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For weakly stationary random fields, conditions on coefficients of "linear 
dependence" are given which are, respectively, sufficient for the existence of a 
continuous spectral density, and necessary and sufficient for the existence of a 
continuous positive spectral density. For strictly stationary random fields, 
central limit theorems are proved under the corresponding "unrestricted 
p-mixing" condition and just finite or "barely infinite" second moments. No 
mixing rate is assumed. 

KEY WORDS: Stationary random fields; spectral density; p-mixing; central 
limit theorem. 

1. I N T R O D U C T I O N  

Suppose d is a positive integer. Suppose X :=  (X~, k ~ Z a) is a centered 
complex weakly stat ionary r andom field on a probabili ty space (g2, ~ ,  P). 
By "centered" we mean that  E X  k = 0. We allow the Xk's to be complex- 
valued since the proofs of our  results will in any case involve some 
complex-valued r andom variables. By "weakly stat ionary" we mean of 
course that  E [X012 < ov and that  E X k X j  depends only on the vector k - j .  
(Here the origin in Z d is denoted simply by 0; in our  context this should 
not  cause any confusion.) 

Let us denote the usual Euclidean no rm of a vector k e  Z by [Ikll. The 
"distance" between any two disjoint nonempty  subsets S, D c Z d will be 
denoted by 

dist(S, D) :=  min I[j-kll 
j ~ S ,  k E D  
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For any two disjoint nonempty subsets S, D c Z d, define 

r(S, D) := sup EVff'/([I Vlr2 JI Wl/2) 

where this sup is taken over all pairs of random variables V and W of the 
following forms: 

V= ~ akXk and W= ~ bkXk 
k e S *  k e D *  

where S* is a finite subset of S, D* is a finite subset of D, and the ak's and 
b / s  are complex numbers. Where necessary, 0/0 is interpreted to be O. For  
every real number s/> 1, define 

r*(s) := sup r(S, D) 

where this sup is taken over all pairs of nonempty disjoint subsets 
S, D c Z d such that dist(S, D) ~> s. 

In our discussions of spectral densities, we shall use the following 
notations: Let T denote the unit circle in the complex plane. For  each 
t~ T d, we shall let 2 := (21 ..... 2d) denote the element of (-Tr, ~]d such that 
t =  (exp i21 ..... exp i2d). The letters t and 2 will always be related in this 
way. Le t / t  r denote normalized Lebesgue measure on T [i.e., normalized so 
that p r ( T ) =  1]. Let p d = p v •  ... X/~T denote the d-dimensional product 
measure on T d. A Borel nonnegative integrable function f on T d is called 
a "spectral density" for the centered complex weakly stationary random 
field X := (Xk, k ~ Z d) if 

Y k ~ Z  d EXks d#d(t ) 

Here, of course, k .  2 denotes the dot product. 
Our discussion so far has been restricted to centered random fields. 

For  a "noncentered" complex weakly stationary random field X : =  
(Xk, k ~ Zd), i.e., with EXk = # ~ O, one of course simply defines r*(s) and 
"spectral density" (if it exists) to be equal to r*(s) and spectral density for 
the centered random field Y := ( Yk, k ~ Z d) defined by Yk := X~ - kt. 

We shall prove the following two theorems: 

Theorem 1. Suppose d is a positive integer and X := (Xk, k e Z d) is a 
complex weakly stationary random field such that r*(s)--* 0 as s--* oe. 
Then X has a continuous spectral density on T d. 

Theorem 2. Suppose d is a positive integer and X := (Ark, k E Z d) is a 
complex weakly stationary nondegenerate random field. Then the following 
two statements are equivalent: 



Weakly Dependent Random Fields 357 

1. r * ( 1 ) < l ,  and r*(s )~O as s ~ o e .  

2. X has a continuous positive spectral density on T d. 

Part of Theorem 2, the fact that (2) implies r*(s)--, O, was already 
shown by Rosenblatt (Ref. 13, p. 73, Theorem 7) in his discussion of 
stationary Gaussian random fields. Zhurbenko (Ref. 17, Chapter 2, Section 
2) gives a number of theorems of the following kind: If a stationary 
random field satisfies certain moment conditions, together with a "strong 
mixing" condition with a sufficiently fast "mixing rate," then the random 
field has a spectral density (or higher-order spectral density) which has 
higher-order derivatives with certain nice properties. 

Now consider for a moment the case d =  1, where J( := (J(k, k e Z) is 
a weakly stationary sequence. For each integer n>~ 1 define (for the 
moment) 

r(n):=r({..., - 2 ,  - 1 ,  0}, { n , n + l , n + 2 , . . . ) )  

This is the standard "linear dependence" coefficient used in prediction 
theory, and in the case of a stationary Gaussian sequence the condition 
r(n)--+ 0 is well known to be equivalent to the standard "p-mixing" and 
"strong mixing" conditions. Obviously r(n)<~r*(n). Ibragimov and 
Rozanov (Ref. 11, p. 179, Example 1) give an example of a stationary 
Gaussian sequence which satisfies r(n)--+0 but which fails to have a 
continuous spectral density. Comparing this with Theorem 1, we see that 
for stationary sequences the condition r(n)--+O is indeed weaker than 
r*(n) + O. The Helson-Sarason Theorem (Ref. 14 or Ref. 11, Chap 5) gives 
a necessary and sufficient condition for r ( n ) ~ 0 ,  based on the spectral 
density. 

Our proof of Theorem 1 (and part of Theorem 2) will mimic the proof 
of the following result of Ibragimov and Rozanov (Ref. 11, p. 182, Lemma 
17, and p. 190, Note 2): If X := (Xk, k e Z) is a weakly stationary random 
sequence satisfying '~-'~,ne~ 1 r(2~)< 0% then X has a continuous spectral 
density. Their argument can be summarized roughly as follows: For  each 
m >~ 1 define the function fm on T by 

m 2 

fm(e a) := (l/m) E ~. e-ik2Xk 
k = l  

Show that for positive integers m < n one has 

If,,,(e~ f.(ei)O[ <~ a,,, 

where am depends only on m (not on 2) and converges to 0 as m--+ oo. 
[This is the cumbersome part, involving extensive calculations based on 
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the assumption Z r(2n)<oo;  the rest is easy.] The existence of 
f (e  i~) := limm_ ~ fm(e ix) follows. The bound Ifm(e ia) - f(eiX)t <<. a,, follows. 
For  each m~> 1 the function fm is a trigonometric polynomial. The 
continuity o f f  on T follows. A final elementary calculation shows that f is 
in fact a spectral density for X. 

For  random sequences (the case d =  1), one has the following "growth 
of variances" result related to Theorem 1: 

Theorem 3. Suppose X : =  (Xk, k~ Z) is a centered complex weakly 
stationary random sequence such that r*(s )~0 as s ~ ~ .  Let f denote 
its continuous spectral density on T. If 2 e ( - n ,  rc] is such that 
E 1~2~=1 e-ik~Xkl 2 ~  oo as n ~  o% thenf(ei~)>O. 

Now let us turn our attention to central limit theory for random fields. 
First, for any two a-fields d and ~ in our probability space, define the 
maximal correlation: 

[ E V W -  EVEWI 
p(~r M) := sup (1.1) 

(ll vtl2 It wtE2) 

where the sup is taken over all square-integrable random variables V and 
W which are d-measurable  and N-measurable, respectively. By Ref. 16, 
p. 512, Theorem 1.1, and a trivial calculation, the RHS of (1.1) is the same 
whether the random variables V and W are restricted to be real or allowed 
to be complex, and remains the same even if V and W are restricted to 
have mean 0. 

Suppose X : =  (Xk, k~ Z d) is a real strictly stationary random field. 
For any two nonempty disjoint sets S and D = Z  a, we shall use the 
abbreviation 

p(s, D) := p(a(xk,  k e S), a(xk,  k e D)) 

Here and in what follows, o-(.--) denotes the a-field generated by ( . . . ) .  
For  each real number s ~> 1, define 

p*(s) := sup p(S, D) 

where this sup is taken over all pairs of nonempty disjoint subsets S, D e Z d 
such that dist(S, D)~> s. Obviously, in the case where the Xk's are square- 
integrable, one has r(S, D) <<_ p(S, D) and r*(s) <~ p*(s). As is well known, 
in both equations one has equality if the random field is Gaussian. 

We shall give two central limit theorems for random fields X := 
(Ark, k ~ Zd). First we need some notations for d-dimensional "block sums." 
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Suppose j = ( J l  ..... Ja) and 1 :--- (l 1,..., Id) are elements of Z d such that j ,  ~< l, 
Vu = 1 ..... d. Define 

S(X:  j l  ..... jd : l l  ' " "  ld) : =  2 Xk 
k 

where this sum is taken over all k : = ( k  1 ..... k d ) ~ Z  d such that  
j,<.k,<~l, Vu= 1,...,d. If 11,..., ld are each positive, then we use the 
abbreviations 

S(X:l) : =  S ( X : l  1 ..... ld) := S(X:I ..... 1 :ll ..... la) 

Let N denote  {1, 2, 3,...}. We shall study the asymptotic  normali ty  of 
S(X:L) as L e N  a becomes "large," with no extra restriction on its 
"direction." 

Theorem 4. Suppose d is a positive integer and X := (Xk, k e Z d) is a 
centered, real, strictly s tat ionary random field such that 0 < E X ~ <  0% 
p*(s)--*O as s ~  0o, and the continuous spectral density f of X on 
T a satisfies f ( 1 , . . . , 1 ) > 0 .  Then  as ] lZ l l~oo  ( L ~ N a ) ,  one has that  
]IS(X:L)II2-* oo and that  S(X:L)/HS(X:L)II2-~ N(O, 1) in distribution. 

Theorem 5. Suppose d is a positive integer and X := (X~, k ~ Z d) is a 
centered, real, strictly stationary, nondegenerate  random field such that  

and 

H(c) :=EX2I(IXoh <~c) is slowly varying as c-~  ~ (1.2) 

p * ( 1 ) <  1 and p*(s)~O as s --+ oo (1.3) 

Then as IILtl-+c~ ( L ~ N a ) ,  one has that IIS(XzL)lll-+oo and that  
S(X: L)/[ (rc/2)1/2 II S(X: L)[I 1 ] ~ N(0, 1 ) in distribution. 

It is well known that  (1.2) implies E IX01 < oo. 
Now consider for a momen t  the case d = 1, where X is a centered real 

strictly s tat ionary sequence. For  each integer n ~> 1 define (for the moment )  

p(n):=p({ .... - 2 ,  - 1 , 0 } ,  { n , n + l , n + 2 , . . . } )  

The s tandard  "p-mixing" condit ion is p(n)~O as n ~  ~ .  Obviously 
p(n) <~p*(n). Under  the assumptions of p(n)--*O, finite second moments  
and Var(X1 + ..- + X,)  ~ m as n ~ 0% the mixing rate ~,~= 1 P(2 n) < ~ is 
essentially the slowest that implies the CLT. Compare  Ibragimov (Ref. 9, 
Theorem 2.2) and the au thor  (Ref. 2, Theorem 2), or see the survey by 
Peligrad. (12) The au thor  (3) proved a CLT  for strictly s tat ionary sequences 
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under the assumptions of (1.2), Z 2 = 1 p ( 2 " ) <  oo, and p ( 1 ) < l .  Using a 
1986 preprint of Ref. 3 as a starting point, Shao (15) extended the result to 
a weak invariance principle. Note that, by Theorems 3 and 4, in order 
for a centered real strictly stationary square-integrable sequence 
X := (Xk, k ~ Z) to satisfy S(X, n)/ll S(X, n)ll 2 --' N(0, 1), it is sufficient to 
have just p*(n) ~ 0 and Var(X1 + ... + X, )  ~ oo. 

In the study of central limit theory for random fields satisfying 
p*(s) ~ O, the mixing rate Z2-1  P*(2 n) < oo has sometimes been used. See, 
e.g., Goldie and Greenwood, (6) Goldie and Morrow, (7) and the references 
therein. As indicated in the results here, the condition p*(s)--* 0 seems to 
give sufficient leverage to obtain a lot of information, without the assump- 
tion of a mixing rate or higher-order moments. There are numerous direc- 
tions in which to pursue this, e.g., in connection with topics discussed 
in Refs. 6, 7, and 8, or Ref. 17, Chapter 2, Section 2, or even Ref. 3, 
Lemma 2.2, in order to weaken the assumption p* (1 )<  1 in (1.3). These 
directions will not be pursued here. 

Theorems 1, 2, and 3 will be proved in Section 2, and Theorems 4 and 
5 will be proved in Section 3. Throughout these proofs, the dimension d 
will be regarded as fixed; the dependence of positive constants on d in 
certain lemmas in Sections 2 and 3 will be suppressed. For  convenience, we 
shall treat only random fields which are centered. The phrases "centered 
complex weakly stationary" and "centered real strictly stationary" will be 
abbreviated CCWS and CRSS, respectively. The notation a n ~ b~ means 
lim(an/bn) = 1, and the notation an ~ bn means an = O(b,). If an expression 
like ab is a subscript, it will be written a(b). For a given random field the 
quantities r*(s) and p*(s) are each monotonic (nonincreasing) as s 
increases; hence for convenience we can restrict our attention to r*(n) and 
p*(n), n = 1, 2, 3,.... 

2. PROOF OF THEOREMS 1, 2, AND 3 

The proofs of these theorems will be based on a series of lemmas. 

Lemma 1. Suppose 0 < r <  1. Suppose X1,..., Xn is a family of 
centered complex absolute-square-integrable random variables with the 
following property: For  any two nonempty disjoint subsets S, D c 
{ 1, 2,..., n }, one has that 
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Then 

( l - r )  ~ k~ Xk 2<(1 + r )  
( l + r )  EIXkI2<'E E[gkl2 

k = l  1 (1--r) k=l 

Proof Let (W1,...,W,) be a random vector independent of 
(X~,..., Xn), such that W1,..., Wn are i.i.d, with P ( W I =  1 ) = P ( W I = - 1 )  
=�89 Define the random sets Q,Q*c{1,...,n} by Q : = { k :  W k = l  } and 
Q* := {k: Wk = -- 1 }. Define the (complex) random variables Y and Z by 

Y:= ~ Xk and Z : =  ~ X k 
keQ kcQ* 

In the sums below, the letter S will range over all subsets of { 1,..., n ). 
For any given S, we denote its complement S* := { 1,..., n } - S. We have 

S 2 k 2 

<~2-nr(~s L Xk i) 1/2 (~s k~s *Xk i) 1/2 

=r.EIYI 2 

Hence there exists a real number c with - r  ~< c ~< r, such that 

EYZ + EYZ = 2eE [ YI 2 

By a simple calculation, 

2(1-e)EIYI2=EIY-ZI2=E k = l  ~ W k X k  2 =  k= l  ~ EIXkl2 

Also, E [ Y +  ZI 2 = 2(1 + c) E I Y[ 2. We thus have 

n 2 

E k=~l Xk =EIY+ZI2=(I+c)(1-c)-~ EIX~12 
k = l  

Since - r <~ c ~< r, Lemma 1 holds. [] 

Lemma 2. Suppose q := (q~, q2, q3,---) is a nonincreasing sequence of 
numbers in [0, 1 ] such that limn ~ ~ qn < 1. Then there exists a positive 
number A := A(q) such that the following holds: If X := (Xk, k ~ Z a) is a 
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CCWS random field for which r*(m)<~qmVm >~ 1, then for any finite set 
S c Z d one has 

E k~sXk 2~A.(cardS) .ElXol2 (2.1) 

Proof Suppose the sequence q is as in the hypothesis of Lemma 2. 
Our first task is to define the constant A=A(q). Let J denote the 
least positive integer such that q s <  1. Define the constant A by A := 
g2d(1 + q,)/(1 - q j). 

Now suppose the random field X := (Xk, k ~ Z d) is as in the statement 
of the lemma, and S is any finite set c Z a. For each l :=(l~, . . . , la)  
{1 ..... j}a, let S(l) denote the set of all elements k := (kl,..., kd) ~ S such that 
Vu = 1,..., d, k u = l, rood J. These sets form a partition of S. For each 
l ~ { 1 ..... j}  a one has 

IZXk 2 E ~< (1 + qs)(1 _ q  j ) - i  (card S) E IXo[; 
k ~ S ( I )  

by Lemma 1. 
Hence by Minkowski's inequality, (2.1) holds. Lemma 2 is proved. 

[] 

We need some more notations. Suppose Z := (Xk, k E Z d) is a CCWS 
random field. For  each positive integer m define the nonnegative real 
number 

F(X, m) :=m-dE IS(X:m,..., m)l 2 

Also, the "linear dependence" coefficients r*(m) will sometimes be denoted 
r*(X, m) to avoid confusion when other random fields are also being 
treated. 

Lemma 3. Suppose q := (q~, q2, q3,...) is a nonincreasing sequence of 
real numbers in [0, 1 ] such that limn ~ ~ qn = 0. Suppose e > 0. Then there 
exists a positive integer M(q,e) such that the following holds: If 
X : =  (Xk, k ~ Z  a) is a CCWS random field for which r*(m)<<.qmYm>~ 1, 
then for every integer M>~M(q, E) and every positive integer n, one has 
that IF(X, M ) - F ( X ,  nM)l <~ e . E IXo[ 2. 

Proof Suppose the sequence q :=  (ql ,  q2,...) and the number e > 0 are 
as in the statement of the lemma. Our first task is to define the integer 
M(q, e). Let the positive constant A := A(q) be as in Lemma 2. Let L be 
a positive integer such that qL < 1 and 

_ e ~ (1 -- qr) 1/2 (1 + qL) 1/2 ~ (2.2) 
1 -~..~--~-~qr)~/2 and (I_qL)I/2<~I+6A 
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Now let M(q, e) be a positive integer such that 

VM>~M(q, 5) A[(L+M)d--Md]/Md<~e2/(36A) (2.3) 

Now suppose the random field X := (X~, k E Z a) is as in the statement 
of the lemma. Without loss of generality we assume that E [Xol2= 1. 
Suppose that M and n are positive integers such that M>~ M(q, e). Our 
task is to prove that 

IF(X, n M ) -  F(X, M)I <~ e (2.4) 

For each j := (jl,..., jd) G Z d, define the following complex random 
variable: 

Wj : =  S(X: (Jl - -  1 )(M + L) + 1,..., (Jd-- 1 )(M + L) + 1: 

(Jl - 1)(M + L) + M, .... ( J d -  1)(M + L) + M) 

The random field W := ( Wk, k ~ Z d) is CCWS; its "linear dependence" 
coefficients obviously satisfy r*(W, m)<~ r*(X, rn) and r*(W, 1)~< r*(X, L). 

Now, by Minkowski's inequality, the definition of A (satisfying 
Lemma 2), and Eq. (2.3), we have 

I(nM) -a/2 IIS(X:nM,..., nM)l[2 - (nM) -d/2 IIS(X:n(L + M),..., n(Z + M))[I2I 

<~ (nM) -a/2 IIS(X:nM, .... n M ) -  S(X:n(L + M),..., n(L + M))II2 

<~ (nM)-all2 (A . [(n(L + M) ) d -  (nM)d]) m <~ e/(6A m) (2.5) 

Next, using (2.3) again, 

I(nM) -d/2 IIS(X:n(L + M),..., n(L + M))II2 - (nM) -d/2 IlS( W:n,..., n)llz[ 

<~(nM) d/2.(A.[(n(L + M))d--(nM)d])l/2<~e/(6A 1/2) (2.6) 

Next, by Lemma 1, 

(nM) -d/2 IIS( W:n,..., n)l12 = s .  (nM) -a/2 n a/2 II W0112 

= s . M  -~/2 IIS(X:M, .... M)II2 

for some real number s satisfying 

( 1  - r*(X, L ) )  1/2 ~ ~ (1 + r*(X, L ) )  1/2 

(1 + r*(X, L)) 1/2 ~ s ~ ~ _ r*(X, L)) 1/2 
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Since r*(X, m) <~q,,~ (by assumption), we have 1 --e/(6A) ~<s~< 1 +e/(6A) 
by (2.2). Hence 

I(nm) -a/2 [IS(W:n,..., n ) l l 2 - m  a/2 IIS(X:M,..., m)ll2l 

[e/(6A)] . M -el2 [[S(X:M,..., M)[[2 

[e / (6A)] .  A 1/2 = e/(6A ~/2) (2.7) 

By (2.5), (2.6), and (2.7), 

](nm) -a/2 IIS(X:nM,..., n m ) l [ z -  m -a/2 I]S(X:M ..... m)ll2l <~ e/(2A 1/2) 

Using (a 2 - b 2) = (a + b )(a - b) and the definition of A again, we have 

IF(X, riM) - F( X, M)I <~ (2A v2) - e/( 2A m )  = 

Thus (2.4) holds. This completes the proof of Lemma 3. [] 

Lemma 4. Suppose X := (X~, k ~ Z a) is a CCWS random field for 
which r*(n) -~ 0 as n -~ ~ .  Then lim, _~. F(X, n) exists in [0, ~ ). 

Proof Suppose ~>0.  Again assume E IX o l2 =I .  Using Lemma 3 
with a fixed sufficiently large positive integer M, one has that 
lira, ~ ~ F(X, nM) and lira, ~ o~ F(X, nM) are finite and differ by at most 2~. 
By Lemma 2 and an  elementary calculation, F ( X , n ) - F ( X , N ) ~ O  
as n , N ~ o o  subject to [ n - N I ~ M .  Thus l i m ~ c o F ( X , n )  and 
l i m , ~  F(X,n)  are finite and differ by at most 2e. Since e > 0  was 
arbitrary, Lemma 4 holds. [] 

Proof o f  Theorem 1. Let X := (Xk, k e Z a) denote the random field in 
the statement of Theorem 1. Without loss of generality we assume that X 
is centered. 

Recall the notations in Section 1. For each t ~ T a, define the random 
field X ~t~ := (X~k'): k ~ Z d) as follows: 

V k e Z  d X(k t) :=e--ik';~Xk (2.8) 

For each t~ T a, the random field X ('1 is CCWS, and satisfies E I_g(0')12 = 

E IXol  = and r*(X (n, m ) = r * ( X ,  m). 
From Lemma 4, define for each t ~ T u the nonnegative real number 

f ( t )  := lim F(X (t), n) 
n ~ o o  

By Lemma 3, [ f ( t ) - F ( X  ~'), M)[ converges to 0 uniformly in t e T d as 
M ~  oo. Also, for each fixed M, the function F(X c'), M)  is a trigonometric 
polynomial in the coordinates of t. The continuity o f f  on T a follows. 
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All that remains is to show that f is a spectral density for the random 
field 2(. The argument is standard. Because of dominated convergence, it 
suffices to show that, for each fixed k ~ Z d, 

EXkYo= l im  fTdeik;'F(X (t), M)d#d(t) (2.9) 

If one expands F(X (t), M) as a sum of terms of the form M-dEX)t)X~ t), 
then by (2.8) the integral in (2.9) remains unchanged if one omits all 
ordered pairs (j, l) for which j - l  # k. For each M >~ 1 let Ilk, M denote the 
number of ordered pairs (j, l) with j, I~ { 1,..., M} d such t h a t j - l = k .  By a 
simple calculation the integral is Hk, M" M-dEXk.YO �9 For any given k, by a 
simple calculation, Hk, M �9 M-a--* 1 as M--* o% and hence (2.9) holds. This 
completes the proof of Theorem 1. [] 

Proof of Theorem 2. Again assume X is centered. We first prove that 
( 1 ) 9  (2). Assume (1) holds. Then the existence of a continuous spectral 
density comes from Theorem 1. We retain all of the notations and 
arguments in the proof of Theorem 1. For any given t ~ T d, if Lemma 1 is 
applied to the random field X (t), one sees that inf~> 1F(X ('), n ) > 0 .  This 
forces the (continuous) spectral density f to satisfy f ( t )> 0 for each t ~ T d. 
This completes the proof that (1)=~ (2). 

The proof that (2)=~ (1) is a repeat of well-known tricks. Suppose (2) 
holds. Let f denote the continuous positive spectral density. Suppose S 
and D are finite nonempty disjoint subsets of Z d, and V and W are 
nondegenerate random variables of the form V:=Zk~SakX k and 
W := Y~kE D bkXk where the ak's and bk'S are complex numbers. Multiplying 
by complex constants if necessary, we may assume that II VII 2 = I] Wll 2 = 1 
and that EVff/is real and nonnegative. Define the functions g and h on T d 
by g(t) := Y~k~S ak e~k~ and h(t) := Y.k~D bk elks. Then 1 = E[VI 2 = S [g]2 f 
and 1 = E IW[ 2=  S [hi2 f .  Here the integrals are taken over T d, with respect 
to the measure #dr. Let m and M, respectively, denote the (positive) 
minimum and maximum o f f  on T d. Now S g/~ = 0 and hence 

2 - 2 E V V d = E  I V -  W l 2 = f  lg-h[2 f>~f [g-h l2m 

= f  (Igl2-I - Ihl2)m>~(m/M)f Ig-12+ Ihl2)f=2m/M 

Hence EVI4"<~I-m/M. It follows that r * ( 1 ) ~ l - m / M < l .  The proof 
that r*(n)--*O as n-* oo is already given in Rosenblatt (Ref. 13, p. 73, 
Theorem 7). The key point is that f can be approximated uniformly very 
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closely by a trigonometric polynomial p on T d (with maximum error much 
less than m), and if dist(S, D) is sufficiently large (depending only on p) 
then S g[tp = 0 and EVff/= ~ g h ( f - p )  is very small. [] 

Proof of Theorem 3. Define the random sequence Y:= (Yk, k e Z )  by 
Yk :=e-ikZXk. Then Y is CCWS, and r*(Y, n)=r*(X, n) ~ 0  as n ~ ~ .  
Let A :=A(r*(X, 1), r*(X, 2),...) be as in Lemma 2 (for d = l ) .  Let L be a 
positive integer such that r*(X, L) < 1. Let M be a positive integer such 
that 

(1 - r*(X, L)) 1/2 (1 + r*(X, L)) -1/2 IIS( Y:M)II 2 - (AL) 1/2 Ir Yo[[2 > 0 

(2.10) 

For each positive integer j, define the random variable 

Wj := S ( Y : ( j -  1)(M+ L ) +  1 : ( j -  1) (M+ L ) +  M) 

The random sequence W:=(Wk, k e Z )  is CCWS, with r*(W, 1)~< 
r*(X, L). Using Lemma 1, for each positive integer n one has that 

IIS( Y:n(M + L))II~ 

>i IIS(W:n)ll2- IIS( Y:n(M + Z ) ) -  a(W:n)ll2 

>~ ( i  - r*(X, L)) 1/-~ (1 + r*(X, L)) 1/2 nX/2 II Wol12 - A I/2(nL)1/2 II Yoll 2 

=n ~/2. [L.H.S. of (2.10)] (2.11) 

N o w f ( e  a) = limn _~ ~ F( Y, n) (e.g., as in the proof of Theorem 1 ). This 
forces f (e i~)>0  by (2.10), (2.11), and simple arithmetic. Theorem 3 is 
proved. E5 

3. P R O O F  OF T H E O R E M S  4 A N D  5 

The proofs of these two theorems will use two preliminary lemmas. 

and 

Lemma 5. Suppose r is a real number such that 

0 < r < l  

1 - 4. (2r) a/2 >/�89 

1 + 4. (2r) 1/2 + 3r ~< 2 

(3.1) 

(3.2) 

(3.3) 

(1 + r)Z/(1 - r) 2 ~< 2 (3.4) 
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Suppose X1,.., Xn are identically distributed, centered, real random 
variables with finite fourth moments, such that for any two disjoint subsets 
S, D ~ { 1,..., n } one has p(a(Xk, k ~ S), a(Xk, k E D)) <<. r. Then 

E Xk <<. 24- [-n. E X  4 + n2(EX2) 2] 
1 

Proof. From the proof of Lemma 1 we take the random variables 
W1 ..... Wn, the random sets Q and Q*, the random variables Y and Z, and 
the conventions on the symbols S and S*. Without loss of generality (aside 
from the trivial case EX~ = 0), we asume that EX~ -= 1. 

We shall use the fact that for any two random variables U and V with 
finite (4/3)-norm and 4-norm, respectively, one has 

[EUV--EUEVI <~ [-2 .p(a(U), ~(V))31/2 hlfll4/3 II vii4 

This fact, taken from Ref. 4, p. 355, Theorem 4.1(iv), is a consequence of 
Thorin's multilinear interpolation theorem (Ref. 1, p. 18, Exercise 13). 

Now 

I E l ' r 3 Z l  ~ 2 n~s g(k~sXk)3(k~s. Xk ) 

3 4 <~2-n~ k~S Xk 4 k~S* Xk 
H 4 \ 3 / 4  4 1/4 

~2--n(2r)l/2(~S k~S-~rk4) (~S k~S*Xk4) 
= (2r) m E Y  4 

Similarly IEyZ31 <~ (2r) 1/2 E Y  4. Also, using Lemma 1, 

EY2Z2<~2 -" r.  Xk . X k  + E  E Xk E E Xk 
4 k 4 \kES / \kffS 

<<. rEY  4 + 2 -n ~ [(1 + r)/(1 - r)] 2 (card S)(card S*) 
S 

<~ rEY  4 + n2(1 + r)2/(1 -- r) 2 

Applying Lemma 1 to the centered random variables Uk := X 2 --1 and 
using (3.4) and (3.2), we have 
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3 .  I-r/2 + 2nEXt] ~> 3- In 2 + (1 + r)(1 -- r) 1 nEU~] 

~ > 3 " I n 2 + E ( k ~ l  Uk)2] = 3 ' E ( k ~ l  X~) 2 

E( Y-- Z) 4 ~.~ 2 E Y  4 - 4 IEy3ZI - 4 IEyZ31 
>~ 211 - 4. (2r) m]  E Y  4 >/EY 4 

Hence by (3.3) and (3.4), 

~< 21-1 + 4- (2r)t/2 + 3r] E Y  4 + 6n2( 1 + r)2/(1 - r) 2 

4EY 4 + 12n 2 ~< 24nEX~ + 12n 2 + 12n 2 

Thus Lemma 5 holds. [] 

Lemma 6. Suppose q := (ql, q2, q3,..-) is a nonincreasing sequence of 
numbers in [0, 1 ] such that lim . . . .  qn = 0. Then there exists a positive 
constant B =  B(q) such that the following holds: If X := (Xk, k~  Z a) is a 
CRSS random field for which EX4< ~ and p*(m)<~qmVm >/1, then for 
any finite set S c Z d, one has that 

( 2  )4 E Xk < . B . [ ( c a r d S ) . E X 4 + ( c a r d S ) 2 ( E X ~ )  2] 
\ k E S  / 

Proof Let J be the least positive integer such that Eqs. (3.1)-(3.4) 
all hold with r replaced by qj. Define the constant B : =  2 4 J  4d and proceed 
as in the proof of Lemma 2. 

Now we come to Theorems 4 and 5. We shall prove Theorem 5 first, 
and then at the end just briefly indicate the changes to be made in that 
proof in order to establish Theorem 4. Theorem 5 will be derived via the 
following proposition: 

Proposition 1. Suppose X : =  (Xk, k ~ Z  d) is a CRSS random field 
satisfying the hypothesis of Theorem 5. Suppose that for each n ~> 1, L ~n) is 
an element of N d whose first coordinate is n. Then as n ~ ~ ,  one has that 
IlS(X:Z(")ill~ ~ ,  and that S(X:L('~ 1/2 [IS(X:L(n))[I1] ---' N(0, 1) 
in distribution. 

By permuting coordinates, one obviously has this proposition with the 
condition "first coordinate is n" replaced by, say, "the 37th coordinate is 
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n." Using this and essentially just the definition of limit, one can easily 
derive Theorem 5. Thus to prove Theorem 5 it suffices to prove Proposi- 
tion 1. 

Proof of Proposition 1 (and therefore of Theorem 5). Let the func- 
tion H be as in (1.2). Then t-2H(t)--.O as t--* oo. Let M* be a positive 
integer such that sups>0 t-2H(t)> 1/M*. For each integer n > M *  define 
the positive number t,, := sup{t > 0: t-2H(t)>>- 1/n}. These tn's are standard 
truncation levels in the proofs of the classic CLT for i.i.d, random variables 
satisfying (1.2). The following properties of the tn's are well known: 

t~ = nH(tn)Vn >~ M* (3.5) 

tn ---, m monotonically as n --* oo (3.6) 

n.ElXolI(lXol>t,)=o(nl/ZH1/2(t,)) as n ~ o o  (3.7) 

See, e.g., Ref. 10, Chapter 2, Section 6, or Ref. 3, Eqs. (3.2)-(3.3) and 
Lemma 3.1(b). 

Lemma 7. One has that 

ExnI(IXol ~ t.) = o(nH2(tn)) as n ~ oo 

Proof This is also standard, but let us go through it. Suppose e > 0. 
Using (1.2), let c > 0 be such that Vx >>. c, H(x) - H(x/2) <<. ell(x). 

Suppose n ~> M* is sufficiently large that I n > e. Let J be the least 
positive integer such that 2-st ,  < c. Then 

J - 1  

EX~I(IXo[ <~ t.) <~ ~ (2-#~)z EXgI(2-J-  ~t. < lXo[ <~ 2 Jr.) 
j = o  

+ EX~I(IXol ~< 2 Jt,~) 

J - - [  

<~ t~ ~ 4-J~ .g(2-Jtn)+ EX4l([Xol <~ c) 
j = 0  

<.t2eH(t,,) - ~ 4 J+EX4I(IXol <~c) 
j = o  

= (4/3)~. nHZ(tn) + ExaI(IXo[ <~ e) 

where the last equality comes from (3.5). Since e can be chosen arbitrarily 
small, and (with c chosen depending on e) the very last term is independent 
of n, Lemma 7 follows. 
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For  each n~>l,  the vector L (~) will be represented by L (~):= 
(n, L~),..., L(a~)). For  each n >~ 1 define the positive integer 

I n :=n-L(2 m . . . . .  L~ ') (3.8) 

Fo r  each n>>-M* [see (3.5)3 define the CRSS random field X('~):= 
(X~ "), k E Z a) as follows: 

Y k e Z  a X~'):=XkI([X~I<~t,(,))--EXkI(IXkI<~t~(,)) (3.9) 

Now IEXol(IXol ~ tt(n))l ~ 0 as n ~ ~ (since E ]Xo] < oo and ZXo = 0). 
Consequently 

ElX(on)12..~n(tz(,l) as n ~ o v  (3.10) 

and 

I ,H(tz( , ) )~ElS(X("):L(m)]Z~InH(tr(n)  ) as n ~  (3.11) 

where (3.11) comes from (3.10) and Lemma 1 [using (1.3)]. 
Let  ql,  q2, q3,.., be a sequence of positive integers such that  

q . ~ o o  as n ~ o o  (3.12) 

and 

q , / n ~ O  as n ~  (3.13) 

Let ml ,  m2, m3,.., be a sequence of positive integers such that 

and 

m . ~  as n ~  (3.14) 

mn <<. q.Vn >~ 1 (3.15) 

m n �9 q./n ~ 0 as n ~ ~ (3.16) 

m n ' p * ( X , q . ) ~ O  as n ~  (3.17) 

m.EX4I(IXol <<. t i ( n )  ) -= o(InH2(tx(.))) as n ~ ~ (3.18) 

[T o  justify (3.18), use Lemma 7.] For  each n ~> 1 let pn denote the integer 
such that  

mn(p. - 1 + qn) < n <~ m . (p .  + q.) (3.19) 

Referring to (3.16), let N* be a positive integer such that 

N* ~> M *  and p .  >~ 1Vn/> N* 
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For any n >~ N* and any two integers u ~< v, define the random variable 

r(")(u, v) := S(X(") :u, 1 ..... 1 :v, L (2~),..., L (d ~) 

For each n >~ N*, define the following random variables: 

W~ m := Y(m(1, p.) 

V] ") := Y(")(p~ + 1, p.  + q.) 

W~ ) := Y(~)(p. + q. + 1, 2p. + qn) 

V(2 ") := Y(")(2p. + q. + 1, 2p. + 2q.) 

W~L ) := Y(')((m. - 1)(pn + q.) + 1, m . p .  + ( m . -  1)q.) 

U (") := Y(")(m.pn+ ( m . -  1)q .+  1, n) 

[By (3.15) and (3.19), m . p . +  ( m . -  1)q .<n . ]  Then for each n>~N*, 

m(n) m(n)- 1 
S(X("):L~"))= ~ W(~"~ + ~ V(k") + U ~") (3.20) 

k ~ l  k = l  

Note that n -  [ m n P n +  (mn -- 1)q,] ~<q, by (3.19). By Lemma 1 [with 
(1.3)], (3.8), (3,10), (3.11), and (3.16), one has that 

1 U (n) 2 E m ( -  V(k n)~- ~m.q.L(2 ~) . . . . .  L~)E[X(o'OI 2 
I k = l  

=o(EIS(X(n):L(~))I2 ) as n - -*~  (3.21) 

Hence by (3.20), E lY,~'~="~ W~n)I2~E [S(X("):L("))[ 2 as n ~  ~ .  Hence by 
Lemma 1, (3.12), and (1.3), 

mnEIW]n)I2~EIS(X(~):L("))I2 as n ~  (3.22) 

For each n/> N* define the positive integer Jn :=Pn" L(9 ") . . . . .  L~ ). By 
(3.16) and (3.19), q.=o(pn)  as n ~ ,  and J n ~ I . / m  n as n ~ .  By 
Lemma 6 [using B:=B(p*(X ,  1), p*(X, 2),...)], (3.18), (3.10), (3.11), and 
(3.22), we have that as n ~ ~ ,  

E [ W]n)[ 4 ,~ Jn E IX(on)[ 4 + J2n[E [X(on)12] 2 

<~ J~m~ l lnH2(tz(m) + J ]H2( t i(.)) 

2 2 [E [ W~,)1212 (3.23) 

860/5/2-10 
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Using (3.17), (3.21), (3.22), and (3.23), one can carry out a standard 
blocking argument based on Lyapounov's CLT for arrays of independent 
random variables. See, e.g., Ref. 5, p. 528, Theorem 5.1. One obtains that 

IIS(X~"):L~n))tI~I S(X~"):L~")) ~ N(O, l)  (3.24) 

in distribution as n --> ~ .  As a standard corollary to this, one has that 

(72 /2 )  1/2 IIS(X<n):L<n))III~ IIS(X<n):L~I)[I2 as n ~ ~ (3.25) 

By (3.7) and (3.11), one has that 

E ]S(X: L ~)) - S(X(n):z(n))J : o(II~/~H1/2(t1~,))) 

=o(lIS(X("):L("))ll2 ) as n ~  (3.26) 

By (3.25) and (3.26), 

(zc/2) m IIS(X:L~'))IJl ~ IJS(X ~"):L~"))II2 as n --* ~ (3.27) 

Applying (3.26) and then (3.27) to (3.24), we obtain the conclusion of 
Proposition 1 [since IlS(X:Z<~))l[1 ~ ~ by (3.11) and (3.27)]. This com- 
pletes the proof of Proposition 1 and Theorem 5. [] 

Sketch o f  Proof  o f  Theorem 4. There are positive constants Cl and c 2 
such that VL := (L1,..., La) ~ Nd; one has that 

cl "(L1 . . . . .  Ld) 'EXZ<~EIS(X:L)]2<~cz . (L j  . . . . .  L d ) . E X ~  (3.28) 

The existence of e2 comes from Lemma 2, and the existence of (positive) c~ 
is an elementary consequence of the assumption that the (continuous) 
spectral density f on T d satisfies f(1,..., 1) > 0. (We leave its proof to the 
reader.) As a consequence of Lemma 2 and (3.28), by truncation one can 
reduce the proof of Theorem 4 to the case where the X~'s are bounded. 
Then using (3.28), one can easily carry out the argument of Proposition 1 
(appropriately modified) even if p*(1) = 1. The details are left to the reader. 

[] 
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