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We prove Hopf bifurcation and center manifold theorems for functional 
differential equations of mixed type. An application to the dynamic behavior of 
a competitive economy (business cycle) is provided. 
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1. INTRODUCTION 

Mixed functional differential equations (MFDE) are here a special class of 
functional differential equations where the time derivative depends on both 
past and future values of the variable. The reader is referred to Rustichini 
(1989) for a brief discussion of the motivations for the study of such 
equations. 

In this paper, we deal with two aspects of the theory of nonlinear 
MFDEs: Hopf bifurcation and the center manifold theorem. In a final 
section, we present an application of this theory to a problem arising in 
economic theory (existence of business cycles in a competitive economy). 

We consider first the Hopf bifurcation. We recall that, broadly 
speaking, Hopf bifurcation theorems prove the existence of periodic 
solutions of a nonlinear equation, in the vicinity of a stationary solution, 
when a conjugate pair of distinct eigenvalues of the linearized equation 
crosses the imaginary axis. In the proof of the Hopf bifurcation theorem for 
MFDE, a strategy of proof is necessary that does not involve a solution 
operator. The argument that we adopt is a purely functional analytic one, 
involving a Lyapunov-Schmidt reduction (LSR). We set our problem in 
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the space of periodic functions of fixed period. The linearization of the 
stationary solution of our MFDE defines a linear operator acting on this 
space. The key step, in order to set the LSR, is the proof that the linear 
operator so defined is a Fredholm operator. This difficulty can be over- 
come thanks to our choice of the space: a linear operator of mixed type, 
when its action is restricted to the periodic functions, can be in fact 
identified with an operator of the delay type. Once this is done, the task is 
reduced to the study of the zeros of the bifurcation functions. 

In Section 5, we deal with the existence of a center manifold. Let us 
recall briefly the main idea of the center manifold theorem (for ordinary, or 
delay, equations). One again considers the behavior of a nonlinear 
equation in the vicinity of a stationary solution; if the characteristic 
equation of the linearized equation at the stationary solution, has, say, a 
pair of characteristic roots on the imaginary axis, then this same linear 
equation has a two-dimensional (2D) subspace of solutions that have 
exponentially bounded growth. 

It is natural to ask whether the nonlinear problem has, at least locally, 
a 2D submanifold of solutions, homeomorphic to the 2D subspace. The 
affirmative answer is given in the center manifold theorem. It is important 
to emphasize that the linear subspace and the submanifold mentioned are 
both defined in the phase space; the center manifold is locally the graph of 
a function from (a subspace of) the space of continuous functions on the 
delay interval into itself. This is very natural in a situation where a con- 
tinuous semigroup is defined, and the map defining the center manifold is 
found b y  means of a variations of constants formula built upon this 
semigroup [see, for instance, Hale (1977)]. 

In the case of MFDE, this is no longer possible due to the lack of such 
continuous semigroups [-see Rustichini (1989)]. Therefore, a different 
strategy is necessary, similar in spirit to the Lyapunov-Schmidt decom- 
position. First of all, it involves the choice of a space different from the 
(continuous) functions on the interval [--r ,  r]. We consider the space of 
continuously differentiable functions defined over the entire real line, with 
norm weighted by an exponential factor. The linear operator, M, defined 
by the linearization of the MFDE, and the MFDE itself both naturally 
define a map on this space. The image space is the space of continuous 
functions defined over the entire real line, with a weighted norm. Once we 
prove that the dimension of the kernel of M is the same as the number of 
roots (considering multiplicity) located on the imaginary axis, and that M 
is surjective, then the implicit function theorem will provide the homeo- 
morphism defining the center manifold. It should be emphasized that our 
center manifold theorem relies on a fairly strong condition on the 
linearized operator. We now introduce some notation used in the following. 
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For r positive real number, we denote C([--r ,  r], ~n) the Banach 
space of continuous functions from the interval I - r ,  r] to ~", endowed 
with the sup norm. When no confusion is possible, we simply denote C such 
space. Given a continuous function f:  C-~ ~n, the MFDE is defined as 

2(t) = f(xt)  (1.1) 

where x t ( s ) - x ( t + s )  for sE [ - r ,  r]. When an initial condition q~s C, and 
an interval [ a -  r, b + r] containing 0, are specified, a solution of the 
MFDE is a continuously differentiable function x: [ a -  r, b + r]--* ~n that 
satisfies (1.1) for every t~ [a, b] and x0=~b. Let now the vector 0e  ~" be a 
solution (in a naturally defined way) of (1.1); if f is Frech6t differentiable 
at 0, we identify (Riesz representation theorem) its Frech6t derivative at 
zero by f '(0),  with the regular measure induced by a function of bounded 
variation q, that is, 

f 
r 

f'(O)(~ = dq(O) ~b(0) for every ~ s C. (1.2) 
- - r  

We associate with this L the characteristic matrix A ( s ) -  s I - S 2 r  e'~ dq(O). 

2. THE ADJOINT OPERATOR 

Our proof of the Hopf bifurcation theorem requires some preliminary 
construction. Since the analysis closely follows the one for delay equations 
[as in Hale (1977)], the presentation will be sketchy. 

The purpose of this section is to study an operator adjoint to the 
operator A, where A is defined as 

(A(~)(s) = (3(s) s ~ [ - r, r] 

D(A)= q ~ C l ( [ - r , r ] , N n ) : ~ ( 0 ) =  dq(O)~(O) . 
- - r  

We follow Hale (1977, Sections 7.3 and 7.6) for this purpose. The domain 
of such adjoint operators will be contained in the space 

c *  - c ( E - r ,  r] ,  (~~ T) 

where T denotes transposition. 
We define, for any ~ s C* 

f~r ~ 
(~, #) = ~(0)  r  --  --  ~(r - O) d , ( O )  0 ( r  de.  
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We want to determine an operator A* with domain D(A*) that satisfies 

(~, A~b) = (A*~, ~b) for q~eD(A), ~ D ( A * ) .  

We have that (integration by parts) 

(~, AO)=~(O) f~rd~l(O) O(O) 

= ~(o) f r r d.(o) ~(o) -  o~rr ~(0) d.(0) ~(0)+ y r ~ ( - ~  d,(0) ~(0) 

it f; + a(~ - o) d~(O) ~(~) d~ 
- - r  

- ( A * ~ ,  ~). 

It is therefore natural to define A* as 

A*~(s) = -8(s) 

{ ; } D ( A * ) =  e e C l ( [ - r , r ] , ( N n ) r ) : - 0 i ( 0 ) =  ~(-O)dtl(O) , 
r 

and the formal adjoint equation as 

?( t )  = y ( t  - 0) dr (0)  - L * /  
- - r  

where y'(u) =- y(t + u) s (R") r for s e I - - r ,  r] .  Then we have, as in Hale 
(1977, p. 175), that, for any complex number s, se~(A)  if and only if 
ss~(A*). 

Remark. Since ~(A) = P~(A) = ~(A* ) = Pa(A*), we see that s e o-(A*) 
if and only if there exists a b # 0 such that 

E;  1 b sI+ e-~~ = b ( - A ( - s ) ) = O .  
r 
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Lemma 2.1. Let y be a solution of the adjoint equation, and x a 
solution of Yc(t) = Lx  t + f ( t ) .  Then if we define 

one has 

( y ' , x , ) -  yt(O).x,(O) - y ' ( r  d~l(O)xt(r 
- - r  

( j ,  xt) = y(s) f ( s )  ds + (y~ x~), t >1 ~. 

Proof. In fact, since 

fr fr 
9(s) = - y(s - O) drl(O), Yc(s) = dq(O) x(s - O) + f(s) ,  

- - r  - - r  

and since 

d 
(y .  x)(s) = y(s) f ( x )  + y(s) Lx~ + L*y~x(s), 

it is enough to prove that in the equality: 

(y', x,) - ( S ,  xo) - y(s) f ( s )  ds = [y(s) Lx~ + Ly~x(s)-I ds 

+ y~(~ - O) drl(O ) xo(~) d~ 
- - r  

f'f  - - r  y ' ( ~ -  O) dq(O) xt(r d~ 

the right-hand term is zero, and this follows from an easy calculation. 

3. THE PROJECTION OPERATORS 

We let A =  {sl ..... sn} be a finite set of eigenvalues of the linear 
autonomous equation (1.2); qSA = (~bs I ..... qSs~ ) where ~bs, = (~b li ,..., r is a 
basis for the generalized eigenspace of si; ~vA = (~sl ..... ~s,) where ~Us= 

i i (~1,..., ~b,,,) is a basis for the generalized eigenspace of s~ for the formal 
adjoint; B=diag(B1,. . . ,B,)  the matrix defined by A~bs,=q~s,B~ and 
A*~,=B*7~s,  where B* is the transpose of B, and assume ~A to be 
normalized so that the (d• matrix (~A, ~A) satisfies 

where Id is the identity matrix on ~d, with d = ~i'] m,.. 
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�9 Let also FA be any closed contour in the complex plane surrounding 
the set of eigenvalues A disjoint from a(A). 

Then we define P A: C ---r C as 

p~(~)_ 1.f R(As)r 
Z ~ l  FA 

One can see [the argument is similar to the one in Banks and Manitius 
(1975)]: 

Lemma 3.1. For P A, qS A, ~ A, as above one has 

P A ( (~ ) = ~) A ( ~-IA , ~ )" 

We shall use the notation ~b A -  PA(~), for ~b e C. 
Let now x be a solution of the nonhomogeneous equation 

and denote 

Let TA 
A = {sl,..., s ,}  
following: 

2(t)  = Lxt  + f( t ) ;  

y(t)=_ (~A, xt). 

be the continuous semigroup associated with the set 
[see Rustichini (1989) for details]. We then have the 

Lemma 3.2. Let  x, y as defined above. Then, 

1. P A(Xt)(O) = S~ TA( t -- S) qbA(O ) 7tA(o)U(s)as + r A ( t -  a) q~ A(O)(gta(O), q}), 
and 

2. y is the solution o f  the ordinary differential equation 

) ( t ) = B A y ( t ) + ~ A ( O ) f ( t ) ,  with y(0) = (~a ,  ~b). 

Proof. The proof is as in Hale (1977): 

P ~(xt) - xt a = qb A( T A, X,) 

=qb aeBA' [ f l  e - B a s ~  A(O) f ( s )  ds + ( e -~a ' t p  A, x , )  ] 

= f l  ~Ae 'A( ' - s )~A(O)  f ( s )  ds + ~ a e  ~A(' - s ) (~a ,  Xa) 

f; = r ~ ( t - s ) ~ ( O ) f ( s ) d s + r ~ ( t - ~ ) ~ .  
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From the above equalities also follows that 

y(t)  = e BA('-~)y(a) + e B(t- ' )TA(O)f(s)  ds, 

which proves the second claim. | 

4. HOPF BIFURCATION FOR M F D E  

In the following, we shall study Hopf bifurcation for solutions of the 
equations 

2(t) = F(x,,  ~) 

where ~ is a real parameter. 
In this section, the most natural spaces to work with will be the spaces 

of periodic functions. We shall denote: 

C2= = C~(~,  ~") 

- {f: E --+ E": f is continuous and f ( t ) = f ( t  + 2n) for every t} 

and 

1 __ 1 C2, - C2~(R, R") -= { f e  C2~: f is continuously differentiable }. 

We shall also consider the inner product defined on C2~ as 

_ 1 s 
( f '  g )  =2-~ o f ( s )  g(s) ds. 

Two functions are orthogonal, f _1_ g, if and only if ( f ,  g )  = 0. 
As usual 

C( [ - r, r], ~") = C. 

We assume F: C• R-+ ~" is of class C 2 in both variables [see Chow 
and Hale (1982)]. We denote the Frech+t derivative of the function F(-, ~), 
evaluated at ~, as F'(r cr so that' 

F'(~b, ~): C--+ ~" 

and we write its representation as 

f~7r 
F'(~, cO(v) cl~(~, c~)(o) v(o) =- L(~, cO(v). 
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We shall study the behavior of the solution in the neighborhood of a 
stationary solution c at e = 0, that is, a constant c such that F(c, 0) = 0. We 
assume that there exists a continuous function ~: ( - ~ 0 ,  % ) ~  N" such that 
F ( g ( e ) , e ) = 0 ,  e e ( - ~ 0 ,  e0). Now simply redefining x and F, we may 
assume without loss of generality that 

F(0, ~) = 0 for ~e  ( - ~ ,  e), ~>0.  

We shall therefore simplify the notation above, dropping the dependence 
on r of the derivative F' ;  so r/(0, a) will be written as t/(a), and L(0, a) as 
L(~); analogously, when ~ = 0, we shall write t/(0) as 11 and L(0) as L. 

We also recall a few standard definitions. Let X and Y be Banach 
spaces. A bounded linear operator M: X ~ Y is called a Fredholm operator 
if the following two conditions hold: 

(i) The Kernel of M, Ker M, is finite dimensional. 

(ii) The range of M, is a subspace that is both closed and of finite 
codimension. 

Also we say that, if M is Fredholm, the index of M is the integer 

i(M) = dim Ker M -  codim range M. 

Our proof will use a Lyapunov-Schmidt  reduction (LSR); we recall here, 
for convenience of the reader and to clarify the notation, the major steps of 
the LSR [see, for example, Chow and Hale (1982) or Golubitsky and 
Schaeffer (1985)]. 

Let X, Y be Banach spaces, and q5 a C 2 map q ~ . X •  
q~(0, 0 ) =  0. The LSR is used to solve the equation 

q~(u, ~) = 0 (4.1) 

for u as a function of the parameter ~ near (0, 0). We denote M = M(0) the 
Frech6t derivative of q~ with respect to u at a = 0; we assume that M is 
Fredholm of index zero, and Y has an inner product < , } with respect to 
which an orthogonality • is defined. 

Step 1. Decompose X and Y as 

X =  Ker M(~ P 

Y = Q G range M. 

With E the projection of Y onto the range M along Q, we Step 2. 
write Eq. (4.1) as the equivalent system: 

E~(u, ~) = 0 

( I -  E) ~b(u, a) = O. 
(4.1a) 
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Step 3. Write u e X  as u = v + w ,  v e K e r M ,  w ~P ;  solve 
Eq~(v + w, cr 0 by the implicit function theorem to determine the map 
IV: Ker M • ~ ~ P such that 

Eq~(v + W(v, ~)) = O. 

Step 4. Define ~b: Ker M x N --, Q by 

q~(v, ~) =- ( I -  E) ~(v + W(v, ~), or 

Step 5. Choose a basis v~,..., vn for Ker M and a basis v~',..., v* for 
(range M) • and let g: ~ n x ~ ~ ~" be defined by 

g: (xl,..., x , ;  ~ ) ~  ((v*,  ~(XlV 1 "-[- " ' '  -~XnVn, ~ ) ~ ) t . n  [ .  

Since ~b(v, ~r Q for every v, we have that ~b(v, cr 0 if and only if 
ge(x, cr = O, i = I,..., n. We conclude the following: 

Theorem 4.1 (LSR) .  Let M be a Fredholm operator of index zero. 
Then the solutions of (1.1) are locally in a one-to-one correspondence with 
solutions of the system 

gi(x, o~) = 0 i = 1 ..... n, 

for the map g defined in Step 5 above. 

We also recall that the group S 1 is said to act on the space C2~ as 

( O . f ) ( t ) = f ( t - O )  for 0 e [ 0 , 2 7 z ) " - S  1. 

A subspace P of C2~ is said to be invariant under this group action i f f e P  
implies 0 . f e  P for all 0. A map ~b defined from such invariant subspace to 
C2~ is said to commute with the action of S 1 on C2~ if q~(0, f )  = 0. ~b(f) for 
all 0. 

In the following, we shall consider the bifurcation that takes place 
when a pair of eigenvalues of the characteristic equation crosses the 
imaginary axis, as the parameter c~ varies. More precisely, let one pair of 
the eigenvalues satisfy z(cr = x(~) ___ iy(cr and x(0) = 0, y(0) --A 0. Note that, 
with a time rescaling, we can assume y ( 0 ) =  1. 

As usual, we shall reduce the search for a periodic solution to the 
search of a solution in a class of functions with fixed period (270, by 
introducing an additional parameter. For  a real number z, let u ( . ) =  
x ( . / ( l + z ) ) ;  then we have that, if Yc( t )=F(x( t+.) ,~) ,  then fi( t)= 
(1/(1 + z ) ) F ( ( u ( t + . ( l + T ) ) , ~ ) .  Note that, if x is a periodic function of 

865/1/2-3 
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period 2n/ ( l+z) ,  then u is a periodic function of period 2n. We shall 
therefore study the operator qs: C~ x ~ x ~ ~ C2~, defined by 

qS(u, c~, z)( t )= (1 + z ) t i ( t ) -  F(ut( .(1 + z)), c~) 

where u,( .(1 + z))~ C ( [ - a / ( 1  + r), o-/(1 + ~)], ~") is defined by naturally 
restricting u to the interval I t -o r ,  t + or]; i.e., 

u t ( s ( l+z ) )=-u ( t+s ( l+z ) ) ,  sE l + z ' l + z  " 

It is clear that u is a 2n-periodic solution of 

( l + r ) i 4 t ) = F ( u ~ ( . ( l + z ) ) , ~ )  for every t ~  

if and only if 

~/'(u, ~, r) = 0. 

Rescaling (0. u)(t) = u ( t -  0), we have 

qs(O. u, ~, z)(t) = (1 + z) fi(t - 0) - F(u, _ o(" (1 + z)), ~t) 

= O. qS(u, ~, z)(t). 

That is, the operator q~ commutes with the group action of S ~. This obser- 
vation will play an important role in what follows. In fact, if ~b satisfies 
such conditions and the subspaces P and Q are invariant, under the action 
of S x, then the map ~b: Ker M x ~--. Q, defined in Step 4, also commutes 
with the action of S 1. [See PropositiionVII, 3.3, of Golubitsky and 
Schaeffer (1985).] 

We denote the characteristic matrix, at ~ = 0, as 

d ( s ) = - s l -  f~ drl(O)(O) eS~ s I -  Le ~', 

and the characteristic equation: det(d(s))= 0. 
The simple eigenvalue assumptions are 

(El) The characteristic equation has simple eigenvalues + i. 

(E2) There are no other eigenvalues with Re(s)= 0. 

We now apply the LSR to the system and we derive the following: 

Theorem 4.2. I f  the MFDE system 

2(t) - F ( x ,  ~) = 0 (4.2) 
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satisfies E1 and E2, then there exists a continuous function g(x, ~) of  the 
form 

g(x, ~) = r(x 2, ~)x, r(O, O) = 0 

such that locally solutions to g(x, ~ ) = 0  with x>~O are in a one-to-one 
correspondence with orbits of  solutions to (4.2). 

Proof, The proof of the theorem is organized in a sequence of 
auxiliary lemmas and theorems. We first study the Frech6t derivative of 
qs(., 0, 0) evaluated at the constant function 0: 

~1(0, 0, O) -= M 

where M: C1~ ~ C 2 ~  z is defined by 

f 
G 

(Mf)(t)=- f( t)  - dq(O) f ( t  + O). 

A basic condition for the LSR process to apply is that the operator M 
is Fredholm. This will follow quite simply from the fact that operators of 
the delay type have such property [see Hale (1977), Chapter 6]. We begin 
therefore with the observation that, on the space C2~, operators of mixed 
type can be identified with delay operators. 

Lemma 4.1. Let M, q be defined as above. Then there exists a real 
number R > 0 and a matrix valued function of bounded variation O such that 

(Mf)(t) = fo dO(O)f(t + o) 

for any f ~ C~.  

Proof.  Find K-min{k:~k>~a,  k=l ,2, . . .} ,  set R = 2 n k  then 
f ( R  + t + O) = f ( t  + O) and - R  + G < -(r while 

f 
~y 

(Mf)( t )  =- f ( t )  - d~1(O) f ( t  + O) 
t7 

= j ~ ( t ) -  d,7(O)f(t+o)- 
--0- - - R  

dq(R + O) f ( t  + O) 

fO =--j~(t)-- dFl(O)f(t+O), 
--R 
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where dr/is defined by 

fo~ ~ o ,  ~ ,  + o~_-f~ ~o~ ~t + o~ + ~ o +  ~-~o- ,~  ~o~ 

f 
- - R + a  

+ drl(R + O) f ( t  + 0). 
- R  

Let us now define the formal adjoint of M: 

M*: C~ ~ C~ 

M * ( f ) ( t )  -= jr(t) + fo _ ~ f ( t  - O) dO(O). 

We now proceed to define the direct sum decomposition of the two spaces 
C~, and C2,. 

Theorem 4.3. Assume E1 and E2; then, 

1. dim Ker M = 2 .  

2. M is a Fredholm operator of  index O. 

3. There exists a basis v 1 , v2for Ker M such that, after we identify Ker M 
with ~2 (with the map (x, y ) ~  xv tyv2), then the action of  S x on Ker M 
is given by 0 (x, ,n - tcos o-sin O~tx~ 

�9 Y / - - k  s i n O c n s O  ] ~ , y l "  

4. C ~ = K e r M G ( r a n g e M n C ~ = ) = - K e r M G P  
COn = Q G range M =  Q G (Ker M*) • 

Proof. Recall that we have defined 

f~ d(s) = sI--  drl(O, O) e '~ 
- f f  

When s = +i, we have by assumption E1 det A( +_ i) = O. Note that, in this 
case, 

fo 
A(+_i)= +_iI- dfl(O, O)e +-iO 

- R  

because e +_i0 is a 2z~-periodic function. By assumption, there exist two 
(conjugate) eigenvectors c, 6 such that (after suitable normalization) 

A ( i ) c = O = A ( - i ) 6 .  
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Define now the two functions vi: N ~ Nn, j = 1, 2 as follows: 

v l(s) - Re(e/Sc), Vz(S) = Im(eiSc). 

By assumption, + i  are simple eigenvalues; then, from Lemma 3.5, 
Section 7.3, of Hale (1977), and Statement 1 above, it now follows that 
dim Ker M = 2. (Recall that we are here considering the restriction of M to 
C l 2~, so the eigenfunctions associated with the other eigenvalues are not in 
KerM. )  Statement3 is now proved as in Golubtsky-Schaeffer (1985, 
p. 346). 

We now proceed to the proof of the second statement. M is clearly a 
continuous and linear operator from C~  to C2~. 

From Theorem 1.2, Section 9.1, of Hale (1977), we have that, given 
f ~  C2~, there exists a ~b ~ C~  such that M~b = f ,  if and only if ( f ,  ~ ) = 0 
for every ~ e Ker M*. In other words, we have the Fredholm alternative 
equivalent for our case: 

range M =  (Ker M*)  I. 

In addition, from the same theorem, we derive the existence of a con- 
tinuous projection J: C2~ ~ C2~ such that 

range M = ( I -  J)  C2~. 

This implies that range M is closed. Finally, in order to prove that 
i(M) = 0, we recall the definition of the projection J. Let V= col(v1 ..... vd), 
a basis for the 2n-periodic solutions of the adjoint equation. Then (T 
denotes transposition), 

(2 Jf=-(vl,...,va) V(s) Vr(s)as V(s)f(s)ds. 

Now the fact that d =  2 follows from the fact that the characteristic 
equation for the adjoint operator: 

( fo _,Odfl(O))=det(_A(_s)) ( -1)ndetA(-s)  det sI + e = 
- R  

has roots + i  that are simple. Now a second appeal to Lemma 3.5, Sec- 
tion 7.3, of Hale (1977) proves the claim. 

Let now b be a vector in the left null space of the matrix A(i), and let 
V* = (v*(s), v*(s))= col(Re be-i~). These two functions provide a basis for 
K e r M * ,  and Statement 4 now follows from the Fredholm alternative 
theorem. | 
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Remark. Note that the r defined in Step 4 of LSR is in our case 
defined as ~: Ker M •  ~ 2 ~  Ker M, a map between spaces of finite dimen- 
sion. For a fixed basis, a fixed ~ and z, it will be identified with a map 
between Euclidean spaces; in our case, r ~, ~): ~2 __, ~2. 

Furthermore P and Q are clearly S ~-invariant subspaces. Therefore, as 
mentioned above, the commutativity property of the operator �9 with 
respect to the action of S 1 is inherited by ~; that is, 

r162 for OeS 1. 

We now proceed to show some basic property of this function ~b. 

Lemma 4.2. Let x, y be the coordinates on Ker M defined in proposi- 
tion. Then there exist functions Pl, P2:~3 __+ ~ such that ~b(-; ~, ~): ~2 ~ ~2 
is of  the form 

with 

(a) p~(0, 0, 0 ) = 0  

(b) p2(0, 0, 0) = 0 

(c) p{(O,O,O)-(O/Oz)p~(O,O,O)=O 

(d) p~(O, o, ~ ) -  (a/a~) p2(0, 0, o) = -1 .  

Proof. The first statement, together with (a) and (b), are proved in 
Golubitsky-Schaeffer (1985, pp. 347-348). Here, the property of r that is 
being used is the commutativity with the action of S 1. 

We now proceed with the proof of (c) and (d). Notice that 

(~j(x, O, ~, ~) = <v*, ~(xv~ + W(xvl,  ~, ~), ~, ~)> 

= pj(x 2, ~, v)x j =  1, 2. 

Therefore, 

!imo(~J(x'O'~'v)/x=(v*'l im ~ (xv l+W(xv l '~ ' v ) '~ '~ )  x-+O x 

= p , ( O ,  ~, ~). 

We now compute the limit inside the inner product. By definition of 4, 

qS(XVl + W(xvl, ce, z)c~, z) = (1 + z) xv 1 "{- (1 + T) DW(xv~, ~, v) 

- r([xv~ + W(xvl,  ~, ~)],,~, z) 
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where D denotes derivative with respect to time. Therefore, the limit that 
we are studying is 

(1 -[-"C) ~1--F'(W(O, ~, z), ~) v).~-F'(W(O, ~, z))(Wl(0, c~, 3)),.~ 

= (1 + z) L(O) v] - L(cr v~,, + o(u). 

In the last equality, we have used the fact that ~l( t )= L(O) v~, because Vl is 
a solution of the linear autonomous equation; that W(O, a, fl)=O; and 
finally that 

w , ( o ,  o, o)  = o. 

We conclude that 

lim ~b(xvl + W(xv~, ~, r)~, ~) 
x ~ 0  X 

= (1 + 3) L ( 0 )  vl - L(~ )  vl,~ + O(~) .  

The proof can be concluded with an easy computation, identical to the one 
in Hale (1979, p. 165). | 

We can now conclude the proof of Theorem 4.2. At this stage, we only 
need to recall the argument of Golubitsky-Schaeffer (1985, Chapter 8). 

From the explicit form of ~ given in Lemma 4.2, we have that q~ = 0 if 
and only if either x = y = 0 or Pl = P2 = 0. We can restrict ourselves so the 
case y - -0 ,  x >~ 0, with a rotation, and therefore look for solutions of 

x>/O, pI(X2,~,'c)=p2(x2,~X,'~)=O. 

Near the origin, we can solve for z=3(x2,~)  from the equation 
pl(x 2, ~, 3)=  0, by using implicit function theorem and Lemma 4.2. Then 
define r(t, ~)=_ pl(t, ~, z(t, ~)) and g(x, ~ ) -  r(x 2, ~)x. Clearly all solutions 
of ~b=0 are locally in one-to-one correspondence with solutions of 
g(x, a ) =  0 and in turn with solutions of ~(u, ~, ~)= 0; that is, periodic 
solutions of the original nonlinear equation. This completes the proof of 
Theorem 4.2. 

We introduce now our final condition: 

(E3) Eigenvalue crossing condition: Re 2 ' (0)#0.  

We now note that we may assume without loss of generality that there 
exist two vector-valued functions d(~), c(~) such that 

(i) b(0)  = b, c (0 )  = c 

(ii) b(~) d(a, 2(a))--- 0 

(iii) A(a, 2(~)) c (a) -  0 
(iv) b(~) d~(~, 2(~)) c(~) = 1. 
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Theorem 4.4. Let the system of  MFDE k(t) = F(x,, c~) satisfy 

1. the simple eigenvalue conditions (El )  and (E2), and 

2. the eigenvaIue crossing condition (E3); 

then there is a one parameter family of  periodic solutions bifurcating from 
the steady-state solution at c~ = O. 

Proof. We have reduced the study of the existence of periodic 
solutions to the study of the zeros of the map g(x, ~). 

We recall that the map g(x, ~) is of the form r(x 2, ~)x for some 
function r; the nontrivial solutions of g(x, e ) =  0 are given by r(x 2, 0~)= 0. If 
we now prove that 

r,(0, 0) r 0, (4.3) 

then, from the implicit function theorem, we shall be able to solve 

= ] A ( X 2 ) ,  (4.4) 

which determines a one-parameter family of periodic solutions. 
We have now only to check Statement 1 above. From the definition 

we find 

r(t, ~) = p~(t, o~, z(t, ~)), 

r~(0, 0)= pl~(0, 0, 0)+ pit(0, 0, 0) ~,(0, 0, 0) 

= pl~(0, 0, 0) 

because we have seen above that pl,(0, 0, 0 ) = 0 .  
On the other hand, 

t t t  de~x <v~, ~=(v l ) -q~  (vl, L 1EqS~)>. 

We now proceed to show that the inner product above has, in our 
case, a simpler form. Our operator �9 is defined as q~(u,c<,v)(t)= 
(1 +z )  f i ( t ) -F(ut( . (1  +z)) ,  ~) and therefore 

OF 
q~(u, ~, ~)(t) = ~  (ut( .(t + ~)), ~). 

Now, since F(0, e ) = 0  in an open interval (--~o, co), 

OF' i~ ~(u, c~, v)(t) =- 0 and --~- vl(t) = dq~(O)Vl(t+O)=-L~Vl(t) 
-o -  
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so that 
02~1 
& ~ x  = (v*,  L~v l ) .  

We now proceed to compute this last term in our case: 

( v * , L ~ ( ~ ) v l ) = - ~  b, O) e ' ~  ~ 

so p~(0, 0, 0) -- �89 Re{b, f5~ dq~(e, 0) e -i~ = -�89 Re ) ( (0)  # 0 by assump- 
tion. | 

5. CENTER M A N I F O L D  FOR M F D E  

We now consider the situation in which the characteristic equation 
A(z)  has a finite number of roots in a strip {sE C: IRe sl < ~}. Our purpose 
is to prove the existence of a center manifold for MFDE. 

The standard approach to this problem is based on a suitable 
variation of constants formula, and a decomposition of the space in stable, 
unstable, and center subspaces. Such decomposition is presented in 
Rustichini (1989), but unfortunately a variation of constants formula 
analogous to the one valid for ordinary differential equations, or delay 
equations [see, for instance, Hale (1977), Section6.2], does not seem 
possible in our case. The fundamental reason is that our problem is, in 
general, ill-posed. 

The strategy that we shall follow will be of working with functions 
defined are the entire real line, and defining our center manifold map 
through an application of the implicit function theorem. Before we proceed, 
we introduce some additional notation. 

We again consider the equation 

2 ( 0  = f ( x t ,  ~). (5.1) 

We assume f to be Frech~t continuously differentiable, and this derivative 
to be continuous with respect to the parameter c~. We can therefore rewrite 
(5.1) as 

2(t)  = L(~)  x t + F(xt ,  c~), (5.1') 

where, with x,, we denote a function in C ( [ - r , r ] ,  ~"). We assume 
f(O, cO=O, for ~ e ( - c % ,  ~0), and shall denote, for c~=O, 

L~) = L(O)~ = dq(O) ~(0) 
- - z  

where L = F'(O, 0), the Frech6t derivative of f ( . ,  0) evaluated at 0. 
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We are interested in the case in which, for s = 0, the set of roots of the 
characteristic equation, A, can be partitioned into A = A v w A c c~ A s, 
where R e ( s ) > 0  in Av,  R e ( s ) = 0  in Ac, R e ( s ) < 0  in As. In particular, 
A c =  {zl(s) ..... Zm(S)} is finite. By the continuity of the roots with respect 
to the parameter a, which follows from the continuity in s of the Frech6t 
derivative of f ,  we may assume that, for a small enough s0, there exist 
continuous functions zi, i = 1,..., m and a real positive number 7 such that 
zi: ( - s 0 ,  s ) ~ C ,  zg(O)=z~, IRe z~(s)l <7  for a s ( - s 0 ,  s0), i= 1 ..... m, and 
detA(zi(s) ,  ~ ) = 0 ,  where A(z, s ) - s I - ~ r  re~~ dq(a, 0). Furthermore, if 
det A(z, a) = O, z ~ z~(s), i = 1,..., m, then [Re z[ > y. 

The sets Au(s),  As(s)  are defined in the natural way. Before we 
proceed, we need to introduce some additional definitions and notation. 

Let x: ~ ~ ~" be a continuous function; we define the weighted norm 

Ilxl[~= sup Ix ( t ) l  e -~ Irk 
t E N  

for any ~, ~ R. For  any integer k ~> 0 and 7 e R, let 

~'x: E ~ En: x is k-times continuously differentiable t 
Ck(~, ~n, 7) = C~ = (and  IIDJxll 7 < + ~ ,  j = 0, 1,..., k 

where D j is the j t h  derivative. When no confusion is possible, we shall drop 
the superscript 0 in C ~ The functionals 

p ~ k ( x )  ~ IID~xll~ 

are seminorms on C~, and 

k 

Ilxll~,k~ ~ p ~ j ( x )  
j = 0  

is a norm. We can then define the linear operator H: C1(~, E", y ) - .  
C~ ~", ~) as 

I - I ( x ) ( t )  =_ ~ ( t )  - L x , .  

Note that, for a function x E C ~ the two Laplace transforms 

fO c~ 2(x) - x(t)  e -st dt 

f o -st dt ~ ( s )  - x( t )  e 
-- o3 
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are analytic functions in the regions Re s > ),, Re s < -7 ,  respectively. As 
usual, for a function g: C --, C, we define 

f( g(s) ds = - lira 1 f~+ir 

whenever the limit exists. We shall also use the following inner product: 

q~)---c~(0) ~b(0)- J_~ J0(~ c~(~- 0)drl(O ) 0(~)d~. (~, 

Remark. Recall that, if s is a root of det A(s), then - s is a root of the 
characteristic equation of the formal adjoint. In fact, if b e ( N " )  r, 
b A ( - s )  =0,  the function y ( t ) - b e  -s' is a solution of the formal adjoint 
equation. Consider now a function x e K e r H ;  i.e., x ~ C I ( R ,  R",7) and 
2(t) = Lx,  for every t E N. Then we have 

f0 (yt, x t ) - ( y ~  y(s) f ( s ) d s = O  ( b e c a u s e f ~ 0 ) .  

Also if Re(s) > 7, then for 7 defined as above we have lim, + ~ (y', xt) = O, 
since 

(yO, Xo) = (ble -s, Xo) = O. 

We now present, in Lemma 5.1, an estimate of the behavior of tIA l(s)lJ 
over special contours in the complex plane, denoted Ct and described in 
Bellman and Cooke (1963, p. 100). [See also Banks and Manitius (1975).] 

Before we proceed, we need to introduce two different assumptions 
[see Rustichini (1989)] on the Frech6t derivative of the function f ( . ,  0) at 
0, which we denoted as L. The first one is 

(A1) L(~b)=A _rO(--r)+ B(~(r)+ S~ rdtl(O)~(O) for any r  where A -r, 
Br are nonsingular matrices, q is continuous at +_ r, has only a finite 
number of  jumps, and the induced measure has no continuous part. 

The second assumption is introduced to deal specifically with systems of 
M F D E  of a special type, namely, of Hamiltonian type. We use this name 
because systems that characterize optimal solutions of a control problem 
with delays have such a structure: the final section of this paper is indeed 
an extensive discussion of one of these eases. 

In this case, the state variable is 2n-dimensional, and is denoted 
(x(t), p(t)) ~ ~2n; the assumption we shall need is 
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(A2) The linear&ed equation at 0 is 

fo 
~(t)= d~l(O)x(t+O)+Ap(t)=-Mx,+A, 

- - r  

p(t)=ex(t)+ d~2(O) p(t+O)-Sx(t)+Up' 

where 

IUrdtll(O) x(t  + 0)= S x ( t - r )  + f~ x(t  + 0), 

Sro dq2(O) p(t  + O) = Rp(t + O) + ~o dr/2(0) p(t + 0), S and R are non- 
singular matrices, q * and q* are functions of  bounded variation con- 
tinuous at +_r, with only a finite number of  jumps, and the induced 
measure has no continuous part. 

We can now prove the following: 

Lemma 5.1. Assume either (A1) or (A2),  as defined above �9 then, 

{, 

lim / [eStl 1,4-1(s)1 ds=O for t>  -~.  
l ~ ~ , )  C I 

The convergence is uniform in t for t in bounded sets, i.e., t6 [a, b], 
- z < a < b <  + ~ .  

Proof. The proof follows the lines of the proof of Lemma 4.2 in 
Bellman and Cooke (1963, pp. 122-123), once the estimate (4.6.5) of such 
lemma is given. Such estimate is provided in Sections 3 and 4 of Rustichini 
(1989). I 

We have now completed the exposition of preliminary concepts and 
results; we may therefore proceed with the construction of the center 
manifold. Let Es be the eigenspace corresponding to the eigenvalue s. 

Lemma 5.2. Assume either (A1) or (A2).  Then, 

Ker H = span{Es: s s A c}. 

Proof. Consider any x s Ker H. Since the behavior at +_ ~ is, in the 
space that we are considering, prescribed by the definition of the space 
itself, we can consider the Laplace transform of both sides of the equation 

Jc( t ) = Lxt  (5.2) 
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on the two intervals t ~> 0 and t ~< 0. The two functions 2(s) and 2(s) are 
analytic in the regions Re s > 7  and Re s < - 7 ,  respectively, because 
x e  C~ Rn, 7). For the interval t~>0, we obtain 

(sI-  Le s') 2(s)=  x(O)- f l  1- f]e-'(~-o) dq(O) x(u)du, Re(s) > 7 

o r  

A(s) 2(s) = (e -~I, Xo) (Re(s) > 7). (5.3) 

For the interval t ~< 0, we obtain 

( s I -L# )2 ( s )=  x(O)- e '("-~ 
- 1  

or, by the definition of the inner product (., .), 

A(s) 2(s) = (e -"I, Xo). (5.4) 

We notice that, since 2, 2 are analytic on { s e C : R e ( s ) > 7 }  and 
{s t  C: Re(s) < -7},  respectively, the function F: C ~ C n, 

F(s)=A(s)-l(e-"I, Xo) ]Re(s)[ >7,  s~a(A), 

is analytic on IRe(s)l > 7. Also, the function (#7, xo) is clearly analytic on 
C, so F is analytic on {se C: IRe(s)l-.< 7}\{s: A(s)--0}; on the finite set of 
roots of A, F has poles of finite order. 

We now invert Eq. (5.3), with 7 ' >  7, and obtain 

x(t)=f(~,) eStA-l(s)(e s'I, xo)ds ( t>0) .  (5.5) 

We consider now the special contours Ct mentioned above. Since the 
function F is analytic on the region Re(s)> 7, we can modify the contour 
Ct to the union of Ct , the part of Ct to the left of Re(s) = 7, and a segment 
on this line. Then, arguing as in Bellman and Cooke (1963, pp. 102-104), 
we have 

l ~ +oe Ct Z ~ I  Q 

where Zc~ Res is the sum over the residues of eS~F(s) inside Ct. We examine 
the first term: 
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fc, eSt A -l(s)(e'" ~) ds 

= f c l -  

= fCI- 

[ ;if; ] e'tA-l(s) x(O)- e "(~ ~ ds 
-1  

e'tA -l(s) x(0) ds -  A -'(s) e "l' -r +o)dq(O) x(~) de ds. 
- 1 Q-  

From Lemma 5.I, we conclude that the first term is zero. 
The second term will only have a finite number of terms, 

corresponding to the roots of det zJ(s) with IRe(s)l < 7. Consequently, 

x(t)= ~ Re seStF(s)= ~ pj(t) e sit t >0. (5.7) 
sj ~ Ac sj6 Ac 

where pj(t) is a polynomial of degree m j -  1, mj the multiplicity of sj. Since 
a perfectly symmetric statement holds for t < 0, we have completed the 
proof. | 

We can now proceed with the proof that the operator H is onto. 
In the final part of this section, we concentrate our attention on 

systems of Hamiltonian type. It will be obvious from the proofs of the 
following results that similar statements hold for systems that satisfy the 
nonsingularity assumption (A1). We first recall a result from the theory of 
retarded functional differential equations. In the nonhomogeneous equation 
of delay type, 

s:(O - Mx, = f ( t )  (5.8) 

where M is a continuous linear operator on C ( [ - r ,  0], R") for any 
6 > 0 such that no root of the characteristic equation is on the lines 
IRe(s)l=6, we can decompose the set A={seC:detA(s)=O} as A =  
A v w A c w A s  with A u =  {seA: Re(s)>6},  A c -  {seA: IRe(s)l <6} and 
A s  = {s  ~ A: Re(s) < -6} .  

For any f e  C(R, R", 7), there exists a solution x(t, f )  of (5.2), with 
x(., f )  e C I(N, R", 7), given by 

fl x~(O)- r ( t - x )XC(O) f ( s )ds+ r(t-s)XSo(O)f(s)ds 

- f ~  T(t - s) Xg(O) f ( s )  ds. (5.9) 

We shall denote this solution x(t, f). [See Hale (1977), Chapter 7, for the 
definition of X0 c, X0 s, X0 v. ] 
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We recall in particular that the following exponential estimates hold, 
for some constant K >  0, 

H T(t) XcH <~ Ke 6t, t >~ 0; 

II T( t ) Xo"ll < Ke ~', t <~ 0; 

II Z( t ) ;(0Sll ~< Ke -6t, t >~ 0 

where the norm is the operator norm. Let now f= ( f~ , f 2 ) ,  
~ e  C~ ~2,, ~), i=  1, 2. We consider the nonhomogeneous system 
corresponding to 

Yc(t) = Mxt  + Ap(t) + f l(t) 

p(t) = ax( t )  + Np' + f2(t) 
(5.10) 

where M(~=S~ N(~=S'odq2(O)~(O); more compactly, (5.10) 
can be written as (Mt), p( t ) )= H ( x ,  p~)+f(t). Setting q( t ) -  p ( - t ) ,  (5.10) 
can be rewritten as 

Yc(t) = Mxt + A p ( -  t) + f l(t) 

O(t) = - B x ( -  t) + N*q~ + f 2(-  t) 
(5,11) 

where N*~b - j'o_, dr/2(-0) ~b(0). 
We now assume, w.l.o.g., that no root of the characteristic equation of 

the two delay equations :c(t)=Mx, and O(t)=N*q~ is on the lines 
IRe(s)] =7. We therefore partition the two spectral sets, As and A2, say, 
according to Y: As =- {seA: Re(s) < 7), A2~ {seA: Re(s) > y}. 

Let now Ks, K2 be the constants associated with the exponential 
estimates above, for Ls and L2, respectively. Let also dl and d2 be the 
distance of the spectra of LI, L2, respectively from the line IRe(s)l] =7. 

Then, we assume the following gap condition: 

K1 K2 
(G) - - [ I A I I  IIB]l < 1. 

dl d2 

Lemma 5.3. Assume (A1), (A2), the gap condition G; then, H is 
onto. 

Proofi Let f = ( f l , f 2 ) e C ~  We want to prove the 
existence of (x, p) e C1(~, ~2,, 7) such that 

(:c, [~)= H ( x .  pt) + f(t). (5.12) 
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We define the operator: 

Tl: C1(~, ~n, 7) --~ e l (  ~, ~n, 7) 

rl(q) = x(. ,  q) 

where x(., q) is the solution of 2 ( 0 -  Mxt  = A q ( -  t ) + f t ( t )  in C 1(~, ~,,  7) 
given by (5.9) above. Also define T2: CI(R, ~", ~) ~ C1(~, ~", 7) as 

r2(q) =-- y(. ,  r l(q))  

where y(. ,  q) denotes the solution of p(t) - N*yt = -BTI (q ) (  - t) - f 2 (  - t) 
in C1(~, nq ~, 7) given by (5.9). Clearly a solution of (5.2) is given by a fixed 
point of T2. The existence of this fixed point follows from a standard 
application of Banach's fixed point. | 

We now denote 

C - {(x, p): (x, p) solve (5.12), (x, p) ~ C 1(~, ~2~, 7)} 

and we adopt the notation, for two metric spaces X and Y, that X ~  Y if X 
and Y are homeomorphic. Then we have the following: 

Theorem 5.1. Assume (A2) and the gap condition G. Then, 

Ker H,,~ C 

in some neighborhood of the origin of C t(N, ~,,  ~). 

Proof. This follows immediately from Lemmas 5.2 and 5.3, and the 
implicit function theorem. | 

6. AN APPLICATION TO E C O N O M I C  DYNAMICS 

As we mentioned before, a reason for the interest in studying M F D E  
is an application to the analysis of the dynamic behavior of a competitive 
economy. Before we present a formal model, we discuss briefly the main 
lines of the problem. 

One can characterize a competitive economy (or, rather, an abstract 
model of it) as a set of consumers, producers (firms), and a list of given 
data: interest rate, rate of depreciation of the capital stock, initial endow- 
ment of capital stock. Each consumer has a preference ordering, represen- 
ted by a utility function, and the technology of firms by a transformation 
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function that gives, for every pair of capital stock and investment goods, 
the (maximum) amount of consumption good that can be produced. 

Given a price of consumption and investment goods, and a retail price 
of capital goods, consumers maximize profit, and finally market chooses 
between acquisition of capital goods on one side and acquisition of finan- 
cial activities on the other, with a profit maximization criterion. As an 
overall result, the optimizing behavior of the agents completely determines 
the dynamics of the economy, which is fully characterized by the time 
evolution of two variables: the vector of stocks of capital goods, and the 
vector of prices of investment goods. The time derivative of the capital 
stock equals aggregate investment minus the depreciation, where the 
aggregate investment is the result of the profit-maximizing decisions of the 
firm. On the other hand, the possibility of buying and selling on the market 
for capital goods insures a nonarbitrage condition: the rate of change in 
prices of investment goods plus the rental price of capital must be equal to 
the interest rate. 

We can now turn to the derivation of the precise form of "laws of 
motion" for such a model. The standard procedure, a classical tool of 
economic analysis, is to analyze a fictitious optimal planning problem, and 
then proceed to prove that the necessary and sufficient conditions for the 
optimality are exactly the conditions that characterize a competitive 
economy. An extensive discussion of this procedure is, for example, in Cass 
and Shell (1976). In the optimal planning problem (which, from the 
mathematical point of view, is an optimal control problem), the utility 
functions of the consumers are aggregated into a single welfare function (a 
preference ordering for the society), while the production possibility sets of 
the firms are aggregated into a production possibility set for the entire 
economy; the nonarbitrage condition is now the necessary condition for 
optimality. To be more precise, we need first to introduce some notation. 

Consumption is denoted c, a nonnegative real number, investment u, 
and capital stock k, both n-dimensional nonnegative vectors. When we 
want to emphasize the dependence on time, we shall write c(t), u(t), k(t), 
respectively. Now, given a capital stock k, for every level of investment u 
there is a maximum lever of consumption, c, which is (technologically) 
feasible. We assume that this relationship can be expressed as a function 
c= T(u, k). It is standard to assume (and we do) that this function is 
continuous and concave in both variables. To every consumption c, we 
associate a welfare U(c), and the objective is to maximize the integral of the 
discounted welfare. So far, the model is standard. We now introduce our 
modification: both the production of  the consumption good and the 
investment activity take time. A similar model has been analyzed in 
Kydland and Prescott (1982). In other words, our model has a time delay. 

865/1/2-4 
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Various formulations are possible (we shall discuss some of them later), 
but we shall concentrate our attention on the following optimal control 
problem: 

(P) max f ~ e-P'U(c(t)) dt 
c(.) J0 

subject to c(t) = T ( u ( t -  T), k ( t -  a)) 

lc(t) = u ( t -  z ) - g k ( t  - z) 

k , u , c > O  

k( t )=(~( t )  for t6 [ - a ,  0]. 

(Here, a>~z/>0: such restriction is used here only to fix the ideas; in 
the discussion of the effect of parametric changes in a and z, it will be 
dropped.) 

A proof of the existence of a solution to this optimization problem, in 
some suitably defined functional space, is fairly standard and will not be 
discussed here. Strict concavity of U and T insures uniqueness of the 
optimal solution. Further assumptions on T and U [see Benhabib and 
Nishimura (1979)] insure the existence of an optimal stationary solution, 
which is interior. Since we are interested in the behavior of the optimal 
solution close to such stationary solution, we may assume that the Euler 
equations [together with the transversality condition, see Benveniste and 
Scheinkmann (1982)] characterize the optimal solution. In particular, a 
periodic solution of the Euler equations will be optimal. A final remark is 
in order before we proceed with the proof of the existence of periodic 
solutions. As mentioned above, the existence of such solutions has been 
proved, for the nondelayed case, in the important paper of Benhabib and 
Nishimura (1979), when the number of capital goods n is at least three. It 
is also well known that, in such models, periodic solutions cannot exist for 
n = 1. In the model with time delays, periodic solutions are possible even 
for n = 1. This is the case that we consider here. The Euler equations [see, 
for instance, Hughes (1968)] are easily computed to be 

:c(t) = u(p(t), k ( t -  a)) - g k ( t -  ~) 
(6.1) 

[~(t) = pp(t) + geP~p(t + z) - e-P~[U'(  T) Tk](u(p(t  + a), k( t )  ), k( t ) )  

where T k - 3 T / O k ;  u ( p ( t ) , k ( t - a ) )  is the optimal control (investment) 
determined by the maximum principle as the solution of the maximization 
of the Hamiltonian. In the case of U, T concave and continuously differen- 
tiable, and u, k interior solutions, the optimal investment is given in 
implicit form by 

(U'(T)  Tk)(u(t -- ~), k( t  - a)) = p(t). (6.2) 
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It is interesting to compute the values of the steady-state solutions. Setting 
/~=/~=0 and letting f=peP~ +ge p(~ ~I, w(p, k ) -  (U'(T)  Tk)(u(p, k), k) 
(the variable w is the control price of capital), one derives the equations for 
the steady-state solution pair (p, k): 

7p = w(p, k) 

u( p, k ) =  gk. 

In other words, a delay in production and investment has the same effect 
over the value of the steady-state variables as an increase in the interest 
rate. 

We now linearize the Euler equations. The characteristic equation is 

det A(z) = det [ z -  [uke-  e - PaD k- ge-z,]S 

= 0  

1 - -  Hp 
z - [p + ge-P~e z~ -- e-P~176 

(6.3) 

where we have defined 

Ou Ou 
u,---~ (b, ~); u,-=~ (~, ~); [U'(T) Tk](u(p, k), k) =- S(p, k). 

Notice that we have, from the symmetry properties of the Hamiltonian 
equations: O p S =  u k at the equilibrium point. We present now an obser- 
vation concerning symmetry properties of the roots of characteristic 
equations of the kind considered above. 

Let 

A(z) = det 

fo d (o)e A ) 
- - o -  

o 
B z-p+f 

- -  c r  

then we have the following: 

Lemma 6.1. I f  

3(z0)=O, 

then 

A ( - z o  + p)=O. 
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Proof. An obvious computation: 

A ( - z o  + p) = d e t  

because 

( ~ t z o + p -  f dq(O)e -(~-p)~ A 

i ~ B Zo + e z~176 dq(O) 
- -  f f  

= ( - -  1)  2n d e t  A(zo) = 0 

It may be useful to consider first the case of no delay. When a = ~ = 0, 
the eigenvalues are given by the roots of the characteristic equation 

det ( z  - (uk - g) up 
\ - D k S  z - ( r - u k ) ) "  (6.4) 

In the special case in which Up, say, is zero, then the two eigenvalues are 
r - uk, uk - g. But uk/g = ukfc/u(fc, 15) and u(., p) is a concave function, so 
u~ = uk(/~, P) ~< g. We conclude that r - uk is nonnegative and uk - g is non- 
positive. Now, since up>~O, DkS<~O, it is immediate to check that such 
terms cannot change this (local) saddle-point feature of the equilibrium 
point. 

We now proceed to examine the general case of a, ~ # 0. We shall do 
this under two special assumptions: 

(A5.1) uk(p, /~)=constant  (w.r. to o-,r) 

(A5.2) up(p, k)  = o. 

These are, admittedly, special cases; the reason for their introducton is 
simplicity of the analysis. Many of the arguments below can be adapted 
easily to a situation in which uk is a variable, and use of Rouche's theorem 
extends them to small enough perturbations of up. 

In the following, to simplify the notation, we let u = uk(P, it). We study 
the roots of equations 

(i) z - ue-Z" + g e - ~  = 0 
(6.5) 

(ii) z -- p - ge-P~e zr + e -P"ue ~" = O. 

From Lemma 6.1, we already know that will be enough to consider the 
roots of the first equation; for every such root, to say, - z o + p  will be a 
root of the second equation. 
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Lemma 6.2. There ex&ts a 3 m > 0 such that, i f  0 <~ 3 <~ 3m, then 
Re(z) # 0 f o r  every a >~ O. 

Proof. Suppose R e (z )=  0; then, from uk cos ya  = g  cos yz,  we have 
ukg-~>~ Icos y31, so, for some o '>0 ,  

y3~  {k~ + ~ / 2 - a ,  jT~ + ~z/2 + ~ l j = O ,  1,...} 

(we take w.l.o.g, y >~ 0). Then, y3 ~> ~/2 - 6. F rom - y = uk sin ya  - g sin y3, 
y ~ U k -~- g ;  SO ~'m ~ (7~/2 - -  tT)/(U k 2i- g) satisfies the claim. ! 

We also note that, if there are z = i y ,  ao, 3o such that 
z = u e - Z * + g e - z ~ = o ,  then any triple (iy, an,3m) with a , = a l  + ( 2 ~ / y ) n ,  
3 m ~-3o(2~/y)m for n, m integers will also satisfy the equation above. 

Our next task will be to determine the values, if any, of o" and 3 for 
which a Hopf  bifurcation takes place. 

We now proceed to consider the cases a = 0 and a = 3. We firstly recall 
a result of Hayes [see Bellmann and Cooke (1963), p. 444]. 

Theorem (Hayes ) .  Al l  the roots o f  pe~ + q - z e  z, where p and q are 
real, have negative real parts i f  and only i f  

(a) p <  1 and 

(b) p < - q  < x / -~  + p 2 

where al is the root o f  a = p  tan a such that O<a<~z .  I f  p = O ,  we take 
a l = 7r/2. See Fig. 1. 

q 

(1, -1) 

(o, 7r/2) 

Fig. 1 
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The shaded region is the region in the (p, 1)-plane where all the roots 
have negative real part. 

L e m m a  6.3. 

I f  a = O, then there ex&ts a r2 such that, 

i f  27 < 272, then Eq. (6.6) has no eigenvalues with Re(z )>  0; 

i f  ~ > 272, then Eq. (6.6) has a pair o f  eigenvalues with Re(z) > 0. 

I f  ~ = ~, then there exists  a 273 > 0 with analogous properties. 

Proof. z - u + g e - Z ~ = O  if and only if - w e W + u 2 7 e W - g ~ = O  with 
z ~ - w .  So, for q =  - g v ,  p = uz, Hayes theorem applies, giving a 27 2 such 
that the equation has a root with positive real part  for r/> %. Analogously, 
if a = z, z - ue z~ + ge ~ = 0 if and only if - we w + 27(u - g) = 0; so, with p = 0, 
q = r ( u - g ) < O ,  we have % > 0  such that the equation has a root with 
positive real part  for a = z > ~3. In both cases, it is easily checked that the 
imaginary part  is nonzero. (For example, when a = 0, we have the two 
equations u = g c o s y 2 7 ,  - y =  - g s i n  y27; and y r  because u < g . )  | 

Now we consider the general situation. Setting z = x + iy, Eq. (6.5) is 
equivalent to the following system S(s, y, a, v): 

x - u e  X~ cos y a  + ge X~ cos y z -  f ( x ,  y; a, v ) = O  
(6.6) 

y + ue ~ sin y ~ - g e  X~ sin y~=_ g(x ,  y, a, r ) = O .  

Rarely, when we want to make explicit the dependence of the above system 
on u and g, we shall use the more cumbersome notation S(s, y; ~, ~; u, g). 

We shall consider different values of g and u, and the corresponding 
different possible values of y. Our analysis will proceed in two steps. We 
shall firstly determine the values of a, 27, y for which z = iy is a solution of 
(6.6). Then, we shall prove that all such eigenvalues (except for the case 
y = 0) are Hopf  bifurcation values, i.e., they also satisfy the crossing with 
positive speed condition. We shall consider the nonnegative y. 

Fix now, g > 0 ,  and for any y ~ ( 0 , 2 g ) ,  denote O_=O(y)= 

m i n { y / g ;  2 - y / g } .  Then, we have the following: 

L e m m a  6.4. For any y ~ (0, 2g) and any u, g with 0 - u/g ~ [_0, 1), 
there exists  a pair (a, z) ~ ~2+ satisfying S(O, y; a, ~; u, g) = O. 

ProoL z = iy is a root of a if and only if the two equations 

- u cos ya  + g cos yr  = 0 (6.7) 

- s i n  y~ + g  sin yr  - y  = 0 (6.8) 
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are both satisfied. Setting ya  = X, yz = Y(X), when y > 0, (6.7) and (6.8) are 
equivalent to 

Y(X) = arcos(O cos X) (6.7') 

y = - u  sin X +  g sin Y(X). (6.8') 

Now the values of y for which (6.7), (6.8) have solutions are the image of 
F(X) =- - u  sin x + g  sin Y(X) for x~  [0, 27z]; this image set depends on u, 
g, but it is easily found to be the interval [ g ( 1 -  0), g(1 + 0)]. The claim 
follows. I 

We refer here to Fig. 2, drawn in the y and u/g plane, for a fixed g. 
Clearly, for y > 2g, there are no periodic solutions with period 2n/y; for 
0 ~< y ~< 2g, the shaded area gives the values of u for which solutions of 
period 2rely are possible. In the figure, we also mention the values of a, r 
that are associated with such solutions. We note that, for every point in the 
region A, there exist two pairs (a, r), different modulo 2~z/y, which give the 
same y. For  the region B and the line y = g(1 - 0), such a pair is unique. 

The ratio, z/P, between the length of the delay and the length of the 
period is of economic interest. Since r/P = Y/2rc, we have z/P ~ [0, �89 and 
a/Pc [0, 1]. For  example, if a = r ,  then a/P=z/P= �88 if a = 3 r ,  then 
r/P = �88 if a = 0, z/P = arcos 0/27~. 

Finally, a numerical example. Choose g = log 2, so that the time unit 

2g 

g 

a = 3 r  

a=0; r =  arcos 0 

1 0 

Fig. 2 
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U is the halving time for the capital stock, at investment zero; let u = �89 and 
U =  1 year; then, 

if ~ r=r  then ~-~4.5 P ~ 1 8  

if a = 3 r  then r - - 1 . 5  P ~ 6  

if a = 0  then r~_1.7 P-_10.5 

Let us now consider the conditions under which eigenvalues with zero 
real part  are Hopf  bifurcation values. 

Lemma 6.5. For any 0 ~ (0, 1), and y 4= O, eigenvalues with zero real 
part are Hopf  bifurcation values. 

Proof .  Let, with fx  = ~f/Ox, and similarly for fy,  gx and so on: 

g J  

each one evaluated at (0, y, a, r)  such that S(0, y, a, r ) = 0 .  If F is non- 
singular, then to have (x~, x~)4=0, it is sufficient to have (fo, g ~ ) #  0 or 
( f , ,  g , )  4= 0. But 

G = { uy sin ya - gy sin y~ '~ 
\ uy cos y~ - gyt cos yz ]' 

so, for u, y # 0, we are left to prove that F is nonsingular. 
Now 

F = ( l + u a c ~ 1 7 6  u ~ r s i n y a - g z s i n y r  ~ ( ~ , 
- ua sin ya  + gz sin yr  1 + ua cos ya  - gz cos y r /  - 

with eigenvalues a + ib; so F is singular only if 

ua sin y~ = gv sin yr. (6.9) 

We claim that such an equation is not satisfied, when 0 < u < g, for all the 
values (y, o-, r) such that S(0, y, a, z) = 0. 

We rewrite Eq. (6.9) using the notation of the previous lemma; the 
dependence of Y on 0 is now made explicit: 

OX sin X =  Y sin Y Y = Y(O, X) = arcos(0 cos X). (6.9') 

Now, for X e [ 0 ,  rc/2], sin Y~>sinX; and, for [~ ,2n ] ,  sin X~<0, 
Ysin Y > 0 ;  so, in both cases, (6.9) cannot hold. We now consider 



Hopf Bifurcation for Differential Equations 177 

Xs(rc/2, 7z). Let 2 be the Xs  (~/2, ~r) where Xsin x has a maximum, so 
that X =  -s in  J(/cos k. Since both sides of (6.9') are concave functions of 
Jr, it will be enough to prove OYsin2< Y(O, 2)sin Y(O, 2); and, since 
sin Y(0, X ) > s i n 2  for every 0~(0, 1), it will be enough to show 
Y(O, X)~> 0J(; and this follows from both flmctions being concave in 0, 
Y(1, 2)  = 2 because Y(1, X) = X for every Xe [0, ~r], and 

Yo( 1, 2)  = -cos  X/sin 2 <  -s in  )(/cos X =  ~0 (02). 
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