors le théorème suivant:

THÉORÈME 6. Soient $L \in \mathcal{L}(\mathbb{R}^n, \lambda)$, $0 < \alpha < 1$ et μ une mesure $(-L)^{\alpha} + \partial/\partial t$ régulière exacte. Alors les fonctions de Green Γ^{α} et ${}^{\mu}\Gamma^{\alpha}$ sont comparables si et seulement si $\Gamma^{\alpha}\mu = \int_{\mathbb{R}^{n+1}} \Gamma^{\alpha} d\mu$ est borné.

Démonstration. La condition est nécessaire d'après [13] car 1 est $(-L)^{\alpha} + \partial/\partial t$ excessive. La condition est suffisante: En effet d'après [13], [16] les fonctions de Green Γ^{α} et ${}^{\mu}\Gamma^{\alpha}$ sont comparables si et seulement s'il existe une constante k > 0 telle que

$$\int_{\mathbb{R}^{n+1}} \Gamma^{\alpha}(t, x, r, z) \Gamma^{\alpha}(r, z, s, y) \, \mathrm{d}\mu(r, z) \leqslant k \Gamma^{\alpha}(t, x, s, y)$$

pour tout $x, y \in \mathbb{R}^n$, $t, s \in \mathbb{R}$.

En fait il suffit de considérer le cas s < t vu que la propriété est triviale pour $s \ge t$. Or nous avons pour s < t:

$$\Gamma^{\alpha}(t, x, r, z)\Gamma^{\alpha}(r, z, s, y) = 1_{1-\infty, t[}(r)P^{\alpha}(t-r, x, z) \cdot 1_{1-\infty, r[}(s)P^{\alpha}(r-s, z, y)$$
$$= 1_{1s, t[}(r)P^{\alpha}(t-r, x, z)P^{\alpha}(r-s, z, y).$$

En utilisant le Lemme 4 nous obtenons:

$$\begin{split} \mathbf{1}_{]s,t[}(r)P^{\alpha}(t-r,x,z)P^{\alpha}(r-s,z,y) &\leqslant c\mathbf{1}_{]s,t[}(r)P^{\alpha}(t-s,x,y)\big[P^{\alpha}(t-r,x,z) + P^{\alpha}(r-s,z,y)\big] \\ &\leqslant c\mathbf{1}_{]-\infty,t[}(s)P^{\alpha}(t-s,x,y)\big[\mathbf{1}_{]-\infty,t[}(r)P^{\alpha}(t-r,x,z) \\ &\qquad \qquad + \mathbf{1}_{]-\infty,r[}(s)P^{\alpha}(r-s,z,y)\big] \\ &= c\Gamma^{\alpha}(t,x,s,y)\big[\Gamma^{\alpha}(t,x,r,z) + \Gamma^{\alpha}(r,z,s,y)\big]. \end{split}$$

Ce qui donne:

$$\Gamma^{\alpha}(t,x,r,z)\Gamma^{\alpha}(r,z,s,y) \leqslant c \cdot \Gamma^{\alpha}(t,x,s,y) [\Gamma^{\alpha}(t,x,r,z) + \Gamma^{\alpha}(r,z,s,y)].$$

En intégrant cette inégalité par rapport à μ sur \mathbb{R}^{n+1} nous obtenons que:

$$\int_{\mathbb{R}^{n+1}} \Gamma^{\alpha}(t, x, r, z) \Gamma^{\alpha}(r, z, s, y) \, \mathrm{d}\mu(r, z)
\leq c \Gamma^{\alpha}(t, x, s, y) \int_{\mathbb{R}^{n+1}} \left[\Gamma^{\alpha}(t, x, r, z) + \Gamma^{\alpha}(r, z, s, y) \right] \mathrm{d}\mu(r, z)$$

par suite si $\Gamma^{\alpha}\mu = \int_{\mathbb{R}^{n+1}} \Gamma^{\alpha} d\mu$ est borné nous prendrons $k = 2c \cdot \|\Gamma^{\alpha}\mu\|$. Ce qui démontre le Théorème 6.

Nous allons maintenant nous interesser au cas $\alpha = 1$ pour étudier la comparaison du semi-groupe du mouvement brownien avec son perturbé par une mesure de Radon Δ régulière exacte sur \mathbb{R}^n . Nous allons donner les conditions nécessaires et suffisantes pour que \mathbb{P}_0 et \mathbb{P}_0 soient comparables sur \mathbb{R}^n .

LEMME 5. Soit μ une mesure régulière V_0 exacte. Alors les semi-groupes \mathbb{P}_0 et ${}^{\mu}\mathbb{P}_0$ sont comparables sur \mathbb{R}^n $(n \ge 3)$ si et seulement s'il existe c > 0 telle que:

$$\int_0^\infty \int_{\mathbb{R}^n} \frac{1}{(4\pi t)^{n/2}} e^{-|y-2tu-x|^2/4t} \, \mathrm{d}\mu(y) \, \mathrm{d}t \leqslant c \quad \text{pour tout } u, x \in \mathbb{R}^n.$$

Démonstration. Nous avons d'après [12] que \mathbb{P}_0 et ${}^{\mu}\mathbb{P}_0$ sont comparables si et seulement s'il existe une constante k > 0 telle que:

$$\int_0^t \int_{\mathbb{R}^n} \left(\frac{t}{4\pi s(t-s)} \right)^{n/2} e^{-(t/4s(t-s))|z-(s/t)y-(1-(s/t))x|^2} d\mu(z) ds \leqslant k$$

pour tout t > 0 tout $x, y \in \mathbb{R}^n$.

Ceci est équivalent à dire que:

$$\int_{0}^{t/2} \int_{\mathbb{R}^{n}} \frac{1}{(4\pi s)^{n/2}} e^{-1/4s|z-(s/t)y-(1-(s/t))x|^{2}} d\mu(z) dz$$

$$+ \int_{t/2}^{t} \int_{\mathbb{R}^{n}} \frac{1}{(4\pi (t-s))^{n/2}} e^{-1/4(t-s)|z-(s/t)x-(1-(s/t))y|^{2}} d\mu(z) ds \leq \frac{k}{2^{n/2}}$$

pour tout t > 0 tout $x, y \in \mathbb{R}^n$.

Ceci est encore équivalent à dire que:

$$\int_0^{t/2} \int_{\mathbb{R}^n} \frac{1}{(4\pi s)^{n/2}} e^{-1/4s|z-(s/t)y-(1-(s/t))x|^2} d\mu(z) ds$$

est bornée.

En posant u = (y - x)/2t, nous obtenons que les semi-groupes \mathbb{P}_0 et ${}^{\mu}\mathbb{P}_0$ sont comparables s'il existe c > 0 telle que

$$\int_0^{t/2} \int_{\mathbb{R}^n} \frac{1}{(4\pi s)^{n/2}} e^{-|y-2su-x|^2/4s} \, \mathrm{d}\mu(y) \, \mathrm{d}s \leqslant c$$

pour tout $x, u \in \mathbb{R}^n$, t > 0. Ce qui se traduit par:

$$\int_{0}^{\infty} \int_{\mathbb{R}^{n}} \frac{1}{(4\pi t)^{n/2}} e^{-|y-2tu-x|^{2}/4t} \, \mathrm{d}\mu(y) \, \mathrm{d}t \leqslant c$$

pour $u, x \in \mathbb{R}^n$. Ce qui démontre le Lemme 5.

Pour $u \in \mathbb{R}^n$ nous définissons pour tout t > 0 l'opérateur Q_t^u sur $\mathscr{C}_b(\mathbb{R}^n)$ par:

$$Q_t^u f(x) = \frac{1}{(4\pi t)^{n/2}} \int_{\mathbb{R}^n} e^{-|y-2tu-x|^2/4t} f(y) dy$$
$$Q_0^u = \text{Id.}$$

LEMME 6. Pour tout $u \in \mathbb{R}^n$ $(n \ge 1)$, $(Q^u)_{t \ge 0}$ est un semi-groupe de Feller markovien sur $\mathscr{C}_b(\mathbb{R}^n)$ dont le générateur infinitésimal est $A = \Delta + 2\langle u, grad \rangle$.

Démonstration. Nous avons:

$$Q_t^u 1(x) = \int_{\mathbb{R}^n} \frac{1}{(4\pi t)^{n/2}} e^{-|y-2tu-x|^2/4t} \, \mathrm{d}y = \int_{\mathbb{R}^n} \frac{1}{(4\pi t)^{n/2}} e^{-|y|^2/4t} \, \mathrm{d}y = 1$$

Soit $f \in \mathscr{C}_k(\mathbb{R}^n)$ nous avons:

$$Q_t^u f(x) = \frac{1}{(4\pi t)^{n/2}} \int_{\mathbb{R}^n} e^{-|y-2tu-x|^2/4t} f(y) \, \mathrm{d}y$$
$$= \frac{1}{(4\pi t)^{n/2}} \int_{\mathbb{R}^n} e^{-|y-x|^2/4t - t|u|^2} (e^{\langle u, y-x \rangle} f(y)) \, \mathrm{d}y.$$

On pose

$$q_{u}(t,x,y) = \frac{1}{(4\pi t)^{n/2}} e^{-t|u|^{2}} e^{-|x-y|^{2}/4t + \langle u,y-x \rangle} = q_{u}(t,x-y,0) = q_{u}(t,x-y).$$

C'est une fonction radiale et $Q_t^u f(x) = \int_{\mathbb{R}^n} q_u(t, x, y) f(y) dy$.

 Q_t^u est alors un noyau à densité $q_u(t, x, \cdot)$ par rapport à la mesure de Lebesgue sur \mathbb{R}^n . Soit $x \mathbb{R}^n$, nous avons:

$$q_{u}(t,\cdot)^{*}q_{u}(s,\cdot)(x) = \frac{e^{-(t+s)|u|^{2}}}{(4\pi t)^{n/2}(4\pi s)^{n/2}} \int_{\mathbb{R}^{n}} e^{-|x-y|^{2}/4t + \langle u,x-y\rangle - |y|^{2}/4s + \langle u,y\rangle} \, \mathrm{d}y$$

$$= e^{-(t+s)|u|^{2}} e^{\langle u,x\rangle} \int_{\mathbb{R}^{n}} \frac{1}{(4\pi t)^{n/2}} \frac{1}{(4\pi s)^{n/2}} e^{-|x-y|^{2}/4t - |y|^{2}/4s} \, \mathrm{d}y$$

$$= \frac{1}{(4\pi (t+s))^{n/2}} e^{-(t+s)|u|^{2}} e^{-|x|^{2}/4(t+s) + \langle u,x\rangle}$$

$$= q_{u}(t+s,x)$$

d'après la propriété du semi-groupe du mouvement Brownien sur \mathbb{R}^n . Ce qui démontre que $Q_t^u(Q_t^uf) = Q_{t+s}^u(f)$ pour tout f mesurable bornée. Comme le semi-groupe du mouvement brownien est propre, Q^u est donc propre et $\overline{Q_t^u(\mathscr{C}_k(\mathbb{R}^n))} = \mathscr{C}_0(\mathbb{R}^n)$ vu que

le semi-groupe du mouvement Brownien vérifie la même propriété. On note W^u le noyau du semi-groupe $(Q^u_t)_{t\geq 0}$. Nous avons pour $f\in \mathscr{C}_k(\mathbb{R}^n)$:

$$W^{u}f(x) = \int_{0}^{M} Q_{t}^{u}(f)(x) dt = \int_{0}^{M} \int_{\mathbb{R}^{n}} \frac{1}{(4\pi t)^{n/2}} e^{-|y-2tu-x|^{2}/4t} f(y) dy dt$$

$$= \int_{\mathbb{R}^{n}} \int_{0}^{M} \frac{1}{(4\pi t)^{n/2}} e^{-|y-2tu-x|^{2}/4t} f(y) dt dy$$

$$= \int_{\mathbb{R}^{n}} \int_{0}^{M} \frac{1}{(4\pi t)^{n/2}} e^{-|y-x|^{2}/4t - t|u|^{2} + \langle u, y - x \rangle} f(y) dt dy$$

$$= V_{|u|^{2}} (e^{\langle u, x - x \rangle} \cdot f)$$

où $V_{|u|^2}$ est le noyau d'indice $|u|^2$ de la résolvante du semi-groupe du mouvement Brownian sur \mathbb{R}^n .

Nous allons déterminer le générateur infinitésimal du semi-groupe $(Q_t^u)_{t\geq 0}$. Pour ce faire nous remarquons que $(Q_t^u)_{t\geq 0}$ est un semi-groupe de convolution associé au semi-groupe de mesures:

$$\mu_t = p_t^* \delta_{-2tu}$$

(où p_t est le semi-groupe de mesures de générateur $\Delta \delta$). On en déduit immédiatement que μ_t admet pour générateur

$$\Delta \delta + 2\langle u, \operatorname{grad} \delta \rangle$$
,

ce qui démontre que Q_t^u admet pour générateur $\Delta f + 2\langle u, \operatorname{grad} f \rangle$.

DÉFINITION 4. Soit μ une mesure de Radon sur \mathbb{R}^n . On dit que μ est radiale si $\int_{\mathbb{R}^n} f \circ R \, d\mu = \int_{\mathbb{R}^n} f \, d\mu$ pour tout $R \in SO(n)$.

LEMME 7. Pour $n \ge 3$, il existe une constante c > 0 telle que pour tout $u \in \mathbb{R}^n$ et toute fonction ϕ sur \mathbb{R}^n mesurable, positive, radiale et vérifiant $V_0(\phi)$ borné on ait:

$$W^{u}\phi(0) \leqslant cV_0(\phi)(0).$$

Démonstration. Il suffit de démontrer que $W^u \phi(0) \leq cp(0)$ pour tout $u \in \mathbb{R}^n$ sous l'hypothèse que $p = V_0(\phi)$ est borné.

Nous avons:

$$W^{u}\phi(0) = \int_{0}^{\infty} \int_{\mathbb{R}^{n}} \frac{1}{(4\pi t)^{n/2}} e^{-|y-2tu|^{2}/4t} \phi(y) \, dy \, dt$$

$$= \int_{\mathbb{R}^{n}} \int_{0}^{\infty} \frac{1}{(4\pi t)^{n/2}} e^{-|y-2tu|^{2}/4t} \phi(y) \, dt \, dy \quad \text{d'après le théorème de Fubini}$$

$$= \int_{\mathbb{R}^{n}} \int_{0}^{\infty} \frac{1}{(4\pi t)^{n/2}} e^{-|y|^{2}/4t - t|u|^{2}} e^{(u,y)} \phi(y) \, dt \, dy$$

$$= \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^{n}} \left(\frac{|u|}{|y|} \right)^{n/2 - 1} K_{(n/2) - 1}(|u| \cdot |y|) e^{(u,y)} \phi(y) \, dy = V_{|u|^{2}}(\phi e^{(u,\cdot)})(0)$$

 $K_{(n/2)-1}$ est la fonction de Macdonald.

Quitte à faire une rotation, nous pouvons supposer que u est porté par le dernier vecteur e_n de la base canonique de \mathbb{R}^n car nous avons

$$W^{Ru}\phi(0) = W^u\phi(0)$$
 pour tout $R \in SO(n)$.

On utilise alors le changement de variables en coordonnées polaires dans Rⁿ données par:

$$y_{n} = r \cos \theta_{1}$$

$$y_{n-1} = r \sin \theta_{1} \cos \theta_{2}$$

$$y_{n-2} = r \sin \theta_{1} \sin \theta_{2} \cos \theta_{3}$$

$$\vdots$$

$$y_{k} = r \sin \theta_{1} \sin \theta_{2} \dots \sin \theta_{k-1} \cos \theta_{k}$$

$$\vdots$$

$$y_{2} = r \sin \theta_{1} \sin \theta_{2} \dots \sin \theta_{n-2} \cos \theta_{n-1}$$

$$y_{1} = r \sin \theta_{1} \sin \theta_{2} \dots \sin \theta_{n-2} \sin \theta_{n-1}$$

avec $0 < r < \infty$, $0 < \theta i < \pi$ pour $1 \le i \le n-2$ et $0 < \theta_{n-1} < 2\pi$. La jacobien est donné par:

$$r^{n-1}\sin\theta_1^{n-2}\sin\theta_2^{n-3}\ldots\sin^{n-1-k}\theta_k\ldots\sin\theta_{n-2}.$$

Pour les nouvelles coordonnées nous aurons:

(1)
$$(u, y) = |u| \cdot |y| \cos \theta_1 \quad \text{pour tout } y \in \mathbb{R}^n.$$

(2)
$$p(0) = \int_{\mathbb{R}^n} \frac{\phi(y)}{|y|^{n-2}} dy = \frac{2\pi^{n/2}}{\Gamma(\frac{n}{2})} \int_0^\infty r\phi(r) dr = M$$

(2) est encore équivalent à

(2')
$$\frac{2 \cdot \pi^{n/2}}{\Gamma(\frac{n}{2})} \int_0^\infty \lambda^2 r \phi(\lambda r) dr = M \quad \text{pour tout } \lambda > 0.$$

(3)

$$\begin{split} W^u \phi(0) &= \frac{1}{(2\pi)^{n/2}} \int_0^{2\pi} \int_0^{\pi} \cdots \int_0^{\infty} \left(\frac{|u|}{r}\right)^{n/2-1} K_{(n/2)-1}(|u|r) e^{|u|r\cos\theta_1} \\ & \cdot \phi(r) r^{n-1} \sin\theta_1^{n-2} \sin\theta_2^{n-3} \dots \sin\theta_{n-2} \, \mathrm{d}r \, \mathrm{d}\theta_1 \, \mathrm{d}\theta_2 \dots \mathrm{d}\theta_{n-1} \\ &= \frac{1}{(2\pi)^{n/2}} \left(\int_0^{2\pi} \int_0^{\pi} \cdots \int_0^{\pi} \sin\theta_2^{n-3} \sin\theta_3^{n-4} \dots \sin\theta_{n-2} \, \mathrm{d}\theta_2 \, \mathrm{d}\theta_3 \dots \mathrm{d}\theta_{n-1}\right) \\ & \cdot \int_0^{\infty} \int_0^{\pi} \left(\frac{|u|}{r}\right)^{(n/2)-1} K_{(n/2)-1}(|u|r) e^{|u|r\cos\theta_1} \sin\theta_1^{n-2} r^{n-1} \phi(r) \, \mathrm{d}\theta_1 \, \mathrm{d}r \\ &= \frac{1}{(2\pi)^{n/2}} \frac{2\pi^{(n-1)/2}}{r\left(\frac{n-1}{2}\right)} \int_0^{\infty} \int_0^{\pi} \left(\frac{|u|}{r}\right)^{(n/2)-1} \\ & \cdot K_{(n/2)-1}(|u|r) e^{|u|r\cos\theta_1} r^{n-1} \phi(r) \sin\theta_1^{n-2} \, \mathrm{d}\theta_1 \, \mathrm{d}r \end{split}$$

si u = 0 nous aurons $W^0 \phi(0) = V_0(\phi)(0) = p(0)$. Si $u \neq 0$, on fait le changement de variable $\rho = |u| \cdot r$, l'intégrale devient

$$\begin{split} W^{u}\phi(0) &= \frac{1}{(2\pi)^{n/2}} \frac{2\pi^{(n-1)/2}}{\Gamma\left(\frac{n-1}{2}\right)} \int_{0}^{\infty} \int_{0}^{\pi} K_{(n/2)-1}(\rho) \left(\frac{|u|^{2}}{\rho}\right)^{(n-2)/2} \left(\frac{\rho}{|u|}\right)^{n-1} e^{\rho \cos\theta_{1}} \sin^{n-2}\theta_{1}. \\ &\cdot \phi\left(\frac{\rho}{|u|}\right) \mathrm{d}\theta_{1} \frac{\mathrm{d}\rho}{|u|} \\ &= \frac{2}{(2\pi)^{n/2}} \frac{2 \cdot \pi^{(n-1)/2}}{\Gamma\left(\frac{n-1}{2}\right)} \int_{0}^{\infty} \int_{0}^{\pi} K_{(n/2)-1}(\rho) \phi\left(\frac{\rho}{|u|}\right) \frac{\rho^{n/2}}{|u|^{2}} e^{\rho \cos\theta_{1}} \sin^{n-2}\theta_{1} \, \mathrm{d}\theta_{1} \, \mathrm{d}\rho \\ &= \frac{1}{(2\pi)^{n/2}} \frac{2\pi^{(n-1)/2}}{\Gamma\left(\frac{n-1}{2}\right)} \int_{0}^{\infty} \int_{0}^{\pi} e^{\rho} K_{(n/2)-1}(\rho) \phi\left(\frac{\rho}{|u|}\right) \frac{\rho^{n/2}}{|u|^{2}} e^{-\rho(1-\cos\theta_{1})} \sin^{n-2}\theta_{1} \, \mathrm{d}\theta_{1} \, \mathrm{d}\rho \\ &\cdot \theta_{1} \, \mathrm{d}\theta_{1} \, \mathrm{d}\rho \int_{0}^{1} \int_{0}^{\pi} e^{\rho} K_{(n/2)-1}(\rho) \phi\left(\frac{\rho}{|u|}\right) \frac{\rho^{n/2}}{|u|^{2}} e^{-\rho(1-\cos\theta_{1})} \sin^{n-2}\theta_{1} \, \mathrm{d}\theta_{1} \, \mathrm{d}\rho \\ &+ \int_{1}^{\infty} \int_{0}^{\pi} e^{\rho} K_{(n/2)-1}(\rho) \phi\left(\frac{\rho}{|u|}\right) \frac{\rho^{n/2}}{|u|^{2}} e^{-\rho(1-\cos\theta_{1})} \sin^{n-2}\theta_{1} \, \mathrm{d}\theta_{1} \, \mathrm{d}\rho = I_{1} + I_{2}. \end{split}$$

Pour $0 < \rho < 1$ nous avons d'après [15], [16] $K_{(n/2)-1}(\rho) \le \frac{1}{2}\Gamma((n/2)-1)(\rho/2)^{1-n/2}$. Ce qui donne que:

$$I_1\leqslant e\left(\frac{1}{2}\right)^{2-n/2}\Gamma\!\left(\frac{n}{2}-1\right)\int_0^1\int_0^\pi\rho\phi\left(\frac{\rho}{|u|}\right)\frac{1}{|u|^2}\mathrm{d}\rho\leqslant e\cdot\!\left(\frac{1}{2}\right)^{2-n/2}\Gamma\!\left(\frac{n}{2}-1\right)p(0).$$

D'autre part nous avons:

$$\int_0^{\pi} e^{-\rho(1-\cos\theta_1)} \sin^{n-2}\theta_1 d\theta_1 = \int_0^{\pi} e^{-\rho\sin^2(\theta_1/2)/2} \sin^{n-2}\theta_1 d\theta_1.$$

On fait le changement de variable $\theta = \theta_1/2$ et utilise $(2/\pi)\theta \le \sin \theta \le \theta$ pour $0 \le \theta \le \pi/2$ ce qui nous donne:

$$\begin{split} \int_0^\pi e^{-\rho \sin^2(\theta_1/2)/2} \sin^{n-2}\theta_1 \, \mathrm{d}\theta_1 &= 2 \int_0^{\pi/2} e^{-\rho \sin^2\!\theta/2} \sin(2\theta) \, \mathrm{d}\theta \leqslant 2^{n-1} \int_0^{\pi/2} e^{(-2/\pi 2)\rho\theta^2} \, \theta^{n-2} \, \mathrm{d}\theta \\ &\leqslant (2\pi^2)^{(n-1)/2} \Gamma\left(\frac{n}{2}-1\right) \frac{1}{\rho^{(n-1)/2}}. \end{split}$$

Par suite nous avons:

$$I_2 \leqslant (2\pi^2)^{(n-1)/2} \Gamma\left(\frac{n}{2}-1\right) \cdot \int_1^\infty e^\rho K_{(n/2)-1}(\rho) \phi\left(\frac{\rho}{|u|}\right) \frac{\rho}{|u|^2} \,\mathrm{d}\rho.$$

Or nous savons d'après [15], [16] que $e^{\rho}K_{(n/2)-1}(\rho) \leq (\pi/2\rho)^{1/2}$. Ce qui nous donne en utilisant (2'):

$$I_2 \leqslant (2\pi^2)^{(n-1)/2} \Gamma\left(\frac{n}{2}-1\right) \frac{\pi}{2} \int_1^\infty \rho^{1/2} \phi\left(\frac{\rho}{|u|}\right) \frac{1}{|u|^2} \mathrm{d}\rho \leqslant (2\pi^2)^{(n-1)/2} \Gamma\left(\frac{n}{2}-1\right) p(0).$$

Ce qui démontre que:

$$W^u \phi(0) \leq (2\pi^2)^{n/2} \Gamma\left(\frac{n}{2} - 1\right) p(0).$$

Ainsi nous obtenons:

$$W^u \phi(0) \le (2\pi^2)^{n/2} \Gamma(n/2 - 1) p(0)$$

pour tout $u \in \mathbb{R}^n$ il en résulte que

$$\int_0^\infty \int_{\mathbb{R}^n} \frac{1}{(4\pi t)^{n/2}} e^{-|y-2tu|^2/4t} \, \mathrm{d}\mu(y) \, \mathrm{d}t \le (2\pi^2)^{n/2} \Gamma\left(\frac{n}{2}-1\right) p(0).$$

Il suffit de prendre $c = (2\pi^2)^{n/2} \Gamma(n/2 - 1)$. Ce qui démontre le Lemme 7.

THÉORÈME 7. Soit μ une mesure de Radon positive V_0 régulière exacte et radiale alors \mathbb{P}_0 et ${}^{\mu}\mathbb{P}_0$ sont comparables si et seulement si $G_0\mu$ est borné.

Démonstration. D'après le Lemme 5 les semi-groupes \mathbb{P}_0 et ${}^{\phi}\mathbb{P}_0$ sont comparables si et seulement s'il existe une constante c > 0 telle que: $W^u \phi \leq c$, $\forall u \in \mathbb{R}^n$. C'est-à-dire encore

$$W^{u}\phi(x) = \int_{0}^{\infty} \int_{\mathbb{R}^{n}} \frac{1}{(4\pi t)^{n/2}} e^{-|y-2tu-x|^{2}/4t} \phi(y) \, dy \, dt \le c$$

pour tout $x, u \in \mathbb{R}^n$.

Il est facile à montrer que $W^u \phi(x)$ est toujours finie, et d'après le Lemme 7 il suffit de considérer $x \neq 0$.

Pour n = 3 c'est déjà fait dans [12].

Pour $n \ge 4$, soit μ une mesure régulière exacte et radiale sur \mathbb{R}^n telle que $G_0\mu$ soit borné sur \mathbb{R}^n , il existe une suite de fonctions $(\phi_m)_m$ positives et radiales sur \mathbb{R}^n telle que $G_0\mu = \sup_m V_0(\phi_m)$ où V_0 est le noyau de Newton associé à Δ sur \mathbb{R}^n . $V_0(\phi_m)$ est donc bornée, ϕ_m est régulière V_0 exacte et radiale. Il suffit alors de démontrer que \mathbb{P}_0 et ${}^{\phi}\mathbb{P}_0$ sont comparables pour ϕ une fonction régulière V_0 exacte radiale et $V_0(\phi)$ bornée par $\sup_{\mathbb{R}^n} G_0\mu$. Plus précisément nous allons démonstrer qu'il existe c>0 telle que pour tout $u \in \mathbb{R}^n$ et tout $x \in \mathbb{R}^n$ nous avons $W^u\phi(x) \leqslant cV_0(\phi)(0)$ pour tout ϕ radiale vérifiant: $V_0(\phi) \leqslant G_0\mu$. Posons $p = V_0(\phi)$, nous avons: $\sup_{x \in \mathbb{R}^n} p(x) = p(0)$. Si u = 0 nous avons $W^0(\phi)(x) = V_0(\phi)(x) \leqslant V_0(\phi)(0) = p(0)$.

Si $u \neq 0$ nous avons:

$$W^{u}\phi(x) = \int_{0}^{\infty} \int_{\mathbb{R}^{n}} \frac{1}{(4\pi t)^{n/2}} e^{-|y-2tu-x|^{2}/4t} \phi(y) \, dy \, dt$$

$$= \int_{\mathbb{R}^{n}} \int_{0}^{\infty} \frac{1}{(4\pi t)^{n/2}} e^{-|y-2tu-x|^{2}/4t} \phi(y) \, dt \, dt$$

$$= \int_{\mathbb{R}^{n}} \int_{0}^{\infty} \frac{1}{(4\pi t)^{n/2}} e^{-|y-x|^{2}/4t-|u|^{2}t+(u,y-x)} \phi(y) \, dt \, dy$$

$$= \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^{n}} \left(\frac{|u|}{|y-x|} \right)^{(n/2)-1} K_{(n/2)-1}(|u| \cdot |y-x|) e^{(u,y-x)} \phi(y) \, dy.$$

Comme ϕ est invariante par rotation, on peut supposer que: $x = |x|e_n$, $u = u_1e_n + u_2e_{n-1}$. En fait on choisit e_n porté par x puis on considère le vecteur e_{n-1} de façon que (e_{n-1}, e_n) soit un repère orthonormée direct dans le plan défini par les deux vecteurs x et u, puis on complète pour avoir une base orthonormée directe de \mathbb{R}^n . Si (x, u) est lié, on fait de la même manière, on complète e_n pour avoir une base de \mathbb{R}^n . On utilise

alors le changement de variables en coordonnées polaires dans R":

$$y = (y_1, y_2, \dots, y_n), \text{ avec } y_n = r \cos \theta_1$$

$$y_{n-1} = r \sin \theta_1 \cos \theta_2$$

$$y_{n-2} = r \sin \theta_1 \sin \theta_2 \cos \theta_3$$

$$\vdots$$

$$y_k = r \sin \theta_1 \sin \theta_2 \dots \sin \theta_{n-k} \cos \theta_{n-k+1}$$

$$\vdots$$

$$y_2 = r \sin \theta_1 \sin \theta_2 \dots \sin \theta_{n-2} \cos \theta_{n-1}$$

$$y_1 = r \sin \theta_1 \sin \theta_2 \dots \sin \theta_{n-1}.$$

Nous aurons alors:

$$|y - x|^2 = r^2 + |x|^2 - 2r|x|\cos\theta_1$$

(u, y - x) = u₁(r cos \theta_1 - |x|) + u₂r sin \theta_1 cos \theta_2

le Jacobien est donée par $r^{n-1} \sin^{n-2} \theta_1 \sin^{n-3} \theta_2 \dots \sin \theta_{n-2}$. L'intégrale devient alors:

$$\begin{split} W^{u}\phi(x) &= \frac{1}{(2\pi)^{n/2}} \int_{0}^{2\pi} \int_{0}^{\pi} \cdots \int_{0}^{\infty} \left(\frac{|u|}{(r^{2} + |x|^{2} - 2r|x|\cos\theta_{1})^{1/2}} \right)^{(n/2) - 1} \\ &\cdot K_{(n/2) - 1} \left(|u|(r^{2} + |x|^{2} - 2r|x|\cos\theta_{1})^{1/2} \right) \times e^{u_{1}(r\cos\theta_{1} - |x|) + u_{2}r\sin\theta_{1}\cos\theta_{2}} \\ &\cdot \phi(r)r^{n-1}\sin^{n-2}\theta_{1}\sin^{n-3}\theta_{2} \dots \sin\theta_{n-2} dr d\theta_{1} \dots d\theta_{n-2} d\theta_{n-1}. \end{split}$$

On écrit maintenant l'intégrale en deux morceaux: I_1 : sur la partie de l'espace \mathbb{R}^n pour laquelle

$$|u|(r^2 + |x|^2 - 2r|x|\cos\theta_1)^{1/2} \le 1.$$

Nous avons alors d'après [15] et [16]:

$$\begin{split} K_{(n/2)-1}(|u|(r^2+|x|^2-2r|x|\cos\theta_1)^{1/2}) & \leq \frac{1}{2}\Gamma\left(\frac{n}{2}-1\right)e^{-|u|(r^2+|x|^2-2r|x|\cos\theta_1)^{1/2}} \\ & \times \left(\frac{|u|(r^2+|x|^2-2r|x|\cos\theta_1)^{1/2}}{2}\right)^{1-(n/2)} \end{split}$$

ce qui nous permet de controler l'intégrale I_1

$$\begin{split} I_1 &\leqslant 2^{(n/2)-2} \frac{\Gamma(n/2-1)}{(2\pi)^{n/2}} \int_0^{2\pi} \int_0^{\pi} \cdots \int_0^{\infty} (r^2 + |x|^2 - 2r|x| \cos \theta_1)^{1-(n/2)} \phi(r) r^{n-1} \sin \theta_1^{n-2} \\ & \dots \sin \theta_{n-2} \operatorname{d}\! r \operatorname{d}\! \theta_1 \dots \operatorname{d}\! \theta_{n-1}. \end{split}$$

Or nous avons $r^2 + |x|^2 - 2r|x|\cos\theta_1 \ge r^2\sin^2\theta_1$ ce qui donne que:

$$I_1 \leqslant 2^{(n/2)-2} \frac{\Gamma(n/2-1)}{(2\pi)^{(n/2)-1}} \cdot b_{n-2} \cdot \pi \cdot \int_0^\infty r \phi(r) \, \mathrm{d}r = \frac{\pi}{n} \int_0^\infty r \phi(r) \, \mathrm{d}r = c_1 p(0)$$

où b_{n-2} = volume de la boule unité de \mathbb{R}^{n-2} ,

$$b_{n-2} = \frac{\pi^{(n/2)-1}}{\Gamma(n/2)}.$$

$$c_1 = \frac{\Gamma(n/2)}{2n \cdot \pi^{(n/2)-1}}.$$

 I_2 : sur la partie de l'espace \mathbb{R}^n pour laquelle $|u|(r^2 + |x|^2 - 2r|x|\cos\theta_1)^{1/2} \ge 1$. Nous avons alors d'après [15] et [16]:

$$\begin{split} K_{(n/2)-1}(|u|(r^2+|x|^2-2r|x|\cos\theta_1)^{1/2}) \\ & \leq \left(\frac{\pi}{2|u|(r^2+|x|^2-2r|x|\cos\theta_1)^{1/2}}\right)^{1/2} e^{-|u|(r^2+|x|^2-2r|x|\cos\theta_1)^{1/2}}. \end{split}$$

Ce qui nous donne que:

$$\begin{split} I_2 &\leqslant \frac{1}{2(2\pi)^{(n/2)-1}} \int \cdots \int |u|^{(n-3)/2} \bigg(\frac{1}{r^2 + |x|^2 - 2r|x|\cos\theta_1} \bigg)^{(n-1)/4} e^{-|u|(r^2 + |x|^2 - 2r|x|\cos\theta_1)^{1/2}} \\ &\times e^{u_1(r\cos\theta_1 - |x|) + u_2r\sin\theta_1\cos\theta_2} \\ &\times \phi(r)r^{n-1}\sin\theta_1^{n-2}\sin\theta_2^{n-3} \dots \sin\theta_{n-2} \,\mathrm{d}r \,\mathrm{d}\theta_1 \dots \mathrm{d}\theta_{n-2} \,\mathrm{d}\theta_{n-1} \\ &\leqslant \frac{1}{2 \cdot (2\pi)^{(n/2)-1}} b_{n-2} |u|^{(n-3)/2} \int_0^\infty \int_0^\pi \int_0^\pi \bigg(\frac{1}{r^2 + |x|^2 - 2r|x|\cos\theta_1} \bigg)^{(n-1)/4} \\ &\cdot e^{-|u|(r^2 + |x|^2 - 2r|x|\cos\theta_1)^{1/2} + u_1(r\cos\theta_1 - |x|) + u_2r\sin\theta_1\cos\theta_2} \\ &\cdot \phi(r)r^{n-1}\sin^{n-2}\theta_1\sin^{n-3}\theta_2 \dots \sin\theta_{n-2} \,\mathrm{d}r \,\mathrm{d}\theta_1 \dots \mathrm{d}\theta_{n-2} \,\mathrm{d}\theta_{n-1}. \end{split}$$

Deux cas se présentent

(i) $|u_2| \ge |u_1|$, nous avons:

$$\begin{split} \int_0^\pi e^{|u_2 r \sin \theta_1 \cos \theta_2|} \sin_2^{n-3} \mathrm{d}\theta_2 &= \int_0^{\pi/2} e^{|u_2| r \sin \theta_1 \cos \theta_2} \sin^{n-3} \theta_2 \, \mathrm{d}\theta_2 \\ &+ \int_{\pi/2}^\pi e^{-|u_2| r \sin \theta_1 \cos \theta_2} \sin \theta_2^{n-3} \, \mathrm{d}\theta_2 \\ &= 2 \int_0^{\pi/2} e^{|u_2| r \sin \theta_1 \cos \theta_2} \sin \theta_2^{n-3} \, \mathrm{d}\theta_2. \end{split}$$

Ce qui entraine:

$$\begin{split} e^{-|u_2|r\sin\theta_1} & \int_0^\pi e^{u_2r\sin\theta\cos\theta_2} \sin\theta_2^{n-3} \,\mathrm{d}\theta_2 \\ & \leqslant 2e^{-|u_2|r\sin\theta_1} \int_0^{\pi/2} e^{|u_2|r\sin\theta_1\cos\theta_2} \sin\theta_2^{n-3} \,\mathrm{d}\theta_2 \\ & = 2 \int_0^{\pi/2} e^{-2|u_2|r\sin\theta_1\sin^2(\theta_2/2)} \sin\theta_2^{n-3} \,\mathrm{d}\theta_2 \leqslant 2 \int_0^{\pi/2} e^{-2|u_2|r\sin\theta_1\cdot(\theta_2/\pi^2)} \theta_2^{n-4} \,\mathrm{d}\theta_2 \\ & \leqslant \left(\frac{\pi^2}{2|u_2|r\sin\theta_1}\right)^{(n-3)/2} \Gamma\left(\frac{n-3}{2}\right) \end{split}$$

puisque: $\theta_2/\pi \le \sin \theta_2/2 \le \min(1, \theta_2/2)$.

Nous obtenons alors:

$$\int_{0}^{\pi} e^{u_{1}r\sin\theta_{1}\cos\theta_{2}}\sin\theta_{2}^{n-3} d\theta_{2} \leq \left(\frac{\pi^{2}}{2|u_{2}|r\sin\theta_{1}}\right)^{(n-3)/2} \Gamma\left(\frac{n-3}{2}\right) e^{|u_{2}|r\sin\theta_{1}}$$

et comme $r^2 + |x|^2 - 2r|x|\cos\theta_1 \ge r^2\sin^2\theta_1$ et $|u| \le \sqrt{2}|u_2|$ nous avons:

$$\begin{split} I_2 &\leqslant \frac{b_{n-2}}{2(2\pi)^{(n/2)-1}} \int_0^\infty \int_0^\pi \Gamma\biggl(\frac{n-3}{2}\biggr) (\sqrt{2}|u_2|)^{(n-3)/2} \biggl(\frac{\pi^2}{2|u_2|r\sin\theta_1}\biggr)^{(n-3)/2} \biggl(\frac{1}{r\sin\theta_1}\biggr)^{(n-1)/2} \\ &\cdot \sin\theta_1^{n-2} \times e^{-|u|(r^2+|x|^2-2r|x|\cos\theta_1)^{1/2}+u_1(r\cos\theta_1-|x|)+|u_2|r\sin\theta_1} \times r^{n-1}\phi(r)\sin\theta_1^{n-2}\,\mathrm{d}\theta_1\,\mathrm{d}r \\ &= \frac{1}{(2\pi)^{n/2}} b_{n-2} 2^{(n-3)/2} \cdot 2^{(3-n)/2} \cdot \Gamma\biggl(\frac{n-3}{2}\biggr) \int_0^\infty \int_0^\pi r\phi(r) e^{-|u|(r^2+|x|^2-2r|x|\cos\theta_1)^{1/2}} \\ &e^{u_1(r\cos\theta_1-|x|)+|u_2|)+|u_2|r\sin\theta_1}\,\mathrm{d}\theta_1\,\mathrm{d}r \end{split}$$

or

$$-|u|(r^2+|x|^2-2r|x|\cos\theta_1)^{1/2}+u_1(r\cos\theta_1-|x|)+|u_2|r\sin\theta_1\leq 0$$

ce qui prouve que:

$$I_2 \leqslant \frac{1}{(2\pi)^{(n/2)-1}} b_{n-2} 2^{(3-n)/4} \Gamma\left(\frac{n-3}{2}\right) \int_0^\infty r \phi(r) \, \mathrm{d}r \leqslant c_2 p(0) \quad \text{avec} \quad c_2 = \frac{\Gamma\left(\frac{n-3}{2}\right)}{(2\pi)^{(n/2)-1}}.$$

(ii) $|u_1| \ge |u_2|$ nous avons en utilisant la quantité conjuguée:

$$\begin{aligned} |u|(r^2 + |x|^2 - 2r|x|\cos\theta_1)^{1/2} - u_1(r\cos\theta_1 - |x|) - u_2r\sin\theta_1\cos\theta_2 \\ &= \frac{|u|^2(r^2 + |x|^2 - 2r|x|\cos\theta_1) - [(u_1(r\cos\theta_1 - |x|) + u_2r\sin\theta_1\cos\theta_2)^2}{|u|(r^2 + |x|^2 - 2r|x|\cos\theta_1)^{1/2} + u_1(r\cos\theta_1 - |x|) + u_2r\sin\theta_1\cos\theta_2}. \end{aligned}$$

On minore le numérateur par $u_1^2 r^2 \sin^2 \theta_1 \sin^2 \theta_2$, nous obtenons alors que l'expression est minoré par:

$$\geqslant \frac{u_1^2 r^2 \sin^2 \theta_1 \sin^2 \theta_2}{|u|(r^2 + |x|^2 - 2r|x|\cos \theta_1)^{1/2} + u_1(r\cos \theta_1 - |x|) + |u_2|r\sin \theta_1}$$

en utilisant:

$$u_1(r\cos\theta_1 - |x|) + |u_2|r\sin\theta_1 \le 1/2|u|(r^2 + |x|^2 - 2r|x|\cos\theta_1)^{1/2}$$

nous obtenons que l'expression est minorée par:

$$\geqslant \frac{u_1^2 r^2 \sin^2 \theta_1 \cdot \sin^2 \theta_2}{3|u|(r^2 + |x|^2 - 2r|x|\cos \theta_1)^{1/2}} \geqslant \frac{1/2|u|^2 r^2 \sin^2 \theta_1 \sin^2 \theta_2}{3|u|(r^2 + |x|^2 - 2r|x|\cos \theta_1)^{1/2}}$$

$$= \frac{|u|r^2 \sin^2 \theta_1 \sin^2 \theta_2}{6(r^2 + |x|^2 - 2r|x|\cos \theta_1)^{1/2}}$$

ce qui nous permet d'avoir:

$$\begin{split} I_2 &\leqslant \frac{1}{(2\pi)^{n/2}} b_{n-2} |u|^{(n-3)/2} \int_0^\infty \int_0^\pi \int_0^\pi \left(\frac{1}{r^2 + |x|^2 - 2r|x| \cos \theta_1} \right) \frac{n-1}{4} \\ &\times e^{-|u|r^2 \sin^2 \theta_1 \sin^2 \theta_2/6 (r^2 + |x|^2 - 2r|x| \cos \theta_1)^{1/2}} r^{n-1} \phi(r) \sin \theta_1^{n-2} \sin \theta_2^{n-3} \, \mathrm{d}\theta_2 \, \mathrm{d}\theta_1 \, \mathrm{d}r \\ &= 2 \cdot \frac{1}{(2\pi)^{n/2}} b_{n-2} \cdot |u|^{(n-3)/2} \int_0^\infty \int_0^\pi \int_0^{\pi/2} \left(\frac{1}{r^2 + |x|^2 - 2r|x| \cos \theta_1} \right)^{(n-1)/4} \\ &\times e^{-|u|r^2 \sin^2 \theta_1 \sin^2 \theta_2/6 (r^2 + |x|^2 - 2r|x| \cos \theta_1)^{1/2}} r^{n-1} \phi(r) \sin \theta_1^{n-2} \sin \theta_2^{n-3} \, \mathrm{d}\theta_2 \, \mathrm{d}\theta_1 \, \mathrm{d}r. \end{split}$$

On utilise maintenant que $(2/\pi)\theta_2 \le \sin\theta_2 \le \theta_2$ nous obtenons que l'intégrale I_2 est majorée par:

$$\leq 2 \cdot \frac{1}{(2\pi)^{n/2}} b_{n-2} \cdot |u|^{(n-3)/2} \int_0^\infty \int_0^\pi \int_0^{\pi/2} \left(\frac{1}{r^2 + |x|^2 - 2r|x| \cos \theta_1} \right)^{(n-1)/4} \\ \cdot e^{-|u|(4/\pi^2)\sin \theta_1^2 \theta_2^2 r^2/6(r^2 + |x|^2 - 2r|x| \cos \theta_1)^{1/2}} \times r^{n-1} \phi(r) \sin \theta_1^{n-2} \theta_2^{n-4} \, \mathrm{d}\theta_2 \, \mathrm{d}\theta_1 \, \mathrm{d}r.$$

Ainsi nous obtenons en intégrant par rapport à θ_2 :

$$\begin{split} I_2 &\leqslant \frac{2}{2(2\pi)^{n/2}} b_{n-2} \Gamma\left(\frac{n-3}{2}\right) |u|^{(n-3)/2} \int_0^\infty \int_0^\pi \left(\frac{1}{r^2 + |x|^2 - 2r|x|\cos\theta_1}\right)^{(n-1)/4} \\ &\cdot \left[\frac{3\pi^2}{2} \frac{(r^2 + |x|^2 - 2r|x|\cos\theta_1)^{1/2}}{|u|r^2\sin^2\theta_1}\right]^{(n-3)/2} \times r^{n-1} \phi(r) \sin\theta_1^{n-2} \,\mathrm{d}\theta_1 \,\mathrm{d}r \\ &= \frac{1}{(2\pi)^{n/2}} b_{n-2} \Gamma\left(\frac{n-3}{2}\right) \left(\frac{3\pi^2}{2}\right)^{(n-3)/2} \int_0^\infty \int_0^\pi \frac{\sin\theta_1}{(r^2 + |x|^2 - 2r|x|\cos\theta_1)^{1/2}} r^2 \phi(r) \,\mathrm{d}\theta_1 \,\mathrm{d}r. \end{split}$$

Mais nous avons:

$$\int_0^{\pi} \frac{\sin \theta_1}{(r^2 + |x|^2 - 2r|x|\cos \theta_1)^{1/2}} d\theta_1 = \frac{1}{|x| \cdot r} [(r^2 + |x|^2 - 2|x|r\cos \theta_1)^{1/2}]_0^{\pi}$$
$$= \frac{1}{|x| \cdot r} [|x| + r - ||x| - r|].$$

Or nous avons

$$\frac{1}{|x|}(|x|+r-||x|-r|) \le 2.$$

En effet deux cas se présentent:

$$-\sin r \le |x|$$
 nous avons $r + |x| - |r - |x|| = r + |x| - |x| + r = 2r$

Ce qui donne que $(|x| + r - ||x| - r|)/|x| \le 2$.

$$-\sin r \ge |x|$$
 nous avons $r + |x| - |r - |x|| = 2|x|$

ce qui donne
$$(|x| + r - ||x| - r|)/|x| = 2$$
.

Il en résulte que:

$$I_2 \leqslant \frac{4}{(2\pi)^{n/2-1}} b_{n-2} \Gamma\left(\frac{n-3}{2}\right) \left(\frac{3\pi^2}{2}\right)^{(n-3)/2} \int_0^\infty r\phi(r) \, \mathrm{d}r = c_3 p(0)$$

avec $c_3 = \theta \pi \Gamma(n - 3/2) \Gamma(n/2)$.

Ce qui prouve que $W^u \phi(x) \le (c_1 + c_2 + c_3) p(0)$, pour tout $u \in \mathbb{R}^n$, $x \in \mathbb{R}^n$.

Ce qui démontre le Théorème 7.

REMARQUE 3. Pour $n \ge 4$ et μ non radiale le Théorème 7 n'est pas vrai. Pour cela nous allons étudier le contre exemple suivant:

CONTRE EXEMPLE dans \mathbb{R}^n ; $n \ge 4$.

Nous fixons $u = e_1$, $e_1 = (1, 0, ..., 0)$. Pour tout $k \in \mathbb{N}^*$. Nous définissons: $C_k = B(k^2\theta_1, k) \setminus B(k^2e_1, k/2)$ et $\phi_k = \alpha_k \cdot 1_{C_k}$ avec la condition $\int_{\mathbb{R}^n} \phi_k(y) \, \mathrm{d}y = k^{n-2}$.

On pose $\phi = \sum_{k=1}^{\infty} \phi_k$. Soient p_k le potentiel de newton engendré par ϕ_k et p le potentiel engendré par ϕ . On a $p = \sum_{k=1}^{\infty} p_k$.

PROPOSITION 1.

(1)
$$P \text{ est born\'e sur } \mathbb{R}^n: P \leqslant 2^{n-2} \left(1 + 2 \sum_{k=1}^{\infty} \frac{1}{K^{n-2}} \right).$$

(2)
$$\int_0^\infty \int_{\mathbb{R}^n} \frac{1}{(4\pi t)^{n/2}} e^{-|y-2te_1|^2/4t} \phi(y) \, \mathrm{d}y \, \mathrm{d}t = +\infty.$$

Démonstration. La démonstration se fait en plusieurs étapes. Nous avons:

$$(i) P_k \leqslant 2^{n-2}.$$

En effet

$$P_k(k^2 e_1) = \int_{C_k} \frac{\phi_k(y)}{|k^2 e_1 - y|^{n-2}} \, \mathrm{d}y \le \int_{C_k} \frac{\phi_k(y)}{\left(\frac{k}{2}\right)^{n-2}} \, \mathrm{d}y = 2^{n-2}$$

il s'en suit pour des raisons de symétrie que $P_k \leq 2^{n-2}$ sur \mathbb{R}^n .

(ii)
$$P(m^2 e_1) \le 2^{n-2} \left(1 + 2 \sum_{k=1}^{\infty} \frac{1}{k^{n-2}} \right)$$

pour tout $m \in \mathbb{N}^*$. En effet nous avons

(a)
$$\sum_{k=m+1}^{\infty} P_k(m^2 e_1) = \sum_{k=1}^{\infty} P_{k+m}(m^2 e_1)$$

et $|m^2e_1 - y| \ge d(m^2e_1, C_{k+m}) = (m+k)^2 - (k+m) - m^2 = k^2 + (2m-1)k - m \ge \frac{1}{2}k(k+m)$ pour tout $y \in C_{k+m}$, $k, m \in \mathbb{N}^*$ ce qui permet d'écrire:

$$\sum_{k=1}^{\infty} P_{k+m}(m^2 e_1) \leqslant \sum_{k=1}^{\infty} \frac{(k+m)^{n-2}}{\left(\frac{k(k+m)}{2}\right)^{n-2}} = 2^{n-2} \sum_{k=1}^{\infty} \frac{1}{k^{n-2}}.$$

(b)
$$\sum_{k=1}^{m-1} P_k(m^2 e_1) \leqslant \sum_{k=1}^{m-1} \frac{k^{n-2}}{\left(\frac{k(m-k)}{2}\right)^{n-2}} = 2^{n-2} \sum_{k=1}^{m-1} \frac{1}{(m-k)^{n-2}}.$$

car nous avons

$$|m^2e_1 - y| \ge d(m^2e_1, C_k) = m^2 - k^2 - k \ge \frac{1}{2}k(m - k)$$

pour tout $1 \le k \le m-1$ et tout $y \in C_k$.

Ce qui nous donne:

$$P(m^2e_1) = \sum_{k=1}^{\infty} P_k(m^2e_1) \leqslant 2^{n-2} \left(1 + 2\sum_{k=1}^{\infty} \frac{1}{k^{n-2}}\right).$$

(iii)
$$P(xe_1) \le 2^{n-1} \left(1 + 2 \sum_{k=1}^{\infty} \frac{1}{k^{n-2}} \right)$$
 pour tout $x \in \mathbb{R}$.

En effet nous avons:

(a) Pour $x \le 1$ nous avons: $|xe_1 - y| \ge d(xe_1, C_k) = k^2 - k - x \ge k^2 - k - 1 \ge \frac{1}{2}k^2$ pour tout $k \ge 2$ et tout $y \in C_k$. Ceci nous permet d'avoir:

$$P_k(xe_1) = \int \frac{\phi_k(y)}{|xe_1 - y|^{n-2}} \, \mathrm{d}y \le 2^{n-2} \, \frac{1}{k^{n-2}}$$

et par suite $p(xe_1) \le 2^{n-2} \sum_{k=1}^{\infty} 1/k^{n-2}$.

(b) Pour x > 1, il existe m unique dans \mathbb{N}^* tel que $m^2 \le x < (m+1)^2$; soient $1 \le k \le m-1$ et $y \in C_k$ on a:

$$|xe_1 - y| \ge d(xe_1, C_k) = x - k^2 - k \ge m^2 - k^2 - k \ge \frac{1}{2}k(m - k)$$

Ce qui permet d'écrire:

$$\sum_{k=1}^{m-1} P_k(xe_1) \leqslant \sum_{k=1}^{m-1} P_k(m^2e_1) \leqslant 2^{n-2} \sum_{k=1}^{m-1} \frac{1}{(m-k)^{n-2}}$$

d'après (ii b).

D'autre part, soient $k \ge 2$ et $y \in C_{k+m}$ on a $|xe_1 - y| \ge d(xe_1, C_{k+m}) = (k+m)^2 - (k+m) - x \ge (k+m)^2 - (k+m) - (m+1)^2 \ge \frac{1}{2}k(k+m)$ ce qui permet d'écrire d'après (ii a):

$$\sum_{k=m+2}^{\infty} P_k(xe_1) = \sum_{k=2}^{\infty} P_{k+m}(xe_1) \leqslant \sum_{k=2}^{\infty} P_{k+m}(m^2e_1) \leqslant 2^{n-2} \sum_{k=2}^{\infty} \frac{1}{k^{n-2}}$$

il en résulte que:

$$P(xe_1) = \sum_{k=1}^{\infty} P_k(xe_1) = \sum_{k=1}^{m-1} P_k(xe_1) + P_m(xe_1) + P_{m+1}(xe_1) + \sum_{k=m+2}^{\infty} P_k(xe_1)$$

$$\leq 2^{m-2} \left(1 + 2 \sum_{k=1}^{\infty} \frac{1}{k^{m-2}} \right).$$

Ce qui donne

$$P(xe_1) \le 2^{n-2} \left(1 + 2 \sum_{k=1}^{\infty} \frac{1}{k^{n-2}} \right)$$
 pour tout $x \in \mathbb{R}$.

Enfin nous avons

(iv)
$$P(X) \leqslant 2^{n-2} \left(1 + 2 \sum_{k=1}^{\infty} \frac{1}{k^{n-2}} \right) \text{ pour tout } X \in \mathbb{R}^n.$$

En effet: soit x la composante de X suivant e_1 . Soit X_2 l'orthogonal de e_1 et $X = xe_1 + X_2$. Nous avons:

$$d(X, C_k) = ((x - k^2)^2 + |X_2|^2)^{1/2} - k \ge |x - k^2| - k$$

(a) si $x \le 1$ on aura:

$$d(X, C_k) \ge |x - k^2| - k = k^2 - k - x = d(xe_1, C_k).$$

Ce qui donne $|X - y| \ge d(X, C_k) \ge k^2 - k - x \ge k^2 - k - 1 \ge \frac{1}{2}k^2$ pour tout $y \in C_k$, $k \ge 2$. Ce qui entraine d'aprés (iii a) que

$$P(X) \leqslant 2^{n-2} \sum_{k=1}^{\infty} \frac{1}{k^{n-2}}.$$

(b) Si x > 1, il existe $m \in \mathbb{N}^*$ unique tel que $m^2 \le x \le (m+1)^2$. Soient $k \in \mathbb{N}$, $1 \le k \le m-1$ on a:

$$d(X, C_k) = ((x - k^2)^2 + |X_2|^2)^{1/2} \ge (x - k^2) - k = d(xe_1, C_k) \ge 1/2k(m - k)$$

d'après (iii b). Il s'en suit que $|x-y| \ge d(x,C_k) \ge \frac{1}{2}k(m-k)$ pour tout $y \in C_k$. Soit $k \ge 2$ et $y \in C_{k+m}$ on a aussi

$$|X - y| \ge d(X, C_{k+m}) \ge |x - (k+m)^2| - (k+m) = (k+m)^2 - (m+k) - x$$

= $d(xe_1, C_{k+m}) \ge 1/2k(k+m)$ d'après (iii b), on obtient ainsi:

$$P(X) = \sum_{k=1}^{\infty} P_k(X) = \sum_{k=1}^{m-1} P_k(X) + P_m(X) + P_{m+1}(X) + \sum_{k=m+2}^{\infty} P(X)$$

$$\leq 2^{m-2} \left(1 + 2 \sum_{k=1}^{\infty} \frac{1}{k^{m-2}} \right).$$

Ce qui démontre le (1) de la proposition.

Nous allons maintenant montrer que:

$$W^{e_1}(\phi)(x) = \int_0^\infty \int_{\mathbb{R}^n} \frac{1}{(4\pi t)^{n/2}} e^{-|y-2te_1-x|^2/4t} \, \phi(y) \, \mathrm{d}y \, \mathrm{d}t$$

n'est pas borné.

Pour x = 0 on a

$$W^{e_1}(\phi)(0) = \int_0^\infty \int_{\mathbb{R}^n} \frac{1}{(4\pi t)^{n/2}} e^{-|y-2te_1|^2/4t} \, \phi(y) \, \mathrm{d}y \, \mathrm{d}t.$$

En utilisant le théorème de Fubini on aura:

$$W^{e_1}(\phi)(0) = \int_{\mathbb{R}^n} \int_0^\infty \frac{1}{(4\pi t)^{n/2}} e^{-|y-2te_1|^2/4t} \phi(y) dt dy$$

$$= \int_{\mathbb{R}^n} \int_0^\infty \frac{1}{(4\pi t)^{n/2}} e^{-(|y|^2/4t)-t} (e^{(y,e_1)} \phi(y)) dt dy$$

$$= \int_{\mathbb{R}^n} \frac{1}{(4\pi)^{n/2}} \left(\frac{|y|^2}{4} \right)^{(1/2)(1-n/2)} K_{(n/2)-1}(|y|) e^{(y,e_1)} \phi(y) dy = V_1(\phi e^{(\cdot,e_1)})(0)$$

où $K_{(n/2)-1}$ est la fonction de Macdonald et V_1 est le noyau d'indice 1 de la résolvante du semi-groupe du mouvement brownien sur \mathbb{R}^n . Or nous savons d'après [17] que V_1 a une densité g_1^n par rapport à la mesure de Lebesgue sur \mathbb{R}^n qui est radiale et vérifie:

(1) Pour n impair

$$g_1^n(r) = \left(\sum_{p=(n-1)/2}^{n-2} a_p^n \frac{1}{r^p}\right) e^{-r}$$

avec $a_p^n > 0$,

$$a_{n-2}^n = \frac{1}{4\pi^{(n+1)/2}} \Gamma\left(\frac{n}{2} - 1\right), \quad a_{(n-1)/2}^n = \frac{1}{2 \cdot (2\pi)^{(n-1)/2}}.$$

(2) Pour n pair

$$g_1^n(r) = \sum_{p=n/2-1}^{n-3} b_p^n \frac{1}{r^p} \int_0^\infty (cht)^{n-2-p} e^{-rcht} dt$$

avec $b_p^n > 0$,

$$b_{n-3}^n = \frac{(n-4)!}{2 \cdot (4\pi)^{(n/2)-2} \left(\frac{n}{2}-2\right)!}, \quad b_{(n/2)-1}^n = \frac{1}{(2\pi)^{n/2}}.$$

Ce qui nous permet de remarquer:

(i)
$$g_1^n(r) \ge \frac{1}{2 \cdot (2\pi r)^{(n-1)/2}} e^{-r}$$

pour tout r > 0.

(ii)
$$g_1^n(r) \simeq \frac{1}{2 \cdot (2\pi r)^{(n-1)/2}} e^{-r}$$

quand r tend vers $+\infty$.

Il s'en suit d'après cette remarque que:

$$W^{e_1}(\phi)(0) \geqslant \frac{1}{2(2\pi)^{(n-1)/2}} \int_{\mathbb{R}^n} |y|^{(1-n)/2} e^{-|y| + \langle e_1, y \rangle} \phi(y) \, \mathrm{d}y$$
$$= \frac{1}{2(2\pi)^{(n-1)/2}} \int_{\mathbb{R}^n} |y|^{(1-n)/2} e^{-|y| + y_1} \phi(y) \, \mathrm{d}y$$

or sur C_k on a:

(1)
$$y = y_1 e_1 + y_2 \text{ avec } \langle e_1, y_2 \rangle = 0.$$

(2)
$$k^2 - k < y_1 < k^2 + k, |y_2| < k.$$

Ce qui donne:

$$|y| - y_1 = (y_1^2 + |y_2|^2)^{1/2} - y_1 = y_1 \left[\left(1 + \left(\frac{|y_2|^2}{y_1^2} \right) \right)^{1/2} - 1 \right]$$

$$\leq y_1 \left(1 + \frac{|y_2|}{y_1} - 1 \right) = \frac{|y_2|}{y_1} \leq \frac{k}{k^2} \leq 1$$

pour tout $k \ge 2$ car $y_1 \ge k^2 - k > 1/2k^2$ pour $k \ge 2$ nous obtenons ainsi $e^{-|y| + y_1} \ge e^{-1}$ pour tout $y \in C_k$, $k \ge 2$ et $|y| \le y_1 + |y_2| \le k^2 + 2k \le 2k^2$ pour tout $k \ge 2$.

Il en résulte que:

$$W^{e_1}(\phi)(0) \ge \frac{e^{-1}}{2(2\pi)^{(n-1)/2}} \sum_{k=2}^{\infty} \int_{\mathbb{R}^n} |y|^{(1-n)/2} \phi_k(y) \, \mathrm{d}y \ge \frac{e^{-1}}{2(2\pi)^{(n-1)/2}} \sum_{k=2}^{\infty} \int_{\mathbb{R}^n} \frac{\phi_k(y)}{(2k^2)^{(n-1)/2}} \, \mathrm{d}y$$
$$= \frac{e^{-1}}{2(2\pi)^{(n-1)/2}} \sum_{k=2}^{\infty} \frac{k^{n-2}}{k^{n-1}} = \frac{e^{-1}}{2(2\pi)^{(n-1)/2}} \sum_{k=2}^{\infty} \frac{1}{k} = +\infty.$$

Bibliographie

- Ancona, A.: Principe de Harnack à la frontière et théorème de Fatou pour un opérateur elliptique dans un domaine lipschitzien, Ann. Inst. Fourier 28 (4) (1978), 169-213.
- Aronson, D. G.: Bounds for the fundamental solution of a parabolic equation, Bulletin of the American Mathematical Society 73 (1967), 890-896.
- Ben Saad, H.: Généralisation des noyaux V_h et applications, Séminaire théorie du potentiel de Paris N°7. Lecture Notes in Math. N°1061, Springer-Verlag (1984).
- Ben Tahar, R.: Perturbation des espaces harmoniques et comparaison des fonctions de Green, Thése de 3^e cycle, Université de Tunis (1985).
- Bliedtner, J. et Hansen, W.: Potential Theory An Analytic and Probabilistic Approach to Balayage, Universität Berlin-Heidelberg-New York Toyo, Springer (1986).
- Boukricha, A., Hansen, W. et Hueber, H.: Continuous solutions of the generalized Schrödinger equation and perturbation of harmonic spaces. Exp. Math. 5 (1987), 97-135.
- Davies, E. B.: Heat Kernels and Spectral Theory, Cambridge University Press, Cambridge, New York, New Rochelle, Melbourne, Sydney (1989).
- 8. Fabes, E. B. et Stroock, D. W.: A new proof of Moser's inegality using the old idea of Nash, Arch. Rat. Mech. Anal. 96 (1986), 327-338.

- Hirsch, F.: Conditions nécessaires et suffisantes d'existence de résolvantes, Z. Wahrscheinlichkeitstheorie Verw. Gebiete 29 (1974), 73-85.
- Hueber, H. et Sieveking, M.: Uniform bounds for quotient of Green functions on C^{1,1} domains, Ann. Inst. Fourier 32 (1) (1982), 105-117.
- Ito, M. et Nishio, M.: Poincaré type conditions of the regularity for the parabolic operator of order α, Nagoya Math. J. 115 (1989), 1-22.
- 12. Maagli, H. et Selmi, M.: Perturbation et comparaison des semi-groupes, Revue Roum. de Math. Pures et Appliquées XXXIV (1) (1989), 29-40.
- Maagli, H. et Selmi, M.: Perturbation des résolvantes et des semi-groupes par une mesure de Radon positive, Math. Zeitschrift 205 (1990), 379-393.
- Nishio, M.: The Wiener criterion of regular points for the parabolic operator of order α, Nagoya Math.
 J. 116 (1989), 163-179.
- 15. Olver, F. W. J.: Asymptotics and Special Functions, New York: Academic Press (1974).
- Selmi, M.: Critère de comparaison de certains noyaux de Green, Séminaire de Théorie du Potentiel de Paris Nº 8, Lecture Notes 1235 (1987).
- Selmi, M.: Comparaison des noyaux vérifiant le principe complet du maximum avec leurs perturbés, Thèse de 3^{ème} Cycle, Université de Tunis (1984).
- 18. Yosida, K.: Functional Analysis, 5th edition, Springer-Verlag, Berlin-Heidelberg-New York (1978).