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Functional differential equations of mixed type (MFDE) are introduced; in 
these equations of functional type, the time derivative may depend both on past 
and future values of the variables. Here the linear autonomous case is 
considered. We study the spectrum of the (unbounded) operator, and construct 
continuous semigroups on the stable, center, and unstable subspaces. 
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1. INTRODUCTION 

The purpose of this paper is the study of a special class of linear 
autonomous functional differential equations (FDE). In the case that we 
are analyzing, the time derivative can depend on both past and future 
values of the variable. We call such equations mixed FDE (MFDE) to 
emphasize this composite nature, of advanced and delayed equations. 

The main motivation for such analysis is the study of the dynamics 
arising from solutions of optimal control problems. It is well known [see, 
for instance, the classic work of Pontryagin et al. (1962)] that the necessary 
conditions for the solution of an optimal control problem with delays 
involve a system of functional differential equations with both advanced 
and delayed terms. [See Chi et al. (1986) for an example of an MFDE that 
does not arise from an optimal control problem.] 

It is easy to imagine which will be the single most relevant difficulty 
that one encounters when dealing with MFDE: the Cauchy problem is, in 
general, not well posed. Even a linear equation with constant coefficients 
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may not have a solution, for positive or negative times, for a given initial 
condition in the appropriate space (say, as it will always be the case in the 
following, the space of continuous functions on the delay interval [ - r, r], 
with the sup norm). A solution is here naturally defined to be a differen- 
tiable function that satisfies the MFDE and is equal to the initial condition 
in the initial interval. 

The first step in our study of MFDE is an analysis of the simplest 
case: linear autonomous MFDEs. It is useful to recall here the very broad 
lines of the treatment of this problem in the case of delay differential 
equations, as developed for instance in the two fundamental books on the 
subject [Bellman and Cooke, 1962; Hale, 1977). In this case, the Cauchy 
problem is well posed, at least for positive times. Furthermore, a simple 
argument based on Gronwall inequality provides an exponential bound on 
the growth at infinity of the solution, where the order of growth only 
depends on the operator norm of the differential operator. If we look at the 
question from the point of view of the location in the complex plane of the 
roots of the characteristic equation, the existence of such a bound is 
strongly related to the fact that all such roots have real part bounded 
above. The existence of a solution for any initial condition, and the 
exponential bound on the solutions are the two ingredients for the 
construction of a Co semigroup of operators (defined for positive times) on 
the phase space. The infinitesimal generator of this semigroup is defined by 
the differential operator of the delay equation. 

We have mentioned above that the first of these two basic ingredients, 
the existence of a solution, is missing in the case of MFDE. The analysis of 
the location of the zeroes (which have unbounded positive and negative 
real parts) proves that the second ingredient, a bound on the order of 
growth, is also missing. The main content of the first chapter is to develop 
a treatment, close to the one existing for delay equations, of the theory of 
Co semigroups. 

Our line of argument will start, loosely speaking, from the infinitesimal 
generator rather than from the semigroup. More exactly, we define an 
unbounded linear operator on a suitable domain in the space of continuous 
functions over [ - r ,  r]. The spectrum of this operator will turn out to be 
an infinite sequence of eigenvalues, with unbounded real part, in the 
positive and negative halfspaces. Our aim is to define our semigroup by 
integration of the resolvent. In order to prove convergence of the Dunford 
integral, we provide estimates on the norm of the resolvent. 

We then construct the semigroup: it is necessary, at this point, to con- 
sider separately the case of eigenvalues with positive and with negative real 
parts, and define for each subspace a proper semigroup. They are shown to 
be well defined for negative and positive times, respectively; their domain of 
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definition is the closures, in the sup norm, of the two subspaces of eigen- 
functions corresponding to the eigenvalues. 

We finally point out that one of the main motivations for the study of 
the linear problem is to prepare the study of the nonlinear mixed differen- 
tial equations. Nonlinear MFDE are examined in the following paper in 
this issue [Rustichini (1989)]. 

1. N O T A T I O N  AND DEFINITIONS 

r/> 0 is any given real number ~ = ( -  ~ ,  ~ ) ,  ~" is an n-dimensional 
linear vector space, with norm Jl.  For  two real numbers a, b e ~ ,  
C([a, b], ~") is the space of continuous functions mapping the interval 
l-a, b] into ~n; it is a Banach space when endowed with the natural (sup) 
n o r m :  

Ilx[I c = Hxlt = sup{ Jx(s)[; s~ [a, b]}. 

We shall mostly consider the case where - a = b = r .  If t 0 e ~ ,  A >jr, and 
x e C([t0 - r, to + A ], ~"), then, for any t ~ [to, to + A - r] ,  we let x, ~ C be 
defined by x ,( s ) =- x( t + s ), s e I - r ,  r ]. 

As usual ~(t) is the (right-hand) derivative of x at t. 
Ck([a, hi ,  ~") is the space of functions from [a, b] to ~" that are 

k-times continuously differentiable. 
Consider, as an example, the following differential equation: 

~(t) = x ( t +  1)+ x ( t -  1). 

In this equation, the time derivative depends both on a delayed term, 
x ( t - 1 ) ,  and on a forward term, x ( t +  1), and can therefore be called an 
equation of mixed type of equations of this type. Let us proceed more 
formally. 

If f :  C ~ ~ is a continuous function, then the functional differential 
equation (FDE): 

~(t) = f(x,)  (1.I) 

is defined. We shall refer in the following to these M F D E  as mixed 
functional differential equations (MFDE),  where the term "mixed" refers to 
the fact that the time derivative depends both on past and future values of 
the variable. 

As usual, we say that the constant function c z C is an equilibrium 
point of (1.1) if 

f ( c )  = O. 
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In the following, we shall consider the case of a continuously differen- 
tiable f. If Y2 is a neighborhood of zero in C, we let 

BC'(f2) = {f:  f2 ~ ~" such that f is continuous and bounded on 
12 and f has on t2 a Frechet derivative f '  }. 

and we define 

If[ Bc'lo) = sup{ If(q~)l + If'(~b)l: q~ ~ g2}. 

We are interested in the study of the behavior of solutions of (1.1) 
around an equilibrium point c that we assume for simplicity to be zero. 
Then, let L: C---, R" be defined as 

L(~=- f'(O) ~b, 

where f ' ( 0 )  is the Frechrt derivative o f f  at 0. 
From Riesz' representation theorem for C ( [ -  r, r] ,  ~"), we know that 

there exists a function q, t/: I - r ,  r]  ~ ~" of bounded variation, such that 

f 
r 

L~ = dr(s) O(s). 
- - r  

We shall denote by Y the operator norm of L. 
We associate with each L the characteristic matrix 

A(s)= s I -  f~r eS~ dq(O). 

As we mentioned in the introduction, a major difficulty arising in the study 
of the type of FDE that we are considering is that the Cauchy problem is 
ill-posed. Consider the initial value problem 

s x 0 - = f e C .  (1.1') 

A solution to Eq. (1.1') on an interval [ - r ,  A ], with A > r, is defined to be 
a continuously differentiable function x: [ - r ,  A] ~ E" which satisfies (1.1') 
for every t/> 0. Such equation does not always have a solution, even in the 
case of a linear L. Consider, for example, ~(t) = x ( t +  1 ) + x ( t -  1), x0 = 1; 
then, clearly for any t ~ (2j + 1, 2j + 3), j = 1, 2 ..... a solution should satisfy 
x(t) = ( - 1 )  j+ 1; and therefore no everywhere continuous solution can be 
defined. 
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2. I N F I N I T E S I M A L  G E N E R A T O R  A N D  R E S O L V E N T  

For a given linear operator L, we define the linear unbounded 
operator A as follows: 

D(A) = {.fE C1([ - r ,  r], N'): j'(o) -- Lf}  

A f  - f  for every fED(A) .  

It is easily seen that A is a closed operator, a n d / ) ( A)  = C, with the 
closure taken with respect to the sup norm; i.e., A is densely defined. 

We shall now study under which conditions there exists a solution 
r e C to the equation 

(A -- sI) O = r (b e D(A ) 

for a ~ e C and s e C. We denote as usual a(A) the spectrum of A, p(A) the 
resolvent of A, and Pa(A) the point spectrum of A: 

Lemma 2.1. Let A be defined as above. Then, 

1. a(A) = Pa(A). 

2. sea(A)  if and only if det A(s)=0.  

Proof. Let sEp(A); we shall determine the function ~b such that 

( A - s I )  O=O, CED(A). (2.1) 

Let r be a fixed element in R', and let r I - r ,  r] ---, N" be defined by 

f2 r = eStr + e ' ( ' -")o(u) du. (2.2) 

Clearly C e c l ( [ - r ,  r], ~ ' ) ,  and r162 (te I - r ,  r]). 
The value of r will now be determined to satisfy the boundary 

condition: 

fr d(O) = dq(O) ~b(0) = Lr (2.3) 
- - r  

that is, r will be fixed so that CED(A). From (2.1), (2.2), and (2.3), 

f 
r 

0(0)  + sr  = r  = d.(t) r  
- - r  

= dq(t) e"r + e "(~ du 
- - r  

(2.4) 
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and therefore one has 

[sI- f~rdq(O) eS~ O(o): f~rdq(O) Iff eS(~ ). (2.5) 

We want to rewrite (2.5) in a more compact form. We let 
~: [ - - r , r ] ~ C  "2, continuous, be defined as c~(0)-=e sOL (0~ [ - r , r ] ) ,  I 
the identity matrix; and, for any ~ e C, we define (e, 0)  by 

(e, 0)  = ~(0) 0(0) - ~(u-O)dq(O)~b(u)du. (2.6) 
r 

Then (2.5) can'be rewritten as 

A(s) r  -(c~, ~p). (2.5') 

Now [-as in Hale (1977), p. 169] we conclude that, if det A(s)= 0, then 
there exists a nonzero solution of (2.1) with ~ =0;  that is, s~Pa(A).  On 
the other hand, (2.1) has a solution for any ~0EC only if d e t A ( s ) # 0 ;  
only in this case in fact can we solve in (2.5) for ~b(0), and substitute 
in (2.2) to find the required r Therefore, p ( A ) =  {s:detA(s)~O},  and 
a(A)=Pa(A) .  I 

We define now the resolvent of the operator A, R(s: A) as 

R(s: A): C ~ D(A) 

where R(s: A ) ~  is the solution of (2.1) above for s~p(A).  
We want to determine some basic properties and estimates for this 

operator. We denote Nk(s)= Nk c C the null space of ( A - s I )  k, I]'[I the 
operator norm. 

Lemma 2.2. Let s~p(A),  IRe(s)] >.c>O, for some c > 0 .  Then 

1. There exists a constant K= K( L ), such that 

e lRe(s)lr e2l Re(s)lr 
IIg(s: A)II ~ < ~ +  IIA(s)-lll ~ K .  

2. R(s: A) is a compact operator 
Let s o ~ a(A) then 

3. For k > O, Nk(S)= Nk is always of positive finite dimension, and there 
exists an integer no(s) = no > 0 such that 

N k = N no for every k >1 no and 

N ~  N~+I for every k<no.  
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Proof. We consider the case Re ( s )~<-c<0 .  The other case is 
analogous. 

Recall from the proof of Lemma 2.1 that the solution ~ can be written 
a s  

(k ( t )=eStO(O)+ e ' ( t - ~ ) O ( u ) d u  ( t e [ - r , r ] )  (2.7) 

so that 

Recall now that 

tff(t)l <-Ge R<~)' IO(0)l + e-Re(s)Off/(O) dO 

e Re(s)t __ 1 

~<e ReCs)tl~(0)l+ Re(s) IIr (2.8) 

~(0)= -3(s)-1 (~, r (2.9) 

so that, from (2.6) of Lemma 2.1, one has 

, (~ ,1/ / )1  ~ l l p ( O ) [ q -  f :rdrl(O)[f:eS(~162 

where f is the operator norm of L, and 

e s~ [ '  ' " r  du 1 - e R<~)~ 
IIE(r sup Jo e ~<llr sup - - R - - ~ ] .  

0~[ r,r] OE[ r,r] 

Since Re(s)<0,  sup0~ .... ] [ e - R < ' ) ~  R<')r--1/--Re(s)< 
e-R<s)V-R<~). We have therefore 

and therefore 

IrR(s: A)II ~< 

I~(O)1 ~ IIA(s)-lll I(~, ~)1 
IIA(s)-lll { l l r  IIE(r c} 

~< 113(s)-'/I l+~-_w-~ ,  ,jKets) I1r 

sup 
t~[-r,r] 

ItA(s) 1 J I - - K q  
-Re ( s )  -Re( s )  

e-Reis)r~ e R<~)t- 1.} 
t e-Re(')' lid(s)-ltl( 1 + '  ------~-e(s)} -~ R-~-e(s~ 

e - 2Re(s)r 1 

(2.10) 

with K =  K( L,  r) = sup{( + xe  xr : x >~ c }. 
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Note that, for a fixed s, such that det A(s)r  R(s: A) is a bounded 
linear operator, with norm C1 say, (depending on s). Therefore, for 

= R(s: A)  ~, 

I4(t)l=lsd~(t)+4~(t)l <~lsl C~ IlqJll~+ t1~'11~ ( t~[-r ,r])  

s o  

IIq~ll ~< c~ IIg41 ~; 

where Cz = Isl C1 + 1. From the Ascoli-Arzel~ theorem, it now follows that 
R(s:A)  is compact. Now the results in Hille-Phillips (1957, p. 211, 
Theorem 5.14.3) apply to get the conclusion 3 of the Lemma. | 

Fix now, any number c>0 ,  such that a(A)c~{s: I R e ( s ) l = c } = ~ .  
Then we may split a(A) as follows: 

A = A s ~ A c u A  v 

As=  {ssa(A): Re(s)< -e}  

A c =  {sea(A): - e  < Re(s) < e} 

A u =  {sea(A): Re(s) > e}. 

We also denote 

Ms=s--O~{M~[s~ A s} 

where Ms is the eigenspace spanned by the eigenfunctions associated with 
s. Mc ,  M~: are defined analogously. Here, the subscripts S, C, U refer to 
"stable," "center," "unstable" spaces. The closure is in the top topology 
on C. Suppose that Al=--{Sl,...,Sp} is a finite subset of A, and let 
OA1 = (0% ..... OAs ), B~ = diag(BAs,,..., BAs ) where Osj is a basis for the 
generalized eigens~pace N,o(s:) of sj andPBsj is the matrix defined by 
AOsj = OsjBsj, j = 1 ..... p. Then we have that the following: 

Theorem 2.1. For {sl ..... Sp} c A ,  the only eigenvalue of B~j is s s, and 
for any vector a of the same dimension in O A~, the solution TAI(t)OA~a with 
initial value O ~a  at t = 0  is given on ( - o e ,  +oe) by the relation 

T~l(t) O A~a = O AI eSAta, t >>. 0; 

OA~(O)=OA~(O)eBa~ ~ for - - r<O<r .  

Proof. As in Hale (1977, p. 170). Only notational changes are 
necessary. | 
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3. DISTRIBUTION OF THE ROOTS OF THE CHARACTERISTIC 
EQUATION 

Our aim is to define three distinct operators on the closure of the 
eigenfunctions associated with A s, A o A u, respectively. We shall do this 
by integrating the resolvent along a suitable path. In order to do this, we 
need a better knowledge of the distribution of the spectrum a(A) in the 
complex plane, together with estimates of [IA(s) 11[. This is the purpose of 
the present section. 

We shall also need more restrictive assumptions on the operator L. 
More specifically, we define the following condition: 

pr 
L(O) = A -r~( - -  r) + B,(b(r) + j -r dq(O) ~b(0) (A1) 

where A ,, B r are nonsingular matrices and ~I is continuous at +_r, has only 
a finite number o f  jumps, and the induced measure has no continuous part. 

This condition (A1) is a standing assumption for the rest of the paper. 
In Section 4, we shall consider cases in which such condition is not 
satisfied. 

One first piece of information is easy to get: 

Lemma 3.1. Let c be any real number, c > O. Then, there exists a real 
number M = M(c)  > 0 such that 

1. det A ( s ) # O  for  every s~D(c ) ,  where 

D(c) =- {s: Re(s)~ F-c ,  c], ]Im(s)I/> m(c)}. 

2. There are a finite number o f  roots ofdet  A(s) in S(c), where 

S(c) =- {s: Re(s) e I--c, c], Ira(s) ~ [ - M ( c ) ,  M(c)] }. 

Proof. 
entries 

Therefore, 

A(s) = s I - A ( s )  where A ( s ) =  (aij(s)) is an (n x n) matrix with 

ai j=  2 t_k_s~. E--F~ r]. Diju. y, O k 
k 

O<~j<n 
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where R(s)=O(Isl "-1) as [sl --* +oo in the strip S(c)--- {z:Re(s) E [ - c , c ] } ;  
from this, 1 follows obviously; 2 now follows from the fact that the charac- 
teristic function det A(s)  is an entire function. | 

We now study the asymptotic distribution of the zeroes of the charac- 
teristic equation d e t A ( s ) = 0 ;  we can also derive estimates on the 
magnitude of [[A (s)-111. Recall that this factor appears in the resolvent, and 
we shall need this estimate later to show convergence of integrals involving 
the resolvent. Firstly we need some definitions. 

For two given, strictly positive real number c and e~, we define the 
following regions in the complex plane. The curvilinear strips V1, V2 in the 
complex plane are defined as follows. Let (/~ 1,/~2) = (1/r, - ( i / r ) ) .  Then, we 
let 

V i - { s E C : l R e ( s + k t i l o g s ) [ < ~ c l }  i =  1,2; 

the regions U0, U1, U2 by 

U1--- 

U o 

U 2 

sEC:  [Re(s + #l log s)[ > c l  

[Re(s +/~2 log s)[ < -e~} 

s~C:  [Re(s+/~l logs) l  < c l }  

s~C:  IRe(s+ #2 log s)l > c l }  

and finally the square region 

R =  {s~C: Re(s) ~ I - c ,  c], Im(s) ~ [ - c ,  c]}. 

(See Fig. 2.) 

Lemma 3.2. There are real numbers c and cl, and a partition o f  C as 
described above such that 

1. there are no roots o f  det A(s) in U o u  Ul u U2, i.e., the roots are all 
contained in R u V1 w V2; 

2. there is a f inite number o f  roots in R; 

3. there is a real number c 3 > 0 such that 

IIA(s)-ll[ <~ e3e LRoCsltr 

on the curves IRe(s + #1 log s)l = Cl, and IRe(s + kt2 log s)l = cl. 
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Proof. The proof consists of two parts. In the first, we study the 
asymptotic distribution of the zeroes of detA(s), introducing [as in 
Bellman-Cooke (1963)] an auxiliary function g(s); in the second part, we 
derive the desired estimates on irA(s)-111. A similar analysis is in Banks and 
Manitius (1975). 

We have 

m2 

A ( s ) =  s I -  ~ A je  "hi 
j ~ - - m  I 

with hie I - r ,  r] and - h  ml = hm2 = r. We also define 

m2 

G(s) =-e "r A(s) =se 'r I  - ~ Aje,(hj+r~ 
j = - -m 2  

= SesrI-- A m 2  C 2 s r  - -  Am2 - 1 eS(hm2-1 + r) . . . . .  A 1 e g ( h l  -" r) 

eS(h ~+r) " - A .  - A  -1 - "" 

We define 

g(s) = det G(s). 

Clearly the roots of g(s) are the same as the roots of det A(s), and we can 
therefore equivalently study the distribution of the zeroes of g(s). 

The function g(s) is the sum of terms which are products of n factors 
of the form se rs and e wr', with w e [ 0 , 2 ] .  So, if me{0 ,  1 .... ,n}, such a 
generic term will be of the form 

smeEmr+("-m)krlS=sme ~" ( k e  [0, 2]) 

times a constant, which we ignore. Figure 1 illustrates the points in the 
(fl, m) plane that can occur in such terms. Therefore, for a fixed m, we have 
~ e  [mr, mr + 2 ( n - m ) r ] .  We conclude that the pairs (/~, m) of powers of 
such factors all lie inside the triangular region drawn in Fig. 1 (including 
the boundary). 

We shall now show that the three vertices of this triangle correspond 
to nonzero terms of g(s). In fact: 

1. From the assumption that A m 1  is nonsingular, g(s) has a nonzero 
constant term a0= (--1)" det A_m~. So the pair (0, 0) is one vertex of 
the triangle. 

2. From the assumption that Am2 is nonsingular, g(s) has a nonzero term 
with e 2"rs. So the pair (2nr, 0) is another vertex. 
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mj 

P1 = (31,rnl) ~ (nr, n) 
r t -  

0,0 _)1 
S nr 3j 

(n -1 ) r  

Fig. 1. Distribution diagram of the characteristic equation det A(s). The broken line pictures 
the distribution diagram for a cofactor of G(s). 

3. From the product of elements on the diagonal of se'SI, we derive that 
g(s) has a factor with s% "'s, so the pair (nr, n) is another vertex. 

Now following Bellman-Cooke, we rewrite g(s) as 

g(s)=~pjsms(l  +ej(s))e ~js 0=floe<fix. . .  ~<flq, 
f 

where the ~s's are functions that satisfy: [ej(s)l ~ 0  as Is[ ~ + ~ .  (The 
rewriting groups together terms with a common factor e ~js, and then 
chooses among them the one with the highest power m in smL) Now con- 
clusion 1 follows from Bellman-Cooke (1963, Theorem 12.10). See Fig. 2. 

Note that, for any pair (/~, m):/~ - mr >>- O, and 3 + mr <<. 2nr. 
Conclusion 2 is obvious, and the first part of the proof is complete. We 

proceed to the second part. To prove the desired estimates on H A(s)-lll, we 
begin with the study of the matrix G(s) = (gij(s)). Let cof gij(s) denote the 
cofactor of gu(s). Then, by Cramer's rule, G-l ( s )= (cof go.(s)/det G(s)). 

From Bellman-Cooke (1963, Theorem 12.9), we have that 

[g(s) s -"e  . . . .  I >/c3 s ~ U1. 

Indeed, from our assumption that det A-ml # 0, det A,, 2 # 0, we have 
immediately the following estimate 

[g ( s ) l - l=  []det A ,,1[ + ~  _~ Idet A-roll-1 

for Is[ ~ + ~ ,  Re(s )<0  
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Re (s+r -1 logs) =c  1 

/ 
ogs) =0  

Re (s+r -1 logs) = - c  I 

Uo 
--C 

U~ 

ic 

R 
Re (s -r  -1 logs) =0  

U2 
+c 

- i c  

Fig. 2. Asympto t i c  d i s t r ibu t ion  of the roots  of det  d(s) = 0 .  

because (-1)n det A _ m l  is the only constant  term; and 

Ig(s)-~l = O ( e  -2~rae(s)) Isl--' +o0, Re(s) > 0 

because the term det Am2e 2nrs is nonzero. 
We now consider the cofactors of the matrix G(s). We note first of all 

that, with a reasoning identical to the one for the case of g(s),  we can 
conclude that the distribution diagram of any cofactor is a triangle with 
vertices (0, 0), ( ( n -  1) r, n -  1), (2(n - 1) r, 0): 

Now we note that, on I ' l - { s : ] R e ( s + l / z l o g s ) l = c l }  , we have 
[ s ] ~ - e  rcl [e-rS l, and therefore the elements of the cofactors satisfy 
]sme 3s] = e "re1 [e . . . .  +fls[, so that, since f l ~ m r ,  

Icof gij(s)] = O ( 1 )  s ~ F 1 .  

Analogously on F 2 _ {s: Re(s + 1/7 log s) = cl }, we have ts] = e rcl lerS[, 
and therefore the elements of the cofactors satisfy: IsmeaS I = e mrc~ le(a+mr)sf, 
SO that, since fl + mr  >12mr, 

Icof gij(s)l = O([e zr i)rsJ ). 



134 Rustichini 

We may now conclude 

11G(s)-11] ~<max {Icofg/j(s)[ lg(s) - l l}  
/J 

~< Cmax  {[cof go(s)[ I s - " e  . . . .  } 
/J 

<<.O(1)[s - l e  . . . .  ]<~Cls  "e . . . .  l, (s6 F1); 

IIG(s)-lll ~< 0(le2("-1~'1)Is-"e . . . .  I <~ C Is-"e("- z)"l, 

and therefore, for A(s )  -~ =erSG(s)  -1,  one has 

{CclS-ne(" - l ) rs I  ( s~FI )  
IIA(s)-~II ~< Is-"er ( ser2) .  

and 

(s ~ /"~) 

Now as above, we conclude 

IId(s)-Xll ~< Ce-IRosl ~. I 

Example .  For the one-dimensional equation 

2( t )  = a x ( t )  + b x ( t  - r) + c x ( t  + r), 

where a, b, c are real numbers, we have the characteristic equation 
s - a - be - s t  - ce s" =- A( s )  = 0. Its zeroes are the zeroes of 
se 'r(e(s))  - b - ee 2~r = e s" A( s )  =- g(s )  = 0 where e(s) = - a / s ,  so that e(s) ~ 0 
as ]sl ~ +oo. The distribution diagram has vertices (0,0), (r, 1), (2r, 0). 
Furthermore, the estimates on g and d are as follows: for sE U0, ]g(s)[ ~> c3 
and [A(s)- l l<.e311e'];  for s ~ U 1 ,  ]g(s)l>~e3lserSl and Id(s)-l]~< 
c3 x Is-ll ;  and for sE U2, I g(s)l ~>c3 le2r~l; Izl(s)-ll ~<c3 t le-rq. 

Note that, in /"1, Is[ ---e le-rq and I s -~ l=ce  -rIRE<')I, so IA(s)-al = 

4. H A M I L T O N I A N  TYPE SYSTEMS 

The nondegeneracy assumption (A1) will not, in general, be satisfied 
in the case of Hamiltonian-type systems, which therefore need a specific 
analysis. We introduce first a notation that will be used in this section only. 
We let y t ( s ) = y ( t + s )  for s~ [ - z ,  0], and y t ( s ) = y ( t + s )  for s e  [0, z], 
whenever y ( t  + s)  is defined. The systems we shall consider are of the form 

yc(t) = X ( x , ,  p ( t ) ) ,  
(4.1) 

f2(t) = P(x ( t ) ,  pt) .  
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Note that, in Hamiltonian systems, the vector p is naturally a column 
vector; here, we use the transposed form for simplicity of notation. We also 
assume that the zero vector in ~2n is, in a naturally defined way, a solution 
of (4.1 ), and 

(A2). The linearized system at 0 of 4.1 is 

fo 
~( t )=  drll(O) x ( t +O ) +Bp ( t ) -M x t+Bp( t )  

- - r  

f2 p(t) = Cx(t) d~2(O) p(t  + O) - Cx(t) + Np' 

where 

i fo o dql(O) x(t + 0) = Sx(t - r) + dq*(O) x(t + 0); 
- - r  r 

fo dq2(O)p(t+O)=Rp(t+r)+ dq*(O)p(t+O); 

S and R are nonsingular matrices," ~1" 
variation. 

The characteristic equation now is 

and rl* are functions of bounded 

( " )(A ) -r sI (s) B . 
3 ( s ) =  C s I -  f~ d~12(O) e s~ =- s l -  D(~.2) 

The asymptotic distribution of the roots of det(sI-A(s))=O and 
d e t ( s I - D ( s ) )  is well known [see Bellman and Cook (1963)]. In particular, 
it is known that the roots of norm larger than c, for c large, are contained 
in the two curvilinear strips: 

VI={s~C:  R e ( s + ! l o g s )  <<.c~} (4.3) 

V2={s~C: R e ( s - ! l o g s ) l ~ c 2  t 

for det (s I -A(s) )= O, det (sI -D(s))=0,  respectively. In other words, the 
matrices B and C do not affect the asymptotic distribution of the zero. 
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We now prove that the roots of det A(s) are asymptotically distributed 
like the union of the roots of the two characteristic equations 
de t ( s I -  A(s))  = O, d e t ( s I -  V(s) )  = O. 

Lemma 4.1. There exist constants Co > O, c 1 :> O, and c2 > 0 such that, 
/ fde t  A(s) =0,  and Is[ > Co, then 

s e V~ w V2. 

Proof. We define the region U] as { s e C : R e ( s + l / r l o g s ) > ~ c l ,  
Re(s) < 0}, and U~' as {s ~ C: R e ( s -  1/r log(s)) ~< - c l ,  Res t> 0}. 

We prove that, for large Isl, no root can be found in the region U]. 
The argument for the other cases (Uo, U~', U2), is similar. 

It is easy to see that, on the region U'I, 

[A(s)[ : O(le-'r[), le SrS--1[ ~ e  -rc', and ID(s)l : O ( 1 )  

so we conclude that, choosing ca, Co large enough, we can make the matrix 
A(s) s -~, for Isl > Co, s~ Uq arbitrarily close in norm to the identity, and 
therefore nonsingular, l 

For our future purposes, we need a more detailed analysis of the dis- 
tribution of the zeroes of det A(s). 

The rest of the notation is as in Section 3. In particular, we shall 
denote VI any subregion of V1 in which s is uniformly bounded away from 
the roots of det A(s). 

Our G(s)= e sr A(s) matrix is now given by 

/ s eSr l -  f ~  dtl(O)e~(~+~ 

G(s) = Be ~r se ~ _ 
:o 

AeSr t 
dtl ( O ) dtl ( O ) e s( r + ~ ) " 

(4.4) 

As in Section 3, the pairs (fl, m) of the factors of det G(s) lie inside the 
triangle with vertices (0, 0); (snr, 2n), (4nr, 0). 

We have now 

Ig(s)-ll <~c2 Is-"e "rsl on Uow 91, Isl >~c 

Ig(s)-ll<~c3ls-2nre-2nrs I on U l ~ z l ,  [sl>>.c. 

From the way the regions Uo, U1 are defined, 

le~Sl <~e ~" on Uo; and le~sl >/e rcl ,  leers-11 <<.e-r% 
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The cofactors gg(s) of the matrix G(s) consist of combination of elements 
sme #rs with (m,/~r) in the triangle with vertices (nr, n), ( snr -1 ,  2 n - 1 ) ,  
( 3 n r -  1, n). On U0, this estimate on the cofactors together with the above 
gives 

[gij(S) g - l ( s ) [  ~< IS[ 2n-1 [e(2n-1)rs[, and therefore 

Jgo.(s) g- l (s) l=O(]s[  -1 le-~'l) s e  g~. 

From the definition, A-~(s)=e~G-a(s) ,  and so 

Example. 

we have 

IA l(s)l:O([ersl),  s e U o u V ~ ,  [s l~c  

Izl-a(s)[ = O(Isl-~),  s~  U1 [sl >~c. 

For the system 

2(x) = mx(t  -- r) + bp(t) 

p(t) = cx(t) + np(t + r) 

and 

and, therefore, 

G(S)~_( Sdrs-m -berS ~ 
\ _ce  rs se ~ ne2r~j 

g(s) = s2e 2~s - n s e  3r~ - mse ~s + (mn - bc) e2% 

t g ( s ) - l l = O ( l s l  -~ le-r~l) on Uo; 
Ig(s)-~l =O(Is1-2 [e-Zrsl) on U~. 

Recalling that le'rsl<~c, on Uo; and lesrl<~c[sl, [eSrs[>~c on U1, then 
IG-l (s)[=O(1)  on Uo, and IG- l (s )J=O(ls l - l le -rS[)  on U1, and so 
IA-l(s)t =O(lerS[) on Uo, [3-~(s)l = O(Is[ -~) on U~. 

5. CONSTRUCTION OF THE SOLUTION OPERATORS 

We now determine the paths in the complex plane along which 
we shall perform the integration (Fig. 3). Note that the curve 
{ s : R e ( s + l / r l o g s ) = c l } ,  the boundary of U1 in the left half complex 
plane, is also described by (for x large enough) s=x++_iy(x), where we 
define 

y(X) -~ (e 2r(c~ -x )_  x2)1/2 = er(Cl- x)[1 + o(1 )] ,  

865/1/2-2 
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I~2 

i(c) 

-M (c) 

Fig. 3. Paths of integration. 
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as Ixl --, oo. One easily checks 

lY'(X)I - re r(cl - ~ 

[where we denote f(x)--- g(x) if and only if there exists a pair c > 0, x0 > 0 
such that c - if(x) ~< g(x) ~ cf(x) for Ixl > x0]. 

We now define the following path in the complex plane: F =  U~=~ Fi, 
where 

F:={s:Re(s+l l~  -c}  

F 2 = {s: Re(s) = - c ,  Im(s) e [ - M ( c ) ,  M(c)]  } 

F3={s:Re(s+l l~  Im(s )>0 ,  Re(s )~<-c}  

(see Fig. 4). Analogously we define the path F ' =  U~=: F/, in the case 
Re(s) > 0. Finally we define the rectangular path of integration H as 

/ / =  {s: Re(s)= +c, Ira(s) e [ - M ( c ) ,  M(c)]  } 

w {s: Im(s) = +M(c),  Re(s) e [ - c ,  c]}. 

We shall let Es denote the (generalized) eigenspace associated with the 
eigenvalue s, and M, the subspace of C ( [ - r ,  r], N") given by restrictions 
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of elements of E,; also we define (after ordering the eigenvalues in A s, A v, 
and A c in some fashion; for instance, a lexicographic order over the 
absolute value of real and imaginary part) 

Ers=Span{E~/sjsAs,  j =  +1, +_2,..., +_k} 

Erv=Span{Esj:sieAv, j =  +1, +2,..., +_k} 

E~c=Span{Esj'sjeAc, j =  +1, +2,..., +k} 

co oo _ _  0o S ~  C ,  and Es = Es ,  Ev = Ev, E c - E c .  We define M k Mkv, M k and M s, My,  
M c, analogously. 

Note that, by Lemma 2.2, we know that, for any finite k, the spaces 
Mw M~, Mkc are all finite dimensional. 

Lemma 5.1. For any pair t o, tl: t0>2r,  tl  <--2r ,  there exist three 
families of operators 

Ts(t): Ms ~ Ms for t >1 t o 

Tv(t):Mc~-~Mu for t<<.tl 

T c ( t ) : M c ~ M c  for t s ( - o o ,  +oo) 

rs(t  ) ~ = ~ for every ~) e M s 

such that 

and analogously for Tv, Tc, Tu(t) ~ = ~t for ~) ~ My,  Tc(t) ~) = ~t for 
qk e M c. Also, 

IITs(t)~Plc<<. Cl(to)e-C']l~ltc t>>.to, 

IjTu(t)~)[lc<~C2(tx)eC'[l~llc t<~tl. 

The constant C~(to)(C2(tl)) tends in general to +oo as 
t o ~ 2r(t 1 ~ -2r) .  

Proof. We firstly notice that, since only a finite number of elements 
of a(A) are contained in the rectangle R, the definition 

1 
rc(t) q} =~-=z~u J(R eStR(s: A) ~ ds 

provides us with an operator that satisfies all of the claims of the lemma. 
We now turn to the construction of the two operators Ts(t), Tv(t ). 
It is clear that we only need to prove our claims for Ts(t), say. For 
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notational convenience, we shall drop in the sequel of the proof the sub- 
script S. 

The first step is the definition: 

• T k ( t ) ~ - 2 ~  i r e S t R ( s : A ) ~ d s  fo rany  ~ e M  k. 

Since M k is finite dimensional, no problem of convergence of the integral 
arises. 

The following clearly hold: 

1. Tk(t) qJo = c~(t + �9 ) for every q~ e E k 
(because M~ is a finite dimensional subspace), 

2. Tk(t ) (b = Tk + l(t) q~ for every ~b ~ M k, 

3. k >  j implies IlTj(t)l[ ~< [ITk(t)l[. 

We now e~tend the domain of our operator to the entire space M. We let 
I j= 1/27ZiJr eS'R(s: A) ~ ds, j =  1, 2, 3. Then, one has 

J 

Tk(t) q3 =- I1 + 12 + 13 ; 

c lea r ly  111211 c ~  < c I1~11 c. 
We now consider 13; we parametrize the curve with s: s ~ x + iy(x), 

y(x)  defined at the beginning of the section. From the remarks following its 
definition, we have s'(x) = 1 + iy'(x), y ' (x)  = O(e -rx), for [xl --, + o o .  Then, 
for any to > 2r, 

eSt~ ds <<. [IR(s:A)II  Idsl II~llc 
F3 

} <~ ~ _ + - -  " e x '  x C e  - X" d x  II~llc 

=- C(to) I1~11 c, 

Clearly, for any to > 2r, C(to) is finite. The same argument holds for 11. 
We conclude that the operator T(t) is defined for any t 1> to > 2r, with 

the integral above providing an upper bound (dependent on to) on its 
norm. 

The exponential estimate follows obviously if we note that, for every 
s ~/I, one has Re(s)~< - c ,  so that 

eR~lsltOe-C(t to)IIR(s: A)II [ds[ I1~11 c IIZ(t)~l[c<~-f~z r 

~< e-~*[C(to) e ~t~ IIq~[] c. | 
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For a continuous function ~b, we denote supp ~b the support of ~b. From 
the assumption that the function of bounded variation t /has  only a finite 
number of jumps, we conclude that there exists an e > 0 such that, for every 
q~ with supp ~b c ( -~ ,  0), we have S2r dq(O) ~b(0) = 0; and the same for every 
~b with supp ~b ~ (0, e). 

We can now prove the following: 

Lemma 5.2. There exists a constant C depending only on L, such that, 
for any ~ ~ M s and for any ~ ~ Mu, 

I(~(t)[<<.Ctl(~llc, forany t~[r ,  Zr]j 

I~'(t)[<~Cl[4/llc, forany t ~ [ - 2 r , - r ] .  

Proofi We only consider the case of ~b e Ms, since the proof for 
~ M  U is analogous. Choose first a to>r with t o - r  <e; using the 
exponential estimate above, we have that, for any t E[r , r+e] ,  
f2(~b)(t)] ~<e(il~bl] + C  I[~blJ ) and therefore, for any such t, tx(~b)(t)] ~< 
lt~bf] + E(ll~bJl + C [Iq~][)r= C2 I]~b][. The statement now follows, using again 
Lemma 5.1. i 

Remark.  It is obvious now that, by changing if necessary the con- 
stant C in the conclusion of the Lemma 5.2, we obtain the exponential 
decay estimate for every t ~> 0 in the case of Ts(t) (and for every t ~< 0 for 
T~(t)). 

The final step is the extension of the (families of) operators defined 
above to the closure of their domain of definition. 

Let Ms(My)  denote the closure, in the C norm, of Ms and Mu,  
respectively. (Recall that M c is finite dimensional and therefore closed, so 
no extension is necessary.) 

From the above results, we already know that there exist three families 
of operators Ts(t), Tv(t), Tc(t ), defined on Ms, Mu, Mc  and for t~>0, 
0, t e E, respectively, and satisfying 

IJTs(t)~[[ <<.Ce -~t H~bllc, t>>-t~to>2r forevery q ~ M s  

[JT~(t)~ij<~Ce ~'l]~l[c, t ~ < - t 0 ~ < - 2 r  forevery ~ e M ~  

for some positive constant C. 

Theorem 5.1. There exist three families of  operators, which define C O 
semigroups: 
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Ts: / f l s - - .C  definedfor t>~O 

T c : M c ~ C  definedfor t e ( - o o ,  oo) 

T u : ~ I u ~ C  definedfor t<~O 

which satisfy, with the constant C as above, 

IITs(t)ll < Ce-" ,  t>~O 

U Tv(t)[I <~Ce c', t<~O 

and for r r i~l s, ~ ~ ~i  v, ~ r M c we have 

r s ( t ) ~ = x ( r  where x ( ~ ) : [ - r ,  + o o ) ~ n  

is the solution of  2( t ) = Lx  t for t >~ O, and x o = r ; 

T v ( t ) ~ = x ( ~ ) ,  where x ( ~ ) : ( - o %  + r ] ~  n 

is the solution of  2(t) = Lx, ,  for t ~ O, and Xo = ~'; 

T c ( t ) ~ = x ( ~ ) ,  where x ( ~ ) : ( - o o , ~ ) ~ R  ~ 

is the solution of  2 ( t )=  Lx,,  for every t; and Xo= 4. 

Proof. The statement for Tc(t  ) is obvious. 
As usual, we only need to prove our claim for Ts(t), say. The exten- 

sion is a standard application of an Ascoli-Arzel~ line of argument. 
Consider any r e Ms,  which is the uniform limit of a sequence 

{r c 
Consider first any t l : r ~ t l <  +o% and define x(~b~) by x(~b3(t)= 

T(t) r where we have dropped the subscript S for notational simplicity. 
The sequence of derivatives is uniformly bounded. In fact (assuming w.l.o.g. 
11r r c~< 1, i =  1, ...), we have, for t e  [0, t l ]  and for any i, 

[2(~,)(t)[ R. = IL(x(r ~< # IIx(q%ll c ~ ~~ 

Clearly also the sequence {x(r is uniformly bounded, and equi- 
continuous; let x(r denote the uniform limit of a subsequence. 

Now, for every t e  [0, tl],  the limit of the (sub)sequence defined by 

fr 2i(r ) = xi(~b)(t + O) d~(O) 
--r 

exists, and defines a continuous function of t; call f such function. From 
the Lebesgue-dominated convergence theorem, such function is almost 
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everywhere the derivative of the function x(~b); and it also satisfies the 
equality 

5C(~)) t = fr  r X(~)( t  -[- O) d~(O). 

We can now define a function x(~b) with analogous properties as 
- r ,  + oe), by taking a sequence {tf}, limk t~= +oe; since the exponential 

estimate tl T( t )  (~ill <<. Ce  - "  Jl~biJ[ is satisfied as every element of the sequence, 
it will be satisfied in the limit. Finally, 

lira, ~ 0 T(t) ~b = ~b for any ~b e 2~r s 

follows from the fact that Such equality holds for any ~b 6 Ms, and that T(t) 
is uniformly (in t) bounded in norm. | 
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