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Abstract. A continued concern with variational theorems which are suitable for numerical implementation in connection 
with the analysis of incompressible or nearly incompressible materials has led us to the formulation of five-field, and in one 
case seven field, theorems for displacements, deviatoric stresses, pressure, distortional strains and volume change. In essence 
these theorems may be thought of as generalizations of the Hu-Washizu three-field theorem for displacements, stresses and 
strains and of the earlier two-field theorem for displacements and stresses. 

For ease of exposition, what follows is divided into three parts. The first part deals with geometrically linear elasticity. 
The second part deals with the effect of geometric nonlinearity in terms of Kirchhoff-Trefftz stresses and Green-Lagrange 
strains. The third part is concerned with results involving generalized Piola stresses and conjugate strains, as well as with 
results about distinguished (Biot) generalized stresses and their conjugate strains. Also for ease of exposition, attention is 
limited to statements about volume integral portions, omitting body force and boundary condition terms. 

In addition to formulating five field theorems, as well as one seven field theorem, we use these theorems, through the 
introduction of various constraints, for the deduction of alternate six, five, four, three, and two-field theorems for incompressi- 
ble or nearly incompressible elasticity. 

1 A five-field generalization of the Hu-Washizu theorem for geometrically linear elasticity 

With  ui as c o m p o n e n t s  o f  displacement ,  with the abbrevia t ion ,  

1 
uij = (u; j  + uj, i) (1) 

and  with a strain energy densi ty funct ion U(uij ) we have  for  the vo lume  integral  por t ion ,  in the 
absence o f  b o d y  forces, o f  the classical one-field principle o f  m i n i m u m  potent ia l  energy 

(5 ~ U(u 0 dv = 0 (2) 

With  c o m p o n e n t s  o f  stress aiy, with cons t ra in t  const i tut ive equat ions  aij = 0 U/c~uij and  with a rb i t r a ry  
var ia t ions  5ui, Eq. (2) implies the Euler  differential  equat ions  o f  equi l ibr ium aij, i = 0. Fu r the rmore ,  
with c o m p o n e n t s  o f  s train el j, and  with cons t ra in t  s train d isp lacement  relat ions ~ij = uij, Eq. (2) m a y  
al ternate ly  be wri t ten in the f o r m  

a S U(eij)dv = 0 (2 ' )  

Given  (2 ' )  we obtain ,  fol lowing H u  and  Washizu,  a three-field var ia t ional  t heo rem for  displacements ,  
stresses and  strains u p o n  changing the charac te r  o f  the cons t ra in t  relat ions e~j -- u~j, and a~j = c~ U/ 
~g'ij into Euler  equat ions ,  with this three-field t heo rem having  the f o r m  

6 [. [U(eij) + ( u i j -  eij)aijldv = 0 (3) 

Given  the step f rom the one-field t heo rem (2) to the three-field t heo rem (3) we n o w  p ropose  to 
establish a five-field t heo rem for  d isplacements  u i, dis tor t ional  strains e[j, a vo lume  change  var iable  

f 0 = ekk, deviator ic  stresses a~j and a m e a n  stress p = (1/3)akk, as follows. 
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We write, with the introduction of a deviatoric displacement gradient tensor u~j, 

['1 u .1 ) 
= (ub; + \-5 O; p av (4) 

We further write 

, 1 ) = U* ' 
v) = g e, j+ v (5) 

and with this we assert the validity of the five-field variational theorem 
* ! ! ! / 

6 ~[U (egj, O) + (u i j -  e~j) aij + (Ukk - O) p] dv = 0 (6) 

It is evident that the Euler equations of (6) include the relations ~j = u~j, 0 = ukk, and therewith the 
strain displacement relations eij = uij. 

The further Euler equations aij = O U/Oeij, p = O U*/OO also imply the constitutive relations 
aij = ~ U/&ij as Euler equations, inasmuch as 

OU*6..= , 
~ U  _ OU* --}- aij.q._ P 6 i j  = (7) 
c%ij &~j 80 v aij 

Finally, in order to verify that (6) also implies the equilibrium equations aij, i = 0 as Euler equations 
it is sufficient to observe, on the basis of (4), that 

ubob + uk p = u,j v (8) 

Remarks: Equation (6) may also be obtained upon writing the principle of min imum potential 
energy in the form 65U(e~y+ 1/306ij)dv = 0, with an introduction of the the side conditions 

! ! ! ely - u a = 0 and 0 = Ukk by means of Lagrange multipliers a a and p. 
Still another way of deriving (6) is to introduce the decompositions (4) into the Hu-Washizu 

Eq. (3), with the desired result following upon  observing the relations (u~j; g~j; a~j)6ij = O. 
We further note that the linear isotropic materials case of (6) was included in an unpublished 

1978 manuscript  "Notes on an analysis of nearly or precisely incompressible behavior of elastic- 
plastic solids" by the first named author  in collaboration with H. Murakawa. The present deduction 
of (6) evolved on the basis of a manuscript  "On a modification of the Hu-Washizu variational 
equation in elasticity" concerning the four-field theorem in Eq. (10) which the senior author  
submitted in July 1986 to the journal  Computat ional  Mechanics. 

2 Reductions of the five-field theorem of geometrically linear theory 

Our first reduction is to a four-field theorem for displacements, distortional strains, deviatoric 
stresses and pressure. We change the character of the relation p = OU*/O0 from Euler equation to 
constraint equation and, with the inversion 0 = 0(p, e~j) of  this relation, define a semi-complementary 
energy density function V* through the partial Legendre transformation 

/ ! ! / 

V (eij,p) =pO(p,e)j) - U* [eij, O(p,e~j)] (9) 

Equation (9) implies in the usual way that 0 = ~ V*/Op and the introduction of U* from (9) into (6) 
gives as the desired four-field theorem 

6f[(u~ j - e'ij)cr~j + ukkP -- V*(e~j,P)ldv = 0 (10) 

As regards the problem of determining V* we note the ease of doing this for materials for which at 
the outset U(uij)= Uo(uO+ Ul(Ukk), and also for materials for which U ( u O =  Uz(uq)+ 
( u j  2 x F(Ul> u13, u=3), with U= as a second degree polynomial. For  other more general cases, and 
in cOnnection with numerical applications of (10), we expect that  it will be possible to combine the 
discretization of (10) with a determination of the function V* in an incremental sense as in [1]. 
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Our second reduction of (6), to a three-field theorem for displacements, volume change and 
pressure, is obtained upon changing the character of the relations e~j = u~j and o'~j = c~U*/c%~j from 
Euler equation to constraint equation. With this, Eq. (6) evidently reduces to the form 

6 S[V* (u;j,O) + (uk~ - O) p]dv = 0 (11) 

Equation (11) has been stated previously in [5]. An implicit version of (11) occurs also in [2], not 
for it's own sake but as a stepping stone towards a two-field theorem for displacements and pressure 
which is obtained by again changing the Euler equation p = O U*/cgO into a constraint equation where 
now 0 = 0 (p, u~j) and therewith 

* ! / I l V (uij, P) =pO(p,u;j)  - U* [uv, O(p,u;j)l (12) 

The introduction of U* from (12) into (11) leaves the two-field theorem 
a * ' - V (uij, p)]dv = 0 (13) 

with (13) being equivalent, upon writing U*(u~j,O)= U ( @ ) +  U'(u~j,O) and V'=pO(p,u~j)  - 
U" [u~j,O(p,@) so that V*(u~j,p)= V ' (u~j ,p) -  U(u~}), to the result in [2]. 

3 The five-field theorem of geometrically nonlinear theory for Green-Lagrange strains and 
Kirchhoff-Trefftz stresses 

We again depart from a statement of the volume integral portion of the classical variational principle 
for displacements (1), with the uq now being the components of the Green-Lagrange strain tensor 

1 
uij = ~ (ui,j + uj, i + uk, iu<}) (14) 

and with the principle of Hu and Washizu for displacements, strains and (Kirchhoff-Trefftz or 
second Piola-Kirchhoff) stresses being again Eq. (3). 

The additive decomposition of geometrically linear theory in (4) into distortional and dilatational 
contributions is known to be replaceable in geometrically nonlinear theory by a multiplicative 
decomposition which is dependent on the determinental relation 

Ju = ]16q + 2uijll = (1 + A) 2 (15) 

where A is the relative change of volume due to deformation, so that Ju -- 1 for an incompressible 
material. 

Given Eq. (15) we have the possibility of defining equantities u~j which correspond to the 
quantities u~j = u i j -  1/3 ukkaij in (4) by writing 

6ij + 2uij = (6ij + 2u~j)J 1/3 

inasmuch as, evidently, 
t / Ju = I[ 6ij -Jr- 2uij[[ = 11 (~ij Ar 2 u i j l [ J u  1 = 1 

(16) 

(17) 

We now again make use of the artifice of replacing the basic Eq. (2) by (2'), with constraint strain 
displacement relations eij= uij, and we define distortional strain components ~j through the relations 

6ij + 2eij = (6ij + 2@)J~/3 

where 

J~ = l[6ij + 2eijl[ 

Having (18) and (19) we next write, in analogy to Eq. (5) for the geometrically linear case, 

I 1 * ! 

1 (j /3 1)au = u (eu,&) v) = v  ;jp + 

(18) 

(19) 

(20) 
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and we stipulate, in analogy to the result for the geometrically linear case, that the five-field thoerem 
of geometrically nonlinear theory, involving Lagrange multipliers cr~j and p, be of the form 

+ ' -  ' ' = ( ij, J,) + (uij ei)Gi~+ [f(J ,)  - f ( J o ) ] p }  dv 0 (21) 

with f as a function the choice of which remains at our disposal. 
Given Eq. (21) we note in particular the Euler constitutive equations 

c~V* 1 OU* 
a~j - , , p - (22 a, b) 

•eij f '  (d~) (?J, 

In view of (20) and in view of the relation o-ij = ~3 U/c~eij we have as expressions for o-~j and p in terms 
of Kirchhoff-Trefftz stresses and Green-Lagrange strains: 

-~- (Sij) , OU (?emn _ aij~/3 ' p = (2e~a~)7 ~ o'ij (23a, b) 

and, alternately, as expressions for the o-i j, in terms of the o-~j, e~j and p 

af) f ,  (j ,)j~ _ (~)ij 2[_ 2e~j)a;j (24) 
(riJ- j~/3' 6p 

In order to verify that (21) has the appropriate equilibrium equations as Euler equations as well, it 
is only necessary to verify that 

a~j3 u;/+ p f '  (Su) 3 Ju = aij3 uij (25) 

This is readily accomplished on the basis of  (16) in conjunction with the Euler strain displacement 
equations of (21). 

4 Reductions of the five-field theorem (21) 

As for the geometrically linear problem we obtain a four-field theorem which no longer involves 
the volume change measure J. by inverting (22 b) and by then defining a function 

* / / f V @ij, P) p f [ J , ( p , e ~ ) ] -  U* e" = [ i j, J, (P, e~;)] (26) 

with which the desired four-field equation follows from (21) in the form 

6 S [(u~j - e~j) a~j + f ( Ju )P  - V* (e~j,p)] dv = 0 (27) 

Our second reduction, to a three-field theorem, again depends on considering the relations 
e~j = ujj and a~j = ~3 U*/~3e~; as constraint equations rather than Euler equations. With this we obtain 
from (21) as a three-field theorem involving ui, J~, and p 

3 ~ { U* (u~j, Je) -l- [ f  (Ju) - f (J~)]p }dv = 0 (28) 

which corresponds to an equivalent theorem in [5], upon stipulating f (Ju) = J~ and f (J,) = J~. 
Given Eq. (27) we may further deduce a two-field theorem for p and the ui by changing the Euler 

relations e~. = u~j into constraints so as to have this two-field theorem, in generalisation of the result 
in [2] for t~e geometrically linear problem, in the form 

3 ~ [p f  (J~,) - V* (u'ij, p)] dv = 0 (29) 

5 A five-field theorem of geometrically nonlinear theory in terms of generalized Piola stresses and 
displacement gradient components 

With stress vectors o- i as forces per unit of  undeformed area acting over the surfaces of deformed 
material elements defined by position vectors z = x + u the equations of equilibrium for deformed 
material elements are, except for body force terms which are omitted in this account, 

~'i,i : O, Z,i X ai = 0 (30a, b) 
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Given that, in terms of the unit  vectors ei in the directions of the coordinate axes xi, we have as 
defining relations for Piola components  of stress 

a i =  sijej (31) 

we have earlier [3] defined general ized Piola components  of stress zij by writing 

~i = "cijtj (32) 

with the unit vectors tj given by 

tj = CCjkek, ~ik(Xjk = ~ij (33a, b) 

with (33) implying that  

ej = ~kjtk, O~kiO~kj = g)ij (34a, b) 

With (33) and (34) we define general ized displacement gradient components  

Wik = ((~i;-Jr- blj, i) O~kj- ~ik (35) 

on the basis of deducing with the help of (34 a) that, 

z i = (cSij + u;,i) ej = (6ik + Wik) tk (36) 

Given the representations (32) and (36) we have from (30 a, b) as component  equilibrium equations 

(O~jk'gi;), i = 0, ((~ik -}- Wik)ekjmri;  -~ 0 (37a, b) 

As long as we stipulate that  3 c~ U = 0, we have on the basis of (32) and (36) that  

a i " (~ Z,i = T,(/6 Wij (38) 

which assures the conjugacy of "cij and wij. If, with (38) and with 

6 wij = ~jk c5 uk, i (39) 

we stipulate constitutive relations of the form 

ave 
z,:- Owij (40) 

we then have that  the variational equation 

g)S U~dv = 0 (41) 

with arbitrary 6 u~, has the force equilibrium Eq. (37 a) as Euler equations. 
For  (41) to be meaningful, it is necessary to restrict the form of U~ in such a way that  the moment  

equilibrium Eq. (37 b) is also satisfied. It is readily shown that Eq. (37 b) will be satisfied, identically, 
upon stipulating that 

U~(wij) = U (uij) (42) 

with uij as in (14), where we note that on the basis of the relations u~j = 1/2 (z,~. z,j - 6ij), we have 
as expression for the uij in terms of the w~j, 

1 
uij = ~ (wij + wji + Wik Wjk) (43) 

With (42) and (43) it is then established that (41) is a one-field variational theorem of geometrically 
nonlinear theory in terms of generalized displacement gradient components  as defined by (35) which 
directly corresponds to the theorem in Eq. (2) for geometrically linear theory. 

F rom (41) to (43) we next have as a three-field Hu-Washizu theorem, corresponding to Eq. (3) 
of the linear theory 

(~ [. [Ur(?ij) -[- (wij  --  7ij)'cij] dv  = 0 (44) 

where now U~(Tij) = U(eij), with eij = 7ij + Yji + 7ik?jk. 
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The generalization of (44) to a five-field theorem involving volume change and pressure, in 
addition to deviatoric stresses and strains, involves the relation 

(~ij -Jr- Wij = ((~ij "-~ W~j) Jlw/3 (45) 

where 

Jw = II~ij+ wijll : Z , l ' Z , 2  x z , 3  = 1 -[- A (46) 
with corresponding formulas for ?~, 7//and Jr' In this way we then have in analogy to (21) with 

U~(~ij) = U~ [(~ij-I- ~ j ) j } / 3  __ (~ij] "=" O;  (7~j,S~,) (47) 

as a five-field theorem involving displacements, deviatoric strains and stresses, and pressure and 
volume change variables, 

* ' ' -  ' ' = 
U~(?i/,J~) + (wij 7'ij)zij+ [ f  (Jw) - f (J~)]p}dv 0 (48) 

From (48) we may again deduce a three-field theorem which corresponds to a result in [5] upon 
! / ! * ! 

introducing the relations ? i /=  w~/and ~u = OU~/~Ti/as constraints. This three-field theorem is, in 
analogy to (28) 

6 ~ { U~ (w~j, J,) + [ f  (Jw) - f (J,)]P } dv = 0 (49) 

The possibility of deducing four and two-field theorems corresponding to (10) and (13) is question- 
able to the extent that  the invertibility of the constitutive relation p = [1If ! (J~)] <? U*~/<?J~ is question- 
able within the framework of the concept of generalized Piola components  of stress. 

While the practical usefulness of the theorems in (48) and (49) is in doubt  for other than the 
special case of c~/= 6ij, the considerations leading to them furnish a particularly convenient approach 
to a broadened formulation where the status of the e~/is changed from that of given quantities to 
that of additional dependent variables. 

6 A seven-field theorem involving distinguished generalized Piola or Biot stresses and 
displacement gradient components 

We now consider the directions of the vectors t / in (33 a, b) not as given but as dependent variables 
which are to be determined as part of the solution of the problem. We then have, as a consequence 
of (35) 

(~ Wik : O~kj(~ Uj, i "~- ((~ij "~ blj, i) (~ O~kj ( 5 0 )  

An observation of the fact that, as a consequence of (33 b), c~ik6 c% = - c%6 eik and therewith, in 
terms of the quantites 6 co m, elk 6 e/k = eijm g) com leads, with (34b) and with a consistent change of 
subscripts, to the relation 6 c~ij = c~kjekim6 co m. This, in conjunction with (35), transforms (50) into 

(~ coik = O~kj~) blj, i -~ ( 3 ij -'~ W ij) ejkrn3 com (51) 

With equation (39) replaced by (51), and with -cij again as in (40) we will now have that the variational 
equation (41), with arbitrary 6 u and 6 com, has the character of a two-field principle with not only 
the force equilibrium Eq. (37 a) but also the moment  equilibrium Eq. (37 b) as Euler equations. 

It is necessary at this point  to decide to what extent the form of the function U~ (w 0 cannot  be 
arbitrarily stipulated. We do know that if U~ is as in (42) that  then the moment  equilibrium equations 
are satisfied automatically and that therewith the variational Eq. (41), with or without 6 c~i/= 0, is 
a valid one-field equation. An alternate disposition concerning U~, leading to a three-field variational 
equation, is as follows. We stipulate, as a physically reasonable restriction, to be satisfied by an 
appropriate determination of the ~i/, the strain symmetry conditions. 

wij = wji (52) 

and we write 

U~ = U~(w11, w12 + w21, .. .) (53) 
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After this we change the constraint relations (52) into Euler equations with the help of Lagrange 
multipliers 2 k, and therewith state as a three-field variational equation which has force and moment  
equilibrium conditions as well as the kinematic relations (52) as Euler equations 

af[U~:(Wll,WI2 + W21, ...) + ei jk(wi j -  wji)2k]dV = 0 (54) 

The physical significance of the multipliers 2k is obtained upon deducing from (54), with the 
abreviation v~ij = w~j + wji 

1 ~  ~Wll + ~ 6W12 + ... + )~30(W12 -- W21 ) + . . .  dv = 0 (55) 
LOWi i 

or 

1 7 ~ W l l +  - - + 2 2 3  6W12+ 223 6W21+. . .  d r = 0  
L(~Wii k#lV12 kaW12 

(56) 

For (56), with 6 wik as in (50), to have the equilibrium Eqs. (37a, b) as Euler equations it is evidently 
necessary to have 

0U~ 0U~ OU~ 223 etc. (57) 
~'11- ~Wll, 2712-- ~W12 +223 ,  2721- ~W12 

Equation (57), with the further abreviation ¢12 = 1/2 (2712 + 2712) implies that 

aUz "c12 -- 2721 
¢12 - 23 - etc. (58) 

0~12' 4 

and accordingly we have that only the sums of the stresses vl 2 and "r 21, etc., enter into the constitutive 
relations. 

Having expressions for the 2k in accordance with (58), it is possible to write the three-field 
theorem (54) in the form 

a U~(w11,~,~2,...)+ =(w~j-wj~)(27~j-27ji) dv=O (59) 

with independent variations ~ ui; 6 (,oi; and a (~ i j -  zji), consistant with a result in [4]. 
Given equation (59) it is again possible to increase the number of  fields and now obtain a f ive 

field principle in the sense of Hu-Washizu, by introducing components of strain 7ij, with strain 
displacement relations 7ij = wii as additional Euler equations. In this way we then have, in place 
of (59) 

c~ U~(hl,'21>...)+(w11-h1)~ll+(~12-~12)¢12+ ~(Wlz-Wal)(~12-2721)+... dv=O (60) 

with independent variations 6 711, ~ 912, ... O g 1 l, 6 ¢12, ..., 3 ('~i 2 - z21), ..., 0 ui, and 6 (.o i. Finally we 
may use (60) to again deduce a theorem with supplementary volume change and pressure variables, 
where we now write in analogy to (16) 

1 + w~l = (1 + Wll)Jw 1/3, w12 = w12Jw 1/3... (61) 

and 

J~= 

1 
1 + Wll ~ 1~12 
1 
~W12 "'" (62) 
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with corresponding formulas for 711, ~712, ..-, and J~ and with 

Uv(711, ~12, .) : U z [(1 -~- ~l l )J~/3 ~, 1/3 . . . .  • " ' - 1,712J~ , " " ]  = Uz(Y11,Y12, " " , J T )  (63) 

With (63) and again with a pressure function p, we now deduce a seven-field variational theorem 

U,~ (~11,~12,. . . ,  J~,) + (wi1 --  ~ll)"Cl 1 -~- (1~12 --  ~12)'~12 + 

1 
+ ~ ( w ~ 2 -  w~l) ( z ~ : -  z~l) +. . .  + [f(Jw)-f(J~)]p}dv = 0 

with independent variations 67~1, g)~[2,..., g~J~, g~l,  6¢~2,..., 8(~2 - r~l), . . . ,6p,  6ui, and 6o~ i. 
As before, we may deduce from this, by introduction of  suitable constraints, lower field relations 

including a five field theorem 

a g z ( W l l ,  l ~ [ 2 , *  ' .. . , J r )  -}- ~ (w~2--  w12) ( 'g12-- 2721) -1 - . . .  +[f (Jw) - f ( J , ) ]p  d v = 0  (65) 

corresponding to the three-field theorem in [5], and a four field theorem 

0 f [ ~  (W12 W21) ('C12 2:21) -1- +Pf(Jw) . . . .  )] ' - ' ' - ' ... -V~(w~l ,w12, . . . ,p  d r = 0  (66) 

corresponding to the two-field theorem in terms of  Green-Lagrange strains and pressure in Eq. (29). 
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