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Abstract. A new model for upward transport of buoyant 
fluid released during metamorphism is proposed. The 
model is fluid transport by buoyancy-driven propagation 
of isolated fluid-filled cracks. The mechanical behavior of 
a two-dimensional, isolated, vertical, and fluid-filled crack 
in impermeable rock is investigated using linear fracture 
mechanics and fluid dynamics. The results show that 
steady-state crack propagation which causes long- 
distance transport of the fluid occurs when the vertical 
cross-sectional area of the crack exceeds a critical value. 
Propagation velocity and average thickness of the crack 
under the steady-state propagation regime are expressed 
explicitly by the following seven parameters: vertical crack 
length; rigidity, Poisson's ratio, and fracture toughness of 
the rock; fluid viscosity; density difference between the 
rock and the fluid; gravitational acceleration. An isolated 
H20-filled crack of vertical length 100 m, for example, 
propagates upwards in the crust at ~ 0.3 m/s with the 
average thickness ~ 0.2 mm when the following likely 
values are assumed: 0.1 mPas for the H20  viscosity; 
3 MPa m 1/2 for the fracture toughness of the crustal rock. 
The application of the obtained results to the transport of 
H20 released during metamorphism suggests that the 
number density of isolated cracks propagating in the crust 
is very low. Since the propagation velocity is high, our 
model is suitable particularly for fluid transport through 
hot quartz-rich rock where fluid-filled cracks have geo- 
logically short lifetimes. 

spread occurrence of quartz and calcite veins in meta- 
morphic belts suggests that fluid flow through highly 
localized open channels (veins) made by hydraulic fractur- 
ing can be an important mode of fluid migration (Fyfe 
et al. 1978). The fluid transport by hydraulic fracturing 
occurs when rock becomes tess permeable by, for example, 
syntectonic recrystallization (Yardley 1986). Bailey (1990) 
also showed that the hydraulic fracturing mode was more 
dominant than the permeable flow mode above the 
brittle-ductile transition zone of the continental crust (this 
was because the thermally activated permeability was low 
owing to the low temperature). Walther and Orville (1982) 
and Walther and Wood (1984) discussed fluid transport 
by hydraulic fracturing. They considered fluid flow 
through stationary open cracks (veins) fractured hydrauli- 
cally. A new model to deal with propagating (i.e. non- 
stationary) fluid-filled cracks is proposed in the present 
paper. In the new model upward fluid transport results 
from the buoyancy-driven propagation of isolated fluid- 
filled cracks. This model is applicable to impermeable or 
less permeable situations (e.g. upward fluid transport to 
the Earth's surface from a region where fluid is being 
released by metamorphism through overlying imper- 
meable cap rock). To develop the model, statics and 
dynamics of an isolated fluid-filled crack in rock are 
considered using linear fracture mechanics and simple 
fluid dynamics. Notation is listed in Table 1. 

Introduction 

Aqueous fluid is released in the crust (Fyfe et al. 1978) and 
mantle (Tatsumi et al. 1986; Finger et al. 1989) by meta- 
morphic dehydration. The released fluid migrates upward 
because its density is lower than the surrounding rock. 
Bickle and McKenzie (1987) and Connolly and Thomp- 
son (1989) studied fluid migration quantitatively assuming 
permeable flow through uniformly distributed preexisting 
microcracks and pores in the rock. However, the wide- 

Statics 

Static stability of a crack in rock after fluid (H20, CO2, 
magma, molten iron etc.) injection is examined in this 
section. The crack is termed "stable" in this paper when 
neither closure of the crack nor fracture of the rock occurs. 
The problem of the static stability of an isolated fluid- 
filled crack was investigated by Weertman (1971a), Secor 
and Pollard (1975), Pollard (1976), and Maaloe (1987). 
However, an important problem, the behavior of an un- 
stable crack, has not been addressed. The major purpose 
of this section is to solve this problem. 
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Table 1. Notation list 

Quantity Meaning 

2a 
A 
b 
B 
e 

f 
Fbuoy 
Felast 
Fvis 
g 
G 
2h 
H 
2hAy 
K 
Kc 
N 
P 
Pox 
Po 
P1 
V 
X 
y 
Y 
Pl 
P, 
6p 
n 
V 

Vertical crack length 
Dimensionless a 
Vertical cross-sectional area of a crack 
Dimensionless b 
Parameter of a crack shape 
Upward fluid flux 
Total buoyancy of fluid in a crack 
Total elastic support by rock deformation 
Total viscous support by fluid motion 
Gravitational acceleration 
Rigidity of rock 
Crack thickness 
Dimensionless h 
Average crack thickness 
Stress intensity factor at a crack tip 
Fracture toughness of rock 
Number density of propagating cracks 
Pressure 
Excess pressure in fluid 
Excess pressure at a crack center 
Excess pressure gradient in fluid 
Propagation velocity of a crack 
Horizontal coordinate 
Vertical coordinate 
Dimensionless y 
Density of fluid 
Density of rock 
Pr--Pf 
Viscosity of fluid 
Poisson's ratio of rock 
Viscous shear stress on a crack wall 

Consider a two-dimensional, preexisting, and vertical 
crack which is isolated from a fluid reservoir and has 
a vertical length of 2a, The crack is injected with a volume 
of fluid, so that the cross-sectional area is b (Fig. 1). We 
analyze the mechanical stability of the crack (specified by 
a and b) after the fluid injection. Initiation problems (i.e. 
how a crack of length 2a forms and how the crack is 
injected with fluid from a fluid reservoir) are not con- 
sidered in the present study; they have been treated by 
Nishiyama (1989) and Y. Nakashima (submitted). 

The following assumptions are made for the analysis: 
(i) the rock is isotropic, homogeneous, impermeable, and 
elastic; (ii) the fluid is homogeneous and incompressible; 
(iii) the pressure field P(x ,  y) in the rock is lithostatic 
before the fluid injection; (iv) the rock is governed by 
linear fracture mechanics of plane strain (effects of plastic 
deformation of the rock are neglected); (v) the crack is 
deep in the Earth (effects of the Earth's stress free surface 
are ignored); (vi) there are no chemical reactions or phase 
transitions (effects of stress corrosion cracking and solidi- 
fication of the fluid are neglected); (vii) the interfacial 
energy between the rock and the fluid is small compared 
with the buoyancy of the fluid. 

The assumption (iii) leads to Eq. (1): 

P(_ o%y) = P(+ oo,0) - orgY (1) 

for -- oo < y < oo where Pr and g denote the density of 
the rock and the gravitational acceleration, respectively. 
Equation (1) remains valid even after the fluid injection 

Pc, rock 

2a 

Fig. 1. Vertical cross section of an isolated fluid-filled crack in rock. 
The half thickness, h, is exaggerated in comparison with the vertical 
crack length, 2a. After the fluid injection, the vertical cross-sectional 
area (b) remains constant. The origin of the x-y coordinate system is 
located at the crack center. The stress on the crack wall consists of 

(shear stress) and Pc~ (normal stress), The direction of the gravity is 
the negative y direction 

into the crack. Since the fluid in the crack is static, the 
pressure field P in the fluid is given by 

P(O, y) = P(O, O) - Orgy (2) 

for - - a < y < a  where Pl is the density of the fluid. 
Therefore the excess pressure Pex which causes the defor- 
mation of the crack wall is derived from (1) and (2): 

Pex(Y) = P(O, y) - P( + oo, y) = Po + aogy (3) 

for -- a < y < a where Po = Pox(0) = P(O, O) - P ( +  oo, O) 
and 89 = 9 r -  9/. Although 89 is positive for the fluid 
release during metamorphism, negative a0 cases are also 
considered as a generality in this section; Stolper et al. 
(1981) suggest that basic melt generated in the deep 
mantle becomes denser than residual peridotite. The 80 is 
also negative for the Earth's core formation by the propa-  
gation of cracks filled with molten iron (Stevenson 1981). 

According to Weertman (1971a), Secor and Pollard 
(1975), and Maaloe (1987), the half thickness h(y)  of the 
crack caused by the linear excess pressure Pex(Y) is given 
by 

2Po J (4) 

for -- a < y < a where v and G denote Poisson's ratio and 
rigidity of the rock, respectively [in the case of plane 
stress, the coefficient (1 - v) in (4) should be replaced with 
(1 + v ) - l ] .  It is convenient to introduce a non- 
dimensional half thickness H and vertical coordinate 
Y: h = H(1 - v)aPo/G and y = aY.  As a result Eq. (4) can 
be rewritten as 

H(Y) = ,/1 - y2(1 + eY) (5) 

for - 1  < Y <  1 where 

8pga 
e = (6) 

2Po' 

Equation (5) shows that the non-dimensional number e is 
the only parameter  which governs the crack shape. The 



vertical cross-sectional forms of the crack for e = 0, _+ 0.5, 
_+1, and _+3 are shown in Fig. 2. When l el > 1, the 

solution (5) is not physically real because the crack walls 
overlap one another. Thus the stability condition against 
the overlap is 

lel-< 1, (7) 

Another condition for stability arises from linear frac- 
ture mechanics: the stress intensity factor K at a crack tip 
cannot exceed a critical value Kc. The Kc value is a charac- 
teristic quantity of a brittle material and termed "the 
fracture toughness of mode I". The stress intensity factors 
at the upper (y = a) and lower (y = - a) crack tips are 
given by Secor and Pollard (1975) and Ishida (1987): 

Ky= +a = P o ~  -+ 892 ga x / ~ -  (8) 

Different conventions are used by other authors for K, 
which differs by the factor rc 1/2 or (2~r) 1/2. If the fracturing 
of the rock at the crack tips is to be avoided, the following 
condition must be satisfied: 

K~. = +.  _< K~. (9) 

As a result two conditions (7) and (9) for the static stability 
are obtained. 

Since the fluid is considered to be incompressible, the 
cross-sectional area b (two-dimensional volume of the fluid) 
must remain constant during fracturing of the rock and/or 
crack closure. Thus it is useful to express b by (I0): 

b = 2 h ( y ) d y  - ~ P o a  2. (10) 
- a  

Quantities a and Po will vary and be related to each other 
by (10) during fracturing and/or crack closure. Let us 
make an approximation that the crack shape is a rectangle 
(length 2a, thickness 2hAv). Since the area of the rectangle 
equals b, the average half thickness hAv of the crack is 
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given by 

b 
hAv = �9 (11) 

4a 

The stability criteria can now be expressed in terms of 
a and b by the substitution of (6), (8), and (10) into (7) and 
(9) to obtain: 

b > (~G~) ~lSOba32 (12.1) 

Introducing the non-dimensional half length A and the 
non-dimensional area B of the crack, we rewrite (12.1) and 
(12.2) as 

B >_ A 3 (13.1) 

B < Ax/A(1 _+ Ax /A  ) (13.2) 

where 

ax/a = 2K~ ,-  
= - -  A~x/ A (I4.1) 

b=2(l-v~ K2 B. (14.2) 
160tg 

The stability conditions (7) and (9) are now represented by 
two inequalities (13.1) and (13.2). The substitution of (6), 
(14.1), and (14.2) into (10) yields 

A 3 
B = --. (15) 

/el 

The described statics are summarized in Fig. 3 as 
a stability diagram. It should be noted from the figure that 
the upward (downward) steady-state crack propagation 
driven by the positive (negative) buoyancy of the fluid 
occurs if B > 0.25. 

0 ? 
(a) e=0 (b)e=0.5 (c) e=l (d) e=3 

(e)e=-0.5 (f)e=-i (g)e =-3 

Fig. 2a-g. Cross-sectional shapes of a static crack for various values 
of e. Calculated by (4). The horizontal scale is exaggerated. The 
overlapped parts of the crack walls due to negative h(y) are shaded: 
a Ellipse; b Pex(- a) = 0; c cusped at the lower crack tip; d overlap 
near y = - a; e Pex(a) = 0; f cusped at the upper crack tip; g overlap 
near y = a 

Dynamics 

When the non-dimensional cross-sectional area B of 
a fluid-filled crack is greater than 0.25, the crack will 
migrate through the rock. Although Weertman (1971b), 
Maaloe (1987), and Takada (1990) studied the buoyancy- 
driven propagation of an isolated crack, the dynamics 
have not been elucidated. The purpose of this section is to 
describe the propagation dynamics of an isolated fluid- 
filled crack whose B is greater than 0.25. The propagation 
velocity V, the average half thickness hay, and the vertical 
cross-sectional area b will be represented by means of the 
half length a. 

Consider a two-dimensional isolated vertical crack 
propagating in rock (Fig. 1). The assumptions in addition 
to (i)-(vii) of the previous section are as follows: (viii) the 
upward steady-state propagation driven by the positive 
buoyancy of the fluid is assumed [89 > 0 and the crack 
propagates upward at a constant speed V and a constant 
shape h(y)]; (ix) the fluid is homogeneous and Newtonian 
(effects of fluid degassing near the crack tip are neglected); 
(x) the fluid flow is a steady laminar flow between two 
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Fig. 3. Stability diagram of a two-dimensional, isolated, vertical, 
and fluid-filled crack. Heavy solid parabolas are drawn by (13.1) and 
(13.2). The B~A plane is divided into six regions by the heavy solid 
parabolas and lines: one stable region, shaded; three regions, R ~, R 2, 
and R3, where transient fracturing or shrinkage occurs; one region, 
R4 where steady-state propagation occurs; one region, R 5, which is 
not realizable. The following points can be made: (1) A crack in the 
stable region neither propagates nor shrinks because all stability 
conditions (13.1) and (13.2) are satisfied. Equation (15) for e = _+ 0.5 
is plotted for reference by a dotted parabola. (2) Shrinkage of the 
crack length occurs in the region R~. For example, suppose a situ- 
ation of point Pj achieved for an instant by fluid injection. The state 
Ps is unstable because lel > 1. Thus the following phenomenon 
occurs. If ~9 is negative (positive), the crack is squeezed at the upper 
(lower) crack tip and shrinks. The state of the crack shifts along the 
indicated arrow keeping B constant. The crack ceases shrinking after 
the state of the crack reaches the parabola of e = - 1 (e = 1). The 
crack remains stationary after this transient shrinkage. (3) Elonga- 
tion of the crack length by fracturing takes place in the regions of 
R 2 and R3. If the state of point P2 is given as an initial condition by 
fluid injection, the following will occur because P2 does not satisfy 
(13.2). The crack elongates both upwards and downwards keeping 
B constant while the state of the crack is located in the region R 2. 
After the state of the crack enters the region R3, the crack elongates 
only from the upper (lower) crack tip if 6p is positive (negative). The 
elongation ends when the state of the crack arrives at the margin of 
the stable region. This instability is also transient. (4) Steady-state 
crack propagation occurs when B > 0.25. The state P3 is unstable 
and shifts along the arrow to reach the dash-dotted line of equation 
(23). Since there is no stable solution for a crack of B > 0.25, the 
crack propagation is not transient but permanent. (5) The region 
R s is not realizable. This is because it is out of the shaded "stable" 
region and the line (23) does not enter R 5. Consider an example of 
crack growth by consecutive fluid injection into an infinitesimal 
crack. The state of the crack starts from (B, A ~.5) ~ (0, 0) and shifts 
along the parabola (B = A ~5 - A 3) to reach (B, A Ls) = (0.25, 0.5). 
Further fluid injection will lead the crack to the regime of the 
steady-state propagation (the state will shift along the line (23)). 
Consider another example (crack shrinkage by consecutive fluid 
extraction from a largest stable crack). The state of the crack starts 
from (B, A 1'5) = (0.25, 0.5) and shifts along the parabola (B = A 3) to 
reach (B, A LS) = (0,0) 

parallel walls (plane Poiseuille flow approximat ion  by 
Weer tman  1971 b). The critical value of the Reynolds num- 
ber 1.59/Vhav/rl (q is the fluid viscosity) for the laminar 
regime is about  6,000 (Nishioka et al. 1975). 

It follows from (x) that the excess pressure Pc, within 
the moving fluid is linear with respect to y: 

Pex(Y) = Po + P1Y (16) 

where Po and P1 are unknown constants  and for 
- a < y < a. Thus crack shape h(y)  and stress intensity 

factors K at y = __ a are given by (17) and (18). 

/ l - v \  ,2 f l ( 1  P'Y\  

, '<y= + a = P o J ' ~ +  P,a / - -  _ _ ~ - v r ~ a .  (is) 

The assumption (viii) requires that  the crack propagates  
steadily by fracturing the rock at the upper  crack tip and 
by closing the crack at the lower crack tip. Thus the stress 
intensity factors at the crack tips satisfy (19) and (20): 

Ky_, = Kc (19) 

K,= _o = 0. (20) 

Equat ion  (20) indicates that  an ascending crack has a cus- 
ped tail which already appeared in (c) and (f) of Fig. 2. 

F r o m  the assumption (v), it follows that the rate of the 
crack propagat ion  will be controlled by the rate with 
which the fluid reaches the crack tip. Therefore V is 
controlled by a Poiseuille flow between parallel walls: 

v h~v,~ = - ~ - t o p g  - P, ). (21) 

In the above equations, unknown  quantities are Po, 
P1, b, hay, and V. They are expressed explicitly by com- 
bining (10), (11), and (18)-(21): 

K< 
Po - (22.1) 2d;  

K< 
P1 - __ (22.2) 

a N/~a 

(1- v~K<ax/~ 
b = \ ~ - j  7 (22.3) 

(1- 
hAy = \ ~ - / #  ~ (22.4) 

1 [ 1  - -  V ~  2 2 (Spg Kc 
V : )92rl t ~ - - )  K< xa \ a ~ a a )  (22.5) 

for 
2 

- ' , ~ 0 0 , j W  

(i.e. for A l"s >_ 0.5 or  B > 0.25). The crack profile h(y)  is 
given by (22.1), (22.2), and (17). The substi tution of (14.1) 
and (14.2) into (22.3) yields non-dimensional  equat ion (23) 
which is plotted in Fig. 3: 

B = A ~/5 (23) 
2 

T w o  p o i n t s  a re  n o t e d  f r o m  t h e  r e s u l t s  ( 22 .1 ) - ( 22 .5 ) :  
(1) When  the crack is s tat ionary (i.e. V = 0), P1 = 6pg. As 
V increases, P1 decreases. Thus the assumption that  
P~ = ~pg (Maaloe 1987) in a propagat ing  crack is invalid. 
(2) Parameters  hAy and V depend on K~ essentially when 
a fluid-filled crack is isolated from a fluid reservoir. In 
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contrast to the isolated case, Lister (1990) found their 
independence from Kc when a crack propagates maintain- 
ing massive fluid injection from a reservoir. This is an 
essential contrast caused by connection with a reservoir. 

The total buoyancy Fbuoy of the fluid confined in the 
crack is given by (24) using (22.3): 

The total elastic support F ~ t  by the surrounding rock is: 

Fe,a~,: - 2 -~(P~ + P'Y) ~y d y : \  G ] 2 (25) 

where h(y) is given by (17). Considering a Poiseuille flow 
approximation, we obtain the total viscous drag force F~ :  

F,~=2 -~vdY=\~G-- /  2 \ G / 2 (26) 

where z is the viscous shear stress applied on the crack 
wall. Equations (24), (25), and (26) satisfy the following 
force balance: 

Fbuoy = F~,~, + F~i ~ . (27) 

Equation (27) shows that total buoyancy of the fluid is 
exactly equal to the sum of (1) the elastic stress caused by 
the deformation of the crack wall and (2) the viscous drag 
force generated at the crack wall. The force balance is 
satisfied although the simple approximation (x) for the 
fluid flow is made. 

The contributions of F~l~t and F ~  to Fb~oy are cal- 
culated by (14.1), (24), (25), and (26): 

Fbuoy 2Ax/~ (28.1) 

F~ 1 
- 1 - -  (28.2) 

Fb.oy 2A x/A 

for A 1.5 > 0.5. Equations (28.1) and (28.2) are the fractions 
of the respective forces with respect to the total buoyancy 
force. They show that the viscous contribution (28.2) be- 
comes more dominant with increasing A (i.e. with increas- 
ing V). 

Discussion 

Results obtained in the previous section will be applied to 
the upward transport of H20  released during metamor- 
phism. We assume G = 4 4 G P a ,  g = 9 . f m / s  2, and 
v = 0.25. These values are estimated by Dziewonski and 
Anderson (1981) for the crust (depth 15.0-24.4km). 
Values for pf and 59 are taken to be 1,000 kg/m 3 and 
2,000 kg/m 3, respectively. Atkinson and Meredith (1987) 
reviewed experimental Kc data acquired under low tem- 
peratures (room temperature ~ 700 K) and low confining 
pressures (0-100 MPa): for example, Kc of basic rock 
ranges from 0.84 to 3.75 M P a m  tn. On the basis of this 
review, 3 and 0.3 M P a m  ~n are taken as the upper and 
lower limits on Kc. The upper and lower limits of the HzO 
viscosity n are taken as 1 and 0.1 mPas, respectively 
(Walther and Orville 1982). 

The largest possible stable crack filled with H20 must 
satisfy (B, A 1'5) = (0.25, 0.5) as shown in Fig. 3. By the 

substitution of (B, A 1'5) = (0.25, 0.5) and the assumed 
physical parameters into (14.1), (14.2), and (11), the para- 
meters 2a and 2hAy are found to be 8.4-39m and 
0.0046-0.1 mm, respectively. The spread of the calculated 
values comes from the ambiguity of Kc. If the crack is not 
vertical but inclined at an angle 0, in the calculation of 2a 
and 2hAy, g in (14.1) and (14.2) should be replaced with 
g cos 0. The currently accepted hypothesis for vein forma- 
tion in low-grade metamorphic rock is the crack-seal 
mechanism (repeated formation of veinlets formed by 
mineral precipitation in a stable fluid-filled crack) by 
Ramsay (1980). Suppose that a stable vertical crack is 
formed by a horizontally tensile tectonic stress. The crack 
is injected with fluid derived from the surrounding rock 
and mineral precipitation starts in the crack to form 
a veinlet. If the crack grows to satisfy B > 0.25, the fluid 
will escape from the crack by the buoyancy-driven propa- 
gation. Since the crack will be closed by this fluid escape, 
no further precipitation will occur. Thus our crack model 
suggests that the typical thickness of the veinlet is less than 
2hAv of the largest stable crack. Ramsay (1980) and Cox 
and Etheridge (1983) reported that the typical thickness of 
each veinlet was 0.01-0.04 ram. The reported value may 
be a consequence of the static stability of an isolated 
fluid-filled crack. 

Propagation velocity V and average half thickness 
hAv of an isolated HzO-filled crack are shown in Figs. 
4 and 5. Two points are illustrated in these figures: 
1. The propagation velocity is high: for example, V 
for a = 50m ranges from 0.41mm/s = 35m/day to 
0.32 m/s = 28 kin/day. The high velocity suggests that 
propagation of HzO-filled cracks could be effective in 
upward H20 transport during metamorphism. 
2. The propagating crack is thin: the smallest 
hAv ( a = 4 . 2 m  and K c = 0 . 3 M P a m  in) in Fig. 5 is 
2.3 x 10 3 ram. Even the smallest is substantially wider 
than the minimum width (10-Smm) estimated by 
Walther and Orville (1982). 

1o I . . . . . . . . . . . . . . . . . . .  

~-gag~. ~ . 

ld 3 ~ ~9~ 

i0 . . . . . . . . . . . . . . . . .  3 
i i0 i0 z i0 

a ,  ITI 

Fig. 4. Steady-state propagation velocity V calculated by (22.5). 
Light curves, Kc = 0.3 MPamln; heavy curves, Kc = 3 MPam in. 
The H20 viscosity is indicated. Equation (22.5) breaks down on the 
dotted curve because the Reynolds number exceeds the critical value 
(6,000) 
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-3  
10 

< 

zo ~ 

id 5 

i i0 10 2 i0 ? 

a, ITI 

Fig. S. Average half thickness hay calculated by (22.4). Kc is in- 
dicated. Equation (22.4) breaks down on the dotted lines because the 
crack is stationary (i.e. B < 0.25) 

Our model can deal with fluid transport through im- 
permeable rock where permeable flow models are useless. 
Consider impermeable cap rock overlying a dehydration 
zone where H20 is being released. Free H20 is trans- 
ported at a constant flux f from the dehydration zone to 
the Earth's surface through the cap rock. The number 
density N of isolated HzO-filled cracks propagating in the 
cap rock can be estimated by our model. The following 
assumptions are made for simplicity: (1) the released H 2 0  
is transported in the cap rock by a group of H20-filled 
cracks of uniform vertical length 2a; (2) no mechanical 
interaction between cracks (e.g. collision) occurs. On the 
basis of the law of mass conservation, N is expressed by 

f U - (29) 
bVoi 

where b and V are given by (22.3) and (22.5), respectively. 
The number density N is plotted against f i n  Fig. 6. The 
flux f caused by dehydration was estimated at 
9 . 4 x l 0 - g k g / m 2 s  (Walther and Orville 1982) or 
2 --~ 7 x I0-10 kg/m 2 s (Connolly and Thompson 1989) for 
regional metamorphism and at 6.6 x 10 -9 kg/m 2 s (Wal- 
ther and Wood 1984) for contact metamorphism. As for 
the dehydration of subducting slabs, the typical f ranges 
from 3 x l 0 - 9 k g / m 2 s  to 3 x l 0 - S k g / m 2 s  (Peacock 
1990). Since N depends on a and Kc strongly as shown in 
Fig. 6, it is diffficult to estimate N precisely. However Fig. 6 
suggests that the number density of HzO-filled cracks 
propagating in the crust is very low. This is a consequence 
of high V and the low production rate of H20.  

Our model is suitable particularly for the fluid trans- 
port through hot quartz-rich rock where fluid-filled cracks 
have geologically short lifetimes. Fluid-filled cracks in hot 
rock change their shapes by healing driven by the inter- 
facial energy between the rock and the fluid (Roedder 
1984). This crack healing results in the formation of 
secondary fluid inclusions in planar arrays. Smith and 
Evans (1984) carried out healing experiments of fluid-filled 
microcracks in quartz; the results indicate that the healing 
of fluid-filled microcracks in quartz ends within geologi- 

10 

10 

~_~ 161 

z" 
10 5 

10 9 
10 'o 16 9 16 8 16 7 16 6 

f, kg/ s 
Fig. 6. Number density N calculated by (29) for q =0.1mPas. 
Light lines, Kc = 0.3 MPa m 1/2; heavy lines, Kc = 3 MPa m in. The 
uniform vertical length 2a is indicated. The ranges of fcalculated by 
dehydration models for subducting slabs (Peacock 1990) and for 
regional metamorphism (Connolly and Thompson 1989) are shown 
by the shaded bands 

cally short time (e.g. a few days) at temperatures of about 
500 K or greater. Thus it is difficult to transport massive 
fluid by permeable flow through stationary fluid-filled 
microcracks in the deep quartz-rich crust. On the other 
hand, our propagating crack model can transport massive 
fluid through such hot rock. For example, consider 
a propagating fluid-filled crack of a = 50 m; The duration 
of the contact of the fluid and a portion of the surrounding 
rock is 2a/V which is estimated at 5 minutes - 3 days from 
Fig. 4. The estimated duration is much shorter than (or 
comparable to) the characteristic time for healing. Hence 
probably the crack healing is not effective in a fast 
propagating crack (if the healing is effective, the single 
long crack of a = 50 m will be divided into numerous fluid 
inclusions isolated from one another and cannot propa- 
gate). The model presented in this paper gives a physical 
basis for the upward fluid transport through hot quartz- 
rich rock. 
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