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Generalized One-Sided Laws of the Iterated 
Logarithm for Random Variables Barely 
with or without Finite Mean 
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The almost sure limiting behavior of weighted sums of independent and 
identically distributed random variables barely with or without finite mean are 
established. Results for these partial sums, 

n 

k~Xk, a~R 
k - - ]  

have been studied, but only when c~ = - 1  or a = 0. As it turns out, the two cases 
of major interest are c~= - 1  and a >  - 1 .  The purpose of this article is to 
examine the latter. 

KEY WORDS: Law of the iterated logarithm; strong law of large numbers;  
slow variation; weak law of large numbers.  

1. I N T R O D U C T I O N  

Throughout, {X, Xn, n/> 1 } will be i.i.d, unbounded asymmetrical random 
variables with larger right tail than left. We will explore the almost 
sure limiting behavior of weighted sums of these random variables when 
strong laws fail. In Adler and Rosalsky (1) the authors showed that if 
{X, Xn, n/> 1 } are i.i.d, nonintegrable random variables and {a,, n >~ 1 } are 
constants satisfying 

[ak] =O(n l a . ] ) a n d  n [a.[T (1.1) 
k = l  
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then 

k ~ l  

for all sequences { b , ,  n i> 1 }. 
On the other hand if (1.1) fails, then a s t rong law can exist; see 

Adter. (2) The  impor t an t  point  here is that  those r a n d o m  variables are 
barely with or  wi thout  finite means. Here we unite these two ideas. This is 
accomplished by examining weights where (1.1) holds and r a n d o m  
variables of the type that  can be found in Adler(2); see Sec. 4 of this paper.  

These interesting r a n d o m  variables were also studied by Klass  and 
Teicher. (3) M a n y  of the results obta ined here owe much  to the work  of 
these two men. Fur thermore ,  some of the propert ies  used freely here can be 
found in Klass and Teicher. (3) This allows us to omit  details at times. 

A few remarks  abou t  nota t ion  are needed. The symbol  C will denote  
a generic finite constant  which is not  necessarily the same in each 
appearance.  Also, let log x = loge(max {e, x})  and log2 x = log log x. 

2. P R E L I M I N A R I E S  

As in Klass and Teicher (3) let 

and 

Also, set 

f i ( x ) =  P { I X l > t } d t  provided E[X[  < oo 

/~(x) = P{[X[>t}d t  when E]XI  = oo 

Cx= when E IX[ < oo 

and 

Cx = when E IXI = o0 

Thus, c ,  = nfi(cn) if E IXl < 0o and c, = np(c , )  if E IXI = oo. 
We consider weights of  the form a,, = n ~, n/> 1. In Adler 12) we studied 

the behavior  of  our  part ial  sum, Sn = ~22= L akXk, n ~> t,  when c~ = --1. The  
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question at hand is what happens when e ~ - 1  and either #(x) or/~(x) is 
slowly varying at infinity. In Theorem 1 it is shown that if c~ < -1 ,  then 
S~/b, ~ 0 a.s. for all sequences {b,, n/> 1 } with the property that lb,[ --, oo. 
Owing to the fact that the random variables under consideration possess 
all moments less than unity, we present the following theorem. 

Theorem 1. Let {X,X~,n>~I} be i.i.d, random variables 
E IXI p < oo for all p < 1. If c~ < -1 ,  then S~ converges almost surely. 

Proof Note that 

with 

lk~X~l = ~ k s IXkl I(IXkl ~ k 2 ) +  ~ k ~ jXk] I(IXkl > k  2) 
k = l  k = I  k = l  

The second term is almost surely finite, via the Borel-Cantelli Lemma, 
since E tX[~/2< oo. On the other hand, the first sum is finite (a.s.) since 

< - 1  and 

k 

E ~ k ~ IXk] I(IXk[ ~k2) = ~ ~+ k~E ]X] I ( ( j -  1)2< IX] ~<j2) 
k ~ l  k = l j = l  

~ k=E IXl I ( ( j -  i)2 < IX] ~ j ) = ~ .2 

j = l  k ~ j  

<~ C ~ f f+ 'E  IX[ I ( ( j -  1) 2 < IXl ~<j2) 
j = l  

<~ CE IYl r(~+3)/~+ < oo E3 

Next, we turn our attention to the situation of ~ > -1 .  We choose as 
our norming sequence, bn = n~c,, n >~ 1. We need not only bn T 0% but also 
b,(log2n) 21"oo. In the non-L1 case, since c,/nToo, this is quite clear. 
However, this is not so apparent in the other situation. 

Lemma 1. nPc, is eventually increasing (to oo) for all p > -1 .  

Proof The only case of interest is p ~ ( - 1, 0) and E JJ(I < oo. 
Due to the fact that the slow variation of fi implies that fi(cn) is slowly 

varying it follows that nPc, = n ~+ 1Ft(e,)--, oo. 
Noting that xP{ IX] > cx} = o(1), we choose x < y < x + 1 sufficiently 

large, so that 

(y/x) p 
1 + yP{[X[ >c~} > - p  



590 Adler 

By virtue of the mean value theorem, there is a z e (x, y) such that 
(yP - xO)(y - x )  - 1 = pz p - 1, whence 

y P  - -  X p 

y - x  
- -  >~ px  p-1 (2.1) 

Since 0 < Cx T ov 

~(Cy)- f i (Cx)  ~ P { [ X [ � 9  d t - I ~  ~ P { I X l � 9  dt 

Cy - -  C x Cy - -  C x 

--I;: P{ IX[ > t} dt 
= >~ - P { I X [  >Cx} 

Cy - -  C x 

Using (2.2) and the fact that c~ = x~(cx) we observe that 

(2.2) 

Cy - -  C x __ y f i (  Cy ) - -  X f i (  Cx ) 

y - x  y - x  

k Cy-Cx  J k y - x j  

\ y - - x ~  

Therefore 

Cy - -  Cx ~ X -  1C x 

y - x  l +  y P { [ X l > c x }  
(2.3) 

Combining (2.1) and (2.3) we conclude that 

y P C y - - X P O x  / C  - - r  ( y P - - x P )  
- y ' , U  y ~ x l +  Cx 

y - - x  \ y - - x . , ,  \ y - - x  / 

y ' , x  IC x 
>~ + p x ' , -  a c x 1 + yP{Ixl >cx} 

[(y/x)" ] 
= x  p :~cx . l + y p { l X l > c ~ }  + p  > 0  

This shows that for all large values of x and y, yPCy > x',Cx. [] 
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As in Klass and Teicher (3) we first establish weak laws, which allow us 
to make conclusions about the almost sure limiting behavior of particular 
subsequences of S,/b,. 

Lemma 2. Let {X, X,,  n >~ 1 } be unbounded i.i.d, random variables 
with fi or # slowly varying according as E IX1 is finite or infinite. Suppose 
further that either E(X-/~(X-))< ~ or E(X-/#(X-))< ~ holds in the 
respective cases. If ~ > -1 /2 ,  then 

S_~ e ~ ' - ( ~ +  1) 1 when EX=O 
bn ~ ( ~ + 1 )  - j  when E I X I = ~  

Proof In either case cn/n is slowly varying and nP{ IXI > cn} = o(1),  
whence we conclude, via Adler and RosalsKy," (4) that 

S~_:lk=[Xk-EXI(lX[ ~<c~)] p 0 
b, 

Note, in the mean zero situation, that EXI(IXI~cn)= 
-EXI([X[ > On) = --[1 + o(1)]/~(c,),  whence 

bn I ~ k~EXI(IX[ <. c~) 
k = l  

=-[l+o(1)]~(c~)(n~cn) ~ ~ k~-~-(~+1) -~ 
k = l  

In the other case, the conclusion obtains in similar fashion due to the 
fact that EXI(IXI <~ c,) ~ p(c,). [] 

We are now ready to state and prove our main results. 

3. M A I N  RESULTS 

Theorem 2. Let {X,X~, n>~l} be i.i.d, random variables with 
E ]XI = ~ and E(X-/I~(X )) < ~ .  If #(x) -,~ #(x log 2 x), then 

liminfSn/b~=(c~+ l) -1 a.s. (3.1) 
n ---> ~ 

and 

lim sup S,/bn = ~ a.s. (3.2) 
n ~ c o  

whenever c~ > - 1 .  
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Proof F r o m  L e m m a  2 we observe that  lim inf. ~ ~ S~/b, <~ (~ + 1)- 
a.s., if e > - 1/2. 

Let c~ E ( - 1, - 1/2] and ~ > 0. Note  that  for all a > 0 if n is sufficiently 
large, then i~(eb,/k ~) <~ 2#@,) for all k = 1,..., n. Also, the slow var ia t ion of 

implies that  2xP{lX[>x}<~6e(c~+l)l~(x) for all large x. Then for all 
large n 

P{IX[>eb./k~} <<.6(a+ l)#(c.)b21 ~ k~ ~6 
k = l  k = l  

Using the fact that  EX2I(lXl<~x)=o(xp(x)) we have for all large x, 
EX2I(IXI <~ x) <~ ~(c~ + 1) x~(x). Hence for all large n 

b; 2 ~ k2~EX2I(]Xl<~b./k~)<~b(a+l)b# ~ i k~#(bn/k~) 
k = l  k = l  

<~6(~+l)#(c.)b2 ~ ~ k~--,6 
k = l  

Therefore,  via the degenerate convergence criterion (Chow and Teicher, (5~ 
p. 338), S./b . - A . --, e O, where A. = b 2 ~ 5~ k = ~ U EXI( [ XI <~ b . /U ) + o(1). 
However ,  since 

lim sup b2 ~ ~ k~EXI([XI <~b~/k ~) 
n ~ c o  k = I  

~ < l i m s u p b 2 1  ~ UEIX] l([X[<~c,,)=(o~+ l) 
n ~  k = l  

we have lim i n f n ~  Sn/bn<~(~+ 1) -1 a.s. for all c~> - 1 .  
Setting d n =  c,(log~ n)-2 ,  n ~> 1, we note that  n~d, T 0% via L e m m a  1. 

Observe  that  

b;  -l • k~Xk>~b; 1 ~ k~[XkI(--ck<Xk~O)--EXI(--ck<X<~O)] 
k = l  k = l  

+b2 ~ ~" k~[XkI(O<Xk<~dk)--EXI(O<X~dk)] 
k = l  

+by 1 ~ k~Xkl(Xk<~--Ck) 
k = l  

+b21 ~ k~EXI(-c~<X~dk) 
k = l  
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The first normalized partial sum converges almost surely to zero via the 
usual Khintchine-Kolmogorov-Kronecker  argument. Utilizing the Borel- 
Cantetli lemma, the third term is o(1) a.s. 

As for the second term, since its variance does not exceed 

b2 2 ~ k2~EX2I(O < X ~  dk) <~ Cb2 2 ~ k2~dk~(dk) 
k = l  k - 1  

<~ Cbn 2 ~ (1og2 k)  - 2  k2~ck#(cl~ ) 
k = l  

= O((log2 n)-2)  

then, by virtue of Lemma 1 of Klass and Teicher ~ with C, = n~d,, and the 
Borel-Cantelli lemma it follows that 

lim inf b 2 ~ )_J, k ~ [ Xk I(0 < f k  <~ dk) - EXI(O < X <. dk) ] >i 0 
n ~ c ~ O  k = l  

It remains to show that 

a.s. 

l iminfb21 ~ k~EXI(-ck<X<~dk)>~(c~+ 1) -1 
n ~ - o o  k = l  

However, this follows immediately from EXI( -cn  < X<~ dn) ~ [1 + o(1)] 
#(c~). Hence (3.1) obtains. This in turn, with the aid of Theorem 3 of Adler 
and Rosalsky, (~) implies (3.2). [] 

Next, we obtain a similar result in the slightly more difficult L 1 
situation. 

Theorem 3. Let {X, Xn, n>~ 1} be unbounded i.i.d, mean zero 
random variables with E(X-/Ft(X- )) < oo. If fi(x) ,-~ fi(x log2 x) and 

~(b~) = O(fi(cn)) when e e ( -  1, - 1/2] (3.3) 

then 

lim inf S,/bn= -(ot + l ) i a.s. 
n ~ o o  

and 

lim sup Sn/bn = 
n ~ o o  

a,s. 

whenever e > - 1. 
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Proof Via Lemma 2 we realize that lira inf ,~ ~ S,/b, ~ - (~  + 1) -I  
a.s. whenever c~ > -1/2.  

Suppose ~ ~ ( -  1, - 1/2] and let 6 > 0. For all e > 0, the slow variation 
of fi and (3.3) imply that ~(eb,/M)~C[t(cn), n>~ 1, k =  1 ..... n. Further- 
more, for all large x 

xP{lX[> x}~<&e(~+ l ) C  l/](x) 

Thus, for all large n, we have 

f P{IXl>eb. /k~}<~6(~+ll~(cn)b:  ' f k ~ 3  
k = l  k = l  

Next, utilizing the fact that EX2I(tXI <<.x)=o(x~(x)) and (3.3) it follows 
that for all large n 

EXRI(IXI ~ b,/k ~) <~ 3(~ + 1) C-Xk ~'b,~t(b,,/k ~') 

<~ 3(o~ + l ) k -  ~'b,,Ft(Cn), k = l,..., n 

Therefore, if n is sufficiently large, then 

b2 2 f k2~EX2I([X[~bn/k~)<~6(a+l)~(cn)b2 t f k~--*b 
k = l  k = l  

Hence, we conclude that S , / b , - A n  ~P  O, where 

An=b~ ~ f k~EXI(IXl<~b~/k~)+o(1) 
k = l  

Next, we show that 

l imsup b/~ f k~EXI(}Xl..~b,/k-< ~)~< -(c~+ 1) -~ (3.4) 
n ~ c o  k = l  

In view of E X = 0 ,  EXI(IX[ ~ < x ) = - E X + I ( X  + > x ) + E X - I ( X  >x) ,  for 
all x > 0. The slow variation of /~ plus the fact that E ( X - / ~ ( X - ) ) <  oo 
ensures that E X -  I( X -  > x) = o(fi( x ) ) and EX + I( X + > x) ~ fi( x ), whence it 
follows that 

b2 ~ f k~EX-I (X->b , /k~)=o(1)  
k = l  

and 

b ~  1 f k~EX+I(X + > bn/k ~) 
k = 1  

>~[l+o(1)]b2~fi(cn) f k ~ - + ( ~ + l )  -~ 
k = l  
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Thus (3.4) obtains, and so for all a > - 1  

lim inf S,/b~ ~< - ( a  + l) ~ a.s. 
n - * o ~  

As in the previous proof, set d, = Cn(lOg 2 n) -2, n>~ ], and note that 

b21 ~ k~Xk>~b~ ~ ~ k~[Xfl(-ck<Xk<~O)-EXl(-c~<X<-O)] 
k - - I  k = l  

+b21 ~ k ~[Xkl(O<Xk.~.dk)-EXI(O<X<~dk)]-< 
k = l  

+b# ~ ~ k~Xkl(Xk<~-cg) 
k = l  

n 

- b ;  1 ~ k~EXl(X>dk) 
k = l  

- b 2  l ~ k~EXI(X<~-%) 
k = l  

As in the proof of Theorem 2, classical arguments show that the first and 
third terms converge to zero almost surely. 

By virtue of EX2I(O < X<~ x)= o(xfi(x)) it follows that the variance of 
the second term is O((log2 n)-2), hence 

l iminfb21 ~ k~[Xfl(O<Xk<~dk)-EXI(O<X<~dk)]>~O a.s. 
n--~ co k =  1 

The last term is 0(1), since EX- I (X->x)=  o(/~(x)). While, owing to the 
fact that EX+ I(X + > x),~ fi(x) 

b2' ~ k~EXr(X>dk)-, (~+ 1) -~ 

whence lira infn~ ~ S,,/b,, = -(or + 1) -1 a.s. 
It remains to show that 

lim sup ~ k~Xk/b. = oo 
n ~ o o  k = l  

a . s .  

Suppose this is false. Then lim s u p , ~  IX,/c,[ < ~ a.s., which in turn 
implies that ~ 1 P( IXI > Mc, } < 0o for all large M, which is false. [] 
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4. APPLICATIONS 

In this section we present a few interesting examples. The first three 
should be compared with those in Adler. (2) 

Here, let {X ,X , , ,  n>~l} be i.i.d, random variables with f ( x ) =  
a ; x - 2 ( l o g x )  xI(~.oo)(X), - o o < x < o o ,  where ax is a suitably chosen 
constant. 

Example 1. If 2 < 1, then 

32~ = 1 k=Xk a)~ 
liminfn~+1(logn)l~ x (1-- 2)(~ + l)  a � 9  

and 

Y,~ = i k~Xk 
lim,~sup n~ + 1(log r l ) l  _;~ = a . s .  

whenever c~ > - 1. 

Proo f  Since/~(x)~a;~(1 - 2 )  -1 ( logx)  1-), we have c.~a)~(1 - 2 )  1 
n(log n) ~-;~. Thus all the hypotheses of Theorem 2 obtain�9 [] 

Example 2. If 2 = 1, then 

v ~  k~j (  �9 �9 ~ . . , k  - I k (71 hm lnf ~ . . . .  
n ~  n log2n 7 + 1  

a . s .  

and 

lira sup ~ = 1 k~Xk 
. ~  n ~+l log2n 

O(3 a � 9  

whenever ~ > -1 .  

Proo f  Here, / ~ ( x ) ~ r  l l og2x  and c , , ~ a l n l o g 2 n .  Hence, via 
Theorem 2, the conclusion holds. [] 

Example 3. I f 2 > l  a n d ~ > - l ,  then 

�9 n 

lim inf Zk = 1 k~(Xk - E X )  _ 
n ~ o  n~+ 1(log n) 1 ; 

mr 2 

(,t- 1)(~+ 1) 
a . s .  

and 
E n k ~ ( x ~ -  Ex)  

k = l  
lim sup n~+l(log n) l_  a = o o  a . s .  
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Proof  Due  to the fact that  f t ( x ) ~ a ~ . ( 2 - 1 ) - l ( l o g x )  1-~ and  
c,  ~ a x ( 2 - 1 )  -x n( log n) 1 x the results follow direct ly from Theorem 3. [] 

w e  conclude  with the St. Pe te rsburg  game. This game has been the 
m o t i v a t i o n  for m a n y  results in p robab i l i t y  theory.  F o r  a more  in -dep th  
discussion of general ized St. Pe te rsburg  games see Adler  and  Rosalsky.  (~) 

Example 4. Let  {Y, Y, ,  n>~ 1} be i.i.d, r a n d o m  var iables  with 
p { g = q - k } = p q k - 1 ,  k>>.l, where 0 < p < l  and  q = l - p .  Then,  for all 
c~> - 1  

lira inf  ~27, = 1 k~Yk P a.s. 
~ n~+~logq-~n q ( c ~ + l )  

and  

x ' ,  k a y  
l im sup ~@1=~ '~ ~ k _ oe a.s. 

n-~ ~ n logq 1 n 

where logq-i  denotes  the logar i thm to the base q -1 .  

Proof  F r o m  proper t ies  that  can be found in Adler  and  Rosa l sky  (1) 
we observe t ha t /~ (x )  ~ p q -  1 logq-z, x and  c~ ~ pq - In logq- 1 n. [] 

A C K N O W L E D G M E N T S  

The au tho r  wishes to thank  Rainer  W i t t m a n n  and  the Referee for their  
va luable  comment s  and  helpful suggestions,  which led to an improved  
p resen ta t ion  of this article. 

REFERENCES 

1. Adler, A., and Rosalsky, A. (1989). On the Chow-Robbins "fair" games problem. Bull. Inst. 
Math. Acad. Sinica. 17, 211-227. 

2. Adler, A. (1989). Exact sequences for sums of independent random variables. Proceedings 
of the International Conference on Almost Everywhere Convergence in Probability and 
Ergodic Theory, Academic Press, Boston, 11~29. 

3. Klass, M., and Teicher, H. (1977).'Iterated logarithmic laws for asymmetric random 
variables barely with or without finite mean. Ann. Prob. 5, 861-874. 

4. Adler, AI, and Rosalsky, A. (1990). On the weak law of large numbers for weighted sums 
of i.i.d, random variables. International J. Math. and Math. Sci. 13, (to appear). 

5. Chow, Y. S., and Teicher, H. (1988). Probability Theory: Independence, Interehangeability, 
Martingales, Springer-Verlag, New York. 

860'3/4-8 


