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A nonlinear pattern recognition system, neural network technology, was 
explored for its utility in assisting in the classification of autism. It was 
compared with a more traditional approach, simultaneous and stepwise linear 
discriminant analyses, in terms of  the ability of each methodology to both 
classify and predict persons as having autism or mental retardation based on 
information obtained from a new structured parent interview: the Autistic 
Behavior Interview. The neural network methodology was superior to 
discriminant function analysis both in its ability to classify groups (92 vs. 85%) 
and to generalize to new cases that were not part of the training sample (92 
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vs. 82%). Interrater and test-retest reliabilities and measures of internal 
consistency were satisfactory for most of the subscales in the Autistic Behavior 
Interview. The implications of neural network technology for diagnosis, in general 
and for understanding of possible core deficits in autism are discussed. 

Diagnosing autism presents a difficult problem for researchers and clinicians 
alike since the classification criteria and the precision of their definitions have 
varied over the years. Autism was first recognized as a unique disorder by 
Kanner (1943) in his seminal paper, entitled "Autistic Disturbances of Affec- 
tive Contact," which provided very rich narrative descriptions of the condition. 
Subsequent generations of researchers and clinicians have attempted to pro- 
vide various criteria for diagnosis of this condition such as that provided by 
the British Working Party (Creak, 1961), Ritvo and Freeman (1978), Rutter 
(1978), DSM-III (American Psychiatric Association ([APA]), 1980), and DSM- 
III-R (APA, 1987) with each emphasizing different behavioral criteria. 

The most recent changes provided in the DSM-III-R have made autism 
easier to define, especially in adults. However, it is still unclear whether these 
criteria define the same entity that was identified as autism using earlier stand- 
ards (Volkmar, Bregman, Cohen, & Cicchetti, 1988). Additionally, even with 
the DSM-III-R criteria, the decision to classify an individual as autistic is ob- 
viously influenced by many other factors including the experience of the di- 
agnostician, his or her training and personal beliefs. For example, many 
severely impaired, developmentally disabled individuals display behaviors that 
might qualify them as autistic to some diagnosticians. To others, the behaviors 
are categorized as "autistic features" and attributed to the person's retardation; 
a phenomenon that could reflect "diagnostic overshadowing" (Reiss, Levitan, 
& Szyszko, 1982) if the diagnosis of autism is, in fact, appropriate. 

These problems in identifying "signals" of autism and establishing ob- 
jective cutoff criteria clearly have an impact on clinicians who must make 
appropriate treatment recommendations as well as on researchers. Clini- 
cally, many persons with autism are often not diagnosed as such because 
there are not enough diagnosticians around who are knowledgeable about 
the variety of ways autism can express itself. This is not a trivial issue since 
diagnosis has a strong influence on right to effective treatment, placement, 
treatment contraindications, and so forth. For researchers attempting to 
understand autism, the frequent changes in criteria through the years may 
indicate that these scientists have not always been studying the same classes 
of children, even though their labels were the same. Thus, what we think 
we know about autism may only be true of subsets of children or subsets 
of behaviors that consistently appear in the various diagnostic criteria. 
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Researchers have attempted to surmount issues regarding reliability 
and specificity of diagnostic criteria by devising various rating scales to 
measure the behaviors associated with autism and then validating these 
against an independent diagnostic judgment. However, there is no single 
behaviorally based diagnostic instrument accepted or used by clinicians or 
researchers (Parks, 1983). To cite Rapin (1987): "Experienced clinicians 
rarely rely on checklists for diagnosing autism. They find it easy to spot an 
autistic child and to reach consensus" (p. 712). Further, while the ability 
of such instruments to classify persons with autism from those with other 
disorders has been assessed in a number of studies using multivariate tech- 
niques (e.g., Wadden, Bryson, & Rodger, 1991), the ability of these mul- 
tivariate models to then predict classification of a different data set with a 
high degree of accuracy remains to be determined. Although experienced 
clinicians may intuitively recognize the "core behavioral syndrome of 
autism" (Rapin, 1987; p. 712) as a gestalt and therefore not need rating 
scales, defining and measuring the core symptomatology has remained an 
elusive task. There appear to be at least several reasons for this. 

First, researchers do not yet know or agree on the definition of the 
"core deficit(s)," of autism, yet alone on how to best measure it (them) 
with some emphasizing social deficits (Wing & Attwood, 1987), others em- 
phasizing language (Rutter, Bartak, & Newman, 1971), and still others sen- 
sory/perceptual disturbance (Ornitz & Ritvo, 1968). 

Second, our measures of behaviors associated with autism are inherently 
"noisy." In a study of the reliability of several autism assessment instruments, 
Sevin, Matson, Coe, Fee, and Sevin (1991) found Pearson interrater reliability 
correlations ranging from .32 to .89 across items for the Real Life Rating 
Scale (Freeman et al., 1986) and .14 to .85 across items for the Childhood 
Autism Rating Scale (CARS; Schopler, Reichler, &Renner, 1988). Kappa coef- 
ficients for the Autism Diagnostic Interview (Le Couteur et al., 1989) range from 
.64 to .97 across items within subscales for trained interviewers. 

Third, currently accepted diagnostic systems use a logical decision-mak- 
ing algorithm such as that used in the DSM-III-R. However, as noted above, 
interpretational problems may arise in those cases in which this algorithm clas- 
sifies persons as autistic when other methods of classification (e.g., DSM-III), 
do not (Volkmar et al., 1988). More to the point, it has not been demonstrated 
that the diagnostic process is as logical as the DSMs imply. 

Finally, researchers have attempted to identify or verify the validity of 
symptom constructs by using linear discriminant analysis to separate prede- 
fined groups (e.g., Krug, Arick, & Almond, 1980; Wadden et al., 1991). 
However, certain behavior patterns thought to be uniquely associated with 
autism may not, in principle, be validated as such using this and other similar 
multivariate procedures as they are traditionally used. Typical discriminant 
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analysis procedures assume that the groups that are to be separated and 
defined as distinct from each other can be divided by a line, plane, or hy- 
perplane, depending on the number of dimensions to be separated. That is, 
it is assumed that a linear solution is available. But even some very simple 
problems have outcomes that cannot be divided easily in this manner, no 
matter how many variables are examined because the outcome results from 
a nonlinear function (Rumelhart, Hinton, & Williams, 1986). 

For example, let us assume that a behavioral checklist provided two de- 
scriptors of dysfunctions identified with autism: (a) gaze avoidance and (b) 
topic perseveration. Let us further assume that autism would be expected if 
an older, verbal person exhibited either of these behaviors, but not both. Let 
us suggest, instead, that this combination is indicative of social anxiety rather 
than autism per se. The absence of both would likely indicate, therefore, that 
aberrant social interaction was not a problem and so autism would be highly 
unlikely. This logical "exclusive OR" outcome is plotted in a two-dimensional 
coordinate system in Figure 1. Note that while the presence of either, but not 
both, descriptors is indicative of autism, there is no way to draw a single line 
that will isolate this pattern from the other possibilities and so this pattern of 
deviance in social communicative interaction could not be identified as 
uniquely associated with autism using traditional linear classification tech- 
niques. Instead, with two dimensions, two lines or a closed curve would be 
required to isolate this pattern. It is true that adding a third dimension, the 
multiplicative interaction of both descriptors, could be used to solve this prob- 
lem. However, such interactions are almost never used in traditional discrimi- 
nant analyses. Even if they were, however, the interactions would still be linear 
in nature and straight lines cannot be used to approximate nonlinear functions, 
should these functions provide the best descriptions of the data (e.g., sine waves, 
but not straight lines, approximate complex functions in Fourier analysis). As 
Wing and Attwood (1987) noted in discussing differential diagnosis of autism, 
"nature never draws a straight line without smudging it" (p. 12). 

We argue that the diagnostic process is not one that can be mimicked 
easily by a logical decision-making algorithm but, instead, is more akin to 
the processes involved in pattern recognition, that is, we are arguing for a 
"right" as opposed to a "left" hemisphere approach to this problem. As 
such, solving the diagnostic dilemma of autism calls for the use of nonlinear 
pattern recognition techniques. 

A new methodology has been developed recently which has features 
that make it especially attractive for such problems. Computer programs 
have been developed that mimic, at a very primitive level, the massively 
parallel processing pattern recognition abilities of the nervous system. Such 
"neural networks" have the following properties (Rumethart & McClelland, 
1986; NeuralWare, 1991) pertinent to the problems raised above: 
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Fig. 1. A diagram of the "exclusive OR" problem as applied to diagnosis of 
autism. In this hypothetical situation, a diagnosis of autism is appropriate if 
either of the behaviors of gaze avoidance or topic perseveration is present (filled 
circles) but not if neither is present or both are present (open circles). Note 
that these two different patterns cannot be separated by a single line, as would 
be performed in a two-group discriminant analysis. 

1. Unlike "expert system" diagnostic models and currently used 
methods for arriving at a diagnosis that rely on a priori logically defined 
rules (e.g., two items from section A AND 1 each from section B AND 
C AND a total number of items greater than or equal to 8), neural net- 
works form their own "concepts" by learning from examples (training), 
much the same as diagnosticians learn what autism is by being shown a 
variety of cases by their mentors. For example, Sejnowski and Rosenberg 
have taught a neural network to read. In the process of learning, it 
formed several concepts such as recognition of vowels and consonants, 
spaces between words, and so forth (cited in NeuralWare, 1991). Other 
networks have been taught to read handwriting, a problem that cannot 
be readily solved using a linear approach (NeuralWare, 1991). Surely, 
the process by which a diagnostician arrives at a diagnosis of autism must, 
at least, be as complicated as the process by which that person deciphers 
another diagnostician's handwriting. If network models of diagnosis can 
be found that are highly accurate, then the concepts they infer could, 
perhaps, prove helpful in defining the observable core characteristics of 
autism. 
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2. Stored information (memory) in such programs is "distributed" 
throughout the network. This means that a trained network is capable of 
generating an outcome even if the input is noisy, incomplete, missing, or 
has never been presented to the network during training. In other words, 
neural networks are capable of generalizing from previous experience. In 
fact, addition of noise to a network during training actually facilitates gen- 
eralization by preventing the network from "memorizing" the data set if 
the data set is small (R. Everly, personal communication). 

3. Discriminant analysis and other multivariate procedures assume 
that the data are normally distributed, a very restrictive assumption. Many 
neural networks make no assumptions about the underlying distribution of 
the data on which they make associations and are therefore nonparametric. 
This makes them excellent for the typical types of data collected with rating 
scales. 

4. Information is processed in a complex, nonlinear fashion by the 
network. This often makes such networks much better categorizers than 
traditional linear classifiers (Rumelhart, Hinton, & McClelland, 1986) such 
as discriminant function analysis. 

As a result, a variety of different neural network models have been 
found to be excellent pattern recognizers and have found use in language 
processing (Rumelhart & McClelland, 1986), data compression, signal proc- 
essing, and medical diagnosis (cited in NeuralWare, 1991). Goodman et al. 
(1992) found a network employing "fuzzy logic" to be a better predictor 
of survival time after coronary artery bypass surgery than discriminant 
analysis and Weinstein et al. (1992) reported the superiority of a back- 
propagation network (see below) to discriminant analysis in elucidating and 
predicting the mechanism of action of cancer drugs. Others have used net- 
works to model pathological processes (Grossberg, 1984). 

The purpose of this study was to examine the relative utility of one 
type of neural network model, a feed-forward network using a back-propa- 
gation training algorithm, for classification of persons diagnosed with autis- 
tic disorder versus a matched group of persons with mental retardation 
who did not have autism. Diagnoses were based on clinical experience as 
well as the DSM-III (APA, 1980) and DSM-III-R (APA, 1987) criteria. 
The accuracy of diagnosis was compared with a more traditional means of 
classification--discriminant function analysis. Information about these per- 
sons was obtained by parent or caregiver interview using the Autistic Be- 
havior Interview (ABI), an assessment instrument we developed recently. 
We felt, based on other rating scales such as the Vineland Adaptive Be- 
havior Scales (VABS; Sparrow, Balla, & Cicchetti, 1984), that parent in- 
terviews could provide valuable information concerning the variety of 
behaviors displayed by persons with autism and that the interview technique 
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is useful in explaining behavioral descriptors to persons who are likely to 
be less sophisticated in this matter  than the interviewer (cf. Le Couteur  et 
al., 1989). 

Interrater  and tes t - re tes t  reliabilities and internal consistency meas- 
ures were obtained on a subset of the data. 

METHOD 

Subjects 

The parents  or caregivers of 138 persons were interviewed, 69 of 
whom met the DSM-III  (APA, 1980) criteria for Infantile Autism and the 
DSM-III-R (APA, 1987) criteria for Autistic Disorder based on observa- 
tions, record review, and informal interviews and clinical judgment (I.L.C. 
and V.S.). The other  69 cases consisted of persons with mental retardation 
who did not meet  these same diagnostic criteria. 

The two groups were matched on chronological age and level of motor 
skills as defined by the Motor  Skills standard score on the VABS. Groups 
were matched on motor skills since impairment in this area is not typically 
associated with autism whereas problems in communication and socializa- 
tion, two other measures on the VABS, are clearly affected. 

The mean ages (SD) of the autistic and nonautistic groups were 9.57 
(7.08) and 8.45 (5.33) years, respectively, t(136) = -1.04, p = .30. The mean 
(SD) standard motor  skills scores were 64.96 (21.66) and 71.06 (21.90), re- 
spectively, t(136) -- 1.63, p = .11. Eight of the persons with autism and 13 
of the persons with retardation were female. This difference was not sta- 
tistically significant ()~2 = 1.40, p -- .24). Of the mentally retarded cases, 
19 also met the criteria for Pervasive Developmental  Disorder Not  Other-  
wise Specified (PDDNOS).  Etiologically, of the persons with mental retar- 
dation, 18 were diagnosed with fragile X syndrome and 2 with Down 
syndrome. One of the persons with autism had fragile X syndrome and 
none had Down syndrome. 

Interrater  and test-retest  reliability and internal consistency of the 
subscales of the ABI were assessed in a subset of 16 of the parents of 
persons with autism. All of the persons with autism were male. Their  ages 
ranged from 5.8 to 19.58 years (M = 11.32, SD = 4.57). Communication 
age equivalents from the VABS ranged from 0.41 to 8.41 years (M = 2.36, 
SD = 2.15). Intelligence test scores (Slosson, 1981) ranged from 2 to 107 
(M = 31.72, SD = 22.27). Of the 16 cases, 3 had total CARS scores that 
placed them (based on the CARS criteria) in the Mildly-Moderately Autistic 



450 Cohen et al. 

Range (scores of 36, 35, and 31) and the rest fell into the Severely Autistic 
Range (all scores greater than 36). 

Autistic Behavior Interview (ABI) Structure 

ABI items are arranged into four broad behavioral areas: Reciprocal 
Social Interaction, Verbal/Nonverbal Communication Skills, Restricted In- 
terests, and Mood and Arousal Level. There are a total of 28 subscales 
where each is composed of six items arranged within the subscale according 
to an ascending hierarchy of ability (for items reflecting appropriate be- 
haviors) or severity (for items reflecting inappropriate behaviors). Scoring 
for each item in the subscale uses a Likert scale ranging from 0-3: never 
(0), rarely~emerging (1), sometimes~partially (2), and often~typically (3). A 
manual describing the scoring criteria was provided to the interviewers. The 
score for each subscale is the total score of the six items. Thus, scores 
could theoretically range in value from 0 to 18. 

Reliability Procedures 

For the subset of 16 parents, reliability measures were assessed as 
follows: One rater interviewed the caregiver/parent and approximately 1 
week later, the second rater interviewed the same parent/caregiver to test 
interobserver reliability. Approximately 1 week after the second interview, 
the first rater reinterviewed the same informant to assess test-retest reli- 
ability. Order of raters was counterbalanced. One interviewer (D.L-J.) was 
a graduate student in psychology with relatively little experience with per- 
sons with autism. The other interviewer (M.K.) was a postdoctoral fellow 
with training in clinical neuropsychology whose primary experience was with 
persons with brain injury and/or psychiatric disorders. Interviewers more 
experienced with autism were excluded in order to provide a reasonable 
estimate of reliability for persons in the field who might expect to use this 
instrument to assist in diagnosis. Subscale interrater reliabilities were as- 
sessed across raters using the intraclass correlation coefficient and test-re- 
test reliabilities using the Pearson coefficient. Internal consistency was 
computed for each subscale using the alpha coefficient. 

Selection of ABI  Items for Neural Network Classification 

From the 28 subscales on the ABI, 15 were initially selected to be 
used in differential classification because of their direct relevance to the 
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DSM-III-R criteria. These included subscales tapping Reciprocal Social In- 
teraction: (a) reactions to pain, (b) communication of hunger or thirst, (c) 
empathy, and (d) social interaction; Verbal/Nonverbal Communication 
Skills and Imagination: (a) eye contact, (b)tactile defensiveness, (c) facial 
expression, (d) gesture, (e) vocal intonation, (f) imagination, (g) under- 
standing of language, (h) ability to use verbs for communication, (i) verbal 
perseveration, and (j) topic perseveration; and Restricted Interests: A sum 
score of the presence, to any degree (Likert score greater than 0), of (a) 
motor stereotypies, (b) object stereotypies, (c) self-injury, (d) sameness 
problems, and (e) becoming upset in reaction to changes in routine. This 
subscale was computed because most of the ABI subscales that tapped each 
of these areas had low to moderate interrater reliability (see below). This 
subscale ranged from 0 to 5 and had acceptable interrater reliability (see 
below). 

Subsequent analysis of the intercorrelation matrix for these 15 items 
revealed that 2, communication of hunger and thirst and ability to use verbs 
for communication, were highly correlated with several other measures and 
were therefore dropped from the analysis to avoid redundancy. In addition, 
empathy and facial expression correlated highly, r(136) = .70, p < .001, as 
did vocal intonation and understanding of language, r(136) = .81, p < 
.001. These four measures were therefore combined into two measures, em- 
pathy/facial expression and intonation/understanding, by multiplying their 
respective scores (R. Everly, personal communication). Thus, 11 measures 
remained for further analysis. 

Neural Networks 

From the neural network models that were available, a feed-forward 
network using a back-propagation training algorithm (Rumelhart, Hinton, 
& Williams, 1986) was selected based on information indicating that this 
method has a variety of purposes and is very useful for categorization and 
generalization (Caudill & Butler, 1992; NeuralWare, 1991). The Neural- 
Works Professional II Plus program (NeuralWare, 1991) was used for all 
computations. 

Neural networks are computer simulations of interactions among 
neurons. As shown in Figure 2, a typical feed-forward network consists 
of at least three layers: (a) an input layer consisting of an investigator- 
defined number of artificial neurons (or processing elements) analogous 
to sensory input; (b) one or more "hidden" layers with the first hidden 
layer receiving connections from the input layer, and (c) an output layer 
that arrives at a classification based on input from the hidden layer(s). The 
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SAMPLE FEED FORWARD NETWORK 

Output Layer 

Hidden Layer 

( ~ ;  Input Layer 

t t t t t 
Fig. 2. A typical feed-forward neural network with 
six input neurons, three hidden neurons, and three 
output neurons. In this network, all of the input 
neurons are connected to all of the hidden neurons 
and all of the hidden neurons are connected to all 
of the output neurons. These multiple connections 
allow for distribution of information in the network. 

number  of neurons  in the output  layer depends  on the n u m b e r  of  cate-  
gories that  require  classification. 

The network "learns" by altering the strength of  the connections (con- 
nection weights) among interconnected neurons (cf. Hebb,  1949) based on 
the feedback it receives from the error  in its output.  These connection 
weights may be either positive, resulting in excitatory input, or  negative, 
resulting in inhibitory input, to the subsequent  neuron(s).  Each neuron ar- 
rives at a decision to send input to the next neuron based on the summed 
weighted input f rom the connections it receives. The  magnitude of the out- 
put  in the bidden and output  layers is usually based on a nonlinear,  sigmoid 
function (the transfer  funct ion-- in  this case a hyperbolic tangent  function) 
analogous to the all-or-none response of a neuronal  axon. Tha t  is, as the 
weighted input increases, the magnitude of the output  f rom the neuron  
increases in an S-shaped or ogival manner.  
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The network is trained by presenting information (e.g., a vector hav- 
ing each of the ABI subscale scores for a given subject) at the input level. 
Initially, the connection weights among the neurons are random. After in- 
put is presented to the network, a signal is generated at the output which 
is a "guess" of the category to which the subject belongs. This output is 
compared with the "desired" output determined by an a priori classification 
defined by the trainer; in this case, autism versus mental retardation. The 
difference (accumulated over N cases) between the predicted and desired 
output multiplied by the derivative of the transfer function is defined as 
the error which is then back-propagated to the hidden and input layers. 
The connection weights are then altered in an attempt to minimize this 
error according to a variation of the "generalized delta rule": 

Wtij = W 0 + C1 * ei * xi) + C2 * D2ij 

where w'ij is the updated weight vector for neuron i to neuron j, wij is the 
previous weight vector, C1 is a learning coefficient varying from 0 to 1.0, 
e i is the error defined above, xij is the input to the ith neuron from the jth 
neuron, C2 is another learning coefficient and m~j is a momentum term 
which tends to keep weight changes moving in the same direction despite 
sudden changes in xij or ei (Caudill & Butler, 1992). 

This process of changing the connection weights is repeated after 
every N presentations of randomly presented data until the overall or global 
error is minimized. Hopefully, the network, at that point, will have 
"learned" the associations that generate a correct classification. This train- 
ing process usually requires thousands of case presentations (iterations). 

The utility of a trained network is evident only by its ability to gen- 
eralize, that is, to accurately predict the outcome of cases it has never ex- 
perienced. Generalization is facilitated if the network has many examples 
of the variety of inputs expected to be associated with a given category 
and if the network is not too complex for the data. If there are too few 
data points, the network is too complicated or training is carried out for 
too many data presentations, the network may learn to categorize by 
memorizing arbitrary and unimportant features of the training set. Gener- 
alization is facilitated, therefore, by adding noise to the layers of the net- 
work if the data set is small. This has the effect of slightly changing the 
input to the connecting neuron each time that same set of data is experi- 
enced and therefore decreases the likelihood of memorization of the data 
set. In addition, periodically testing the network for generalization while 
training is occurring can help prevent overlearning. 
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Fig. 3. One of the 13 networks that was successful in both learning and generalizing 
in the present study. There are 12 inputs identified by name on the top of each input 
neuron, 3 hidden neurons, and 2 output neurons identified as MR (output for the 
mental retardation classification) or AU (output for the autism classification). 
Excitatory connections are indicated by dashed or solid lines and inhibitory connections 
by dotted lines. See text for discussion of the other features of the network. 

Network Model 

The model that evolved after a number of different attempts has the 
following characteristics, as shown in Figure 3: 

1. The network has 12 inputs (features)--the 11 measures defined above, 
and chronological age, since it was felt that many of the subscales will interact 
with level of development. This provided a subject to variable ratio of over 5, 
a minimum value typically recommended for multivariate analysis. 

2. Three neurons are present in the hidden layer. These hidden layer 
neurons are thought to form "internal representations" of the input data 
which are "emergent characteristics" (Rumelhart, Hinton, & Williams, 
1986) that arise after extended experience with the associations to be 
learned. In other words, these hidden neurons do not form logical decision 
rules but, instead, function as feature pattern detectors. Three hidden neurons 
were found to provide good generalization with a relatively small number 
of large connection weights in the network, a desirable outcome. 
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3. Two neurons are present in the output  layer with one serving as 
the mental retardation classifier and the other as the autism classifier. The 
decision to classify in one direction or the other is, itself, a function of the 
joint weighted input received from all of the hidden layer neurons. 

4. A "bias" processing neuron is present and serves as a means of 
adjusting the location(s) of the complex multidimensional space functions 
that separate groups from each other. It is functionally analogous to the 
constant term in the classification functions provided in linear discriminant 
analysis (D. J. Shazeer, personal communication, April 25, 1992). 

Training and Testing the Network 

Since we did not have a large data set available for cross-validation, 
a "jackknife" or "leave k out" procedure was used to train and test the 
network (Sklansky & Wassel, 1981), a procedure also used by Weinstein 
et al. (1992) in their study of cancer drugs. Of the total of 138 cases, 5 
cases in each group (a total of 10 cases) were set aside for generalization 
testing leaving 64 cases per group for training purposes. These 5 were gen- 
erated by sorting the groups on age and selecting every 13th case in each 
group. This assured that both the training and test sets would consist of 
an equivalent range of ages. 

Initially, the connection weights among the neurons were randomized 
to range from -0.1 to +0.1 using a random number seed of 57. Training 
was carried out by presenting a vector having each of the scores for a given 
subject at the input level. This produced a linear output based on the rela- 
tive magnitude of each of the input neurons (scaled to range in value from 
-1.0 to 1.0). The output of each of the input neurons was sent to each of 
the neurons in the hidden layer weighted by the size of the connection 
weights between the input and hidden layer neurons. The hidden layer neu- 
rons then produced an output based on the size of the input. The form of 
the function relating output to input at this level was a hyperbolic tangent, 
S-shaped function. Output  from the hidden neurons was then sent to the 
output neurons where a similar nonlinear transformation took place. This 
defined one iteration. This output was compared with the desired output, 
-1,1 or 1,-1 corresponding to autism or mental retardation, respectively. 
As defined above, in an attempt to minimize the overall error, the con- 
nection weights were altered, by back-propagating the error to the hidden 
layer neurons and then to the input layer neurons. The connections among 
the layers were altered based on that error. This process of changing the 
connection weights was repeated after every 32 presentations of data ran- 
domly selected from the overall data set. 
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Since some networks have a tendency to overlearn the data set if train- 
ing is carried out for too long a time, as noted above, the following proce- 
dure was followed: The network was trained for 5,000 iterations or case 
presentations to allow for initial learning of the data set and then stopped. 
At this point, training was then restarted and, every 150 iterations, gener- 
alization to the test set was evaluated. Those points in training where gen- 
eralization evidenced improvement (in terms of a reduced root  mean square 
error) over previous tests were saved and the best result used in later cal- 
culations of generalization. This procedure continued for 30,000 iterations 
or until generalization failed to improve over 180 successive tests (about 20 
min on a 20 megahertz 386-SX computer  with math coprocessor). 

This test set was then put back into the training set and a new test 
set was set aside by taking every 13th case starting at the previously iden- 
tified cases plus one in each group. The network was then initialized as de- 
scribed above and trained on this new data set and tested on the new test 
set. This process was repeated 11 more times until a total of 130 cases had 
been tested for generalization. 

Because learning in a network is a computational and not a statistical 
process (in the usual sense of the term), it is likely that repetition of the 
above procedure with the same initial parameters will lead to slightly dif- 
ferent  results. Therefore ,  in order  to estimate the overall performance of 
this network anatomy, the procedure described above was repeated and 
the average error  in the training and test sets computed. 

During training, the learning rate (learning coefficient C1) for the hid- 
den layer was initially set to a level of 0.30 for the first 10,000 iterations 
in order  to rapidly approach a solution and then slowed to 0.15 after this 
in order  to narrow in on the appropriate solution. The learning rates on 
the output  layer were one half of  the middle layer rates. In addition, to 
facilitate generalization, uniform random noise (+40%) was added to the 
hidden layer neurons for the first 10,000 iterations and then decreased to 
20% for the rest of the training period. The presence of  noise and its de- 
crease across blocks of  iterations is also recommended for small data sets 
to avoid "local minima" in the error  that is to be minimized. 

Discriminant Function Analysis 

For  comparison, the same 13 sets of data were presented to a simul- 
taneous as well as a stepwise (F to en te r=  1.0) linear discriminant function 
analysis (Statsoft, 1991) for training and testing purposes. Independent  vari- 
ables consisted of the same 12 variables indicated above with classification 
of  autism or mental retardation as the dependent  variable. 
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RESULTS 

Reliability Assessment 

As shown in Table I, test-retest reliabilities were usually higher than 
interrater reliabilities. Correlations that were not significant at the .05 level 
(one-tail) are indicated (see Footnote a, Table I). The modal interrater reli- 
ability range peaked at .60-.69. The modal test-retest reliability range was 
.80-.89. Depressive behavior, which required that signs of depression be pre- 
sent for a minimum of 10 days, was rarely reported in this sample. At least 
two subscale reliabilities including eye contact and negative reactions to sounds 
appeared to be relatively low because of range restriction, that is, there was 
relatively little variation in these measures across subjects as shown in Table I 
by the semi-interquartile ranges for raters 1 (R1) and 2 (R2). Five additional 
subscales had uniformly poor reliability despite adequate range: seeking ap- 
proval, aversion to social interaction, vocal and object stereotypies, and hy- 
peractivity. Of these five, seeking approval continued to show poor reliability 
even on retest. Raters had problems with the severity dimension used to assess 
the persistence of stereotypies, that is, asking how soon the behavior starts 
after it has been stopped. These measures needed to be redefined. The com- 
posite measure of stereotypy defined above: a sum score of the presence, to 
any degree (Likert score greater than 0), of (a) motor stereotypies, (b) object 
stereotypies, (c) self-injury, (d) sameness problems, and (e) becoming upset 
in reaction to changes in routine, had acceptable interrater reliability (in- 
traclass r = .80). Preliminary multidimensional scaling of the data suggested 
these Restricted Interest subscales do, in fact, cluster together. 

Internal consistency measures were uniformly high (>.80). The only 
exceptions were communicating hunger and thirst (.73), social interaction 
(.77), imagination (.58), and facial expression (.39). The subscale of facial 
expression tapped many different aspects including smiling, interest, fear, 
surprise, and so forth, and the poor alpha coefficient supports other re- 
search indicating that descriptors of emotions are not unidimensional (e.g., 
the bipolar dimensions of pleasure-displeasure vs. high arousal-low arousal 
described by Russell, 1989). 

Neural Network and Discriminant Analysis Results: Training 

Figure 3 shows a typical trained network along with several graphs. 
In the upper center is a histogram of the connection weights in the network 
and underneath it is a display of the root mean square error output  over 
blocks of  iterations with an abscissa ranging from 0 to 32,000. The latter 
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Table I. lnterrater (IR) Reliability, Semi-Interquartile Ranges for Raters 1 (R1) 
and 2 (R2), Test-Retest (TRT) Reliability, and Alpha Coefficients 

IR R1 R2 TRT ~x 

Reciprocal social interaction 

Pain .75 

Hunger .60 

Eye contact .25 a 

Empathy .73 

Social interaction .53 

Seeking approval .00 a 

Agonistic behavior .64 

6 7 .87 .88 

6 6 .62 .73 

3 3 .73 .81 

5 6 .75 .84 

3 7 .82 .77 

9 7 .35 a .89 

6 2 .72 .89 

Verbal/nonverbal communication 

Tactile defensiveness .69 

Aversion to social interaction .26 a 

Facial expression .61 

Gesture .59 

Intonation .88 

Imagination .56 

Understanding .68 

Verbal perseveration .64 

Generalization of verbs .91 

Topic perseveration .69 

6 6 .71 .98 

10 6 .65 .89 

4 2 .68 .39 

2 3 .78 .68 

9 6 .84 .81 

4 3 .70 .58 

9 12 .86 .93 

II 8 .96 .96 

10 7 .90 .90 

2 0 .83 .95 

Restricted interests 

Motor stereotypies .49 

Visual stereotypies .58 

Vocal stereotypies .280 

Object stereotypies .13 a 

Sameness .80 

Disturbance in routines .64 

Self-injury .58 

8 11 .81 .99 

10 2 .59 .99 

10 6 .48 .98 

10 10 .45 .97 

9 4 .89 .98 

10 8 ,79 ,98 

4 2 .76 .89 

Mood and arousal level 

Depressive behavior 

Agitation .45 

Reactions to sounds .30 a 

Hyperactivity .27 a 

4 - -  w _ _  

10 8 .52 .99 

4 0 .48 .91 

9 12 .82 .98 
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Table II. Training Results of the Neural Networks and the Discriminant Analyses for 
Persons with Autism (AUT) or Mental Retardation Without Autism (MR) 

Neural network Discriminant analysis 

First pass Replication M Simultaneous Stepwise 

% correct AUT 95 95 95 89 89 
% correct MR 87 84 86 81 80 
No. of iterations 12,292 8,484 10,388 

"learning curve" decreases with training, with periodic increases in error  
as mistakes are made as a result of gradual changes in the connection 
weights. Eventually, the error decreased to a level of about 0.20 where it 
stopped because it was at this point that maximum generalization to the 
test set occurred. 

Average percentage accuracy across the 13 data sets for the two net- 
work repetitions are shown in Table II and compared with the discriminant 
analyses. As shown, the networks classified 95% of the cases with autism 
and 86% of the cases with mental retardation during training after a joint 
average of 10,388 iterations. By contrast, the 13 simultaneous linear dis- 
criminant analyses classified a total of 89% of the cases with autism and 
81% of  the controls who were mentally retarded (for the entire data set 
presented at once, Wilks's lambda was .51, F(12, 126) = 10.10; p < .0001). 
The 13 stepwise linear discriminant analyses produced identical results and 
classified a total of 89% of the cases with autism and 80% of the controls 
who were mentally retarded (for the entire data set presented at once, 
Wilks's lambda was .51, F(8, 130) = 15.09; p < .0001). 

Thus, as we would predict, there was a 6% improvement in the training 
set data for the autistic sample which was significantly different from the 
percentage identified by both the simultaneous and stepwise discriminant 
analyses (Wilcoxon T = 13, p = .012, one-tail test for each comparison). 
Similarly, there was a 5 to 6% improvement in the training set data for the 
mentally retarded sample which was significantly different from the percent- 
age identified by simultaneous (Wflcoxon T = 17, p = .023, one-tail test) 
and stepwise discriminant analysis (Wilcoxon T = 8, p = .008, one-tail test). 

Generalization Testing 

Results of generalization testing are shown in Table III. The  neural 
networks correct ly predicted,  on average, 92% (+3%; 95% confidence 
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Table III. Generalization Results of the Neural Networks and the Discriminant Analyses 
for Persons with Autism (AUT) or Mental Retardation Without Autism (MR) 

Neural network Discriminant analysis 

First pass Replication M Simultaneous Stepwise 

% correct AUT 98 95 97 85 83 

% correct MR 89 85 86 78 78 

interval) of cases they had never s e e n -  97% of the persons with autism 
(+4%, 95% confidence interval) and 86% (+7%; 95% confidence interval) 
of the persons with mental retardation, virtually the same as the training 
set data indicating no shrinkage in predictability. The simultaneous dis- 
criminant analyses fared less well predicting 82% (+6%; 95% confidence 
interval) of the overall cases---g5% (+7%; 95% confidence interval) of the 
persons with autism and 78% (+9%, 95% confidence interval) of the per- 
sons with mental retardation. The stepwise analyses led to the same results 
and generalized to 83% of the persons with autism and 78% of the persons 
with mental retardation. Thus, there was a 4% shrinkage in predictability 
for the discriminant analyses which was not evident in the networks. 
Fletcher, Rice, and Ray (1978), using a random number set, have found 
that a 5:1 ratio of subjects to variables (as in the present study) produces 
a shrinkage in predictability in cross-validation of 9 to 12% in samples of 
50 to 250 per group. The shrinkage factor here was lower. 

Since the nonautistic group had a much lower correct classification 
and prediction rate than the autistic group, the predicted misclassified cases 
were examined. In the seven cases that both network passes agreed on, six 
had a diagnosis of PDDNOS. Either our diagnosis was incorrect in these 
cases or the network did not have the necessary information to make this 
distinction. 

As predicted, the overall classification accuracy for the network mod- 
els was significantly superior for the groups with autism (McNemar 
~2 = 7.11, p = .004, one-tail test) and mental retardation (McNemar 
~2 = 3.13, p = .039, one-tail test). 

Interpretation of  Hidden Layer Connection Weights 

Interpretation of the connection weights of hidden layer neurons is 
not a straightforward process, particularly if the number of hidden neurons 
is large. In such cases, it is helpful to probe the network with selected stimuli 
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Table IV. Connection Weights from Input to Hidden Neurons 

461 

Hidden neuron Hidden neuron Hidden neuron 
Input 14 15 16 

Bias -0.78 1.15 1.66 

Age -1.81 -3.27 -0.57 

Pain -0.96 0.88 1.50 

Eye contact 0.55 5.23 -1.76 

Gesture -2.50 -0.17 2.87 

Social interaction -0.33 1.24 2.26 

Empathy/face expression 0.16 3.04 -0.16 

Intonation/understanding -0.22 2.35 -1.48 

Imagination -0.08 0.78 2.93 

Verbal perseveration -0.20 -0.15 0.80 

Topic perseveration -0.46 -0.03 -2.22 

Tactile defensiveness 2.54 2.94 .0.67 

Stereotypy -0.41 -2.25 -1.45 

and see which of the neurons are activated (Caudill & Butler, 1992). In 
the present case, fortunately, the number of hidden neurons was small and 
interpretation was rendered somewhat easier. 

Table IV shows the connection weights of the inputs entering the 
three hidden neurons of the network for Data set 7. This network was 
saved after 16,700 iterations had been completed (other nets produced 
similar results). In this network, the weighted connections from each of the 
hidden layer neurons to the output designating "autism" were negative (not 
shown in the table). Therefore, the autism category would be excited at 
the output layer if the summed weighted input to that neuron from the 
hidden layer were, itself, negative (since a negative input from the hidden 
layer neurons multiplied by negative connection weights equals a positive 
activation). Therefore, to interpret the hidden layer connection weights in- 
sofar as they indicate prototype behavior patterns that are important for 
a categorization of autism, it is important to highlight those inputs that 
have negative connection weights and to minimize the importance of those 
inputs that have positive connection weights. 
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Almost all of  the inputs to Hidden Neuron 14 were negatively 
weighted except for eye contact, empathy/facial expression, and tactile de- 
fensiveness and the weights for the first two of these inputs were relatively 
weak. Similarly, the connection weights for almost all of the other nega- 
tively weighted items were also weak except for age, pain, and gesture. 
Therefore, this neuron would yield a negative output if the inputs that 
were negatively weighted exceeded the inputs that were positively 
weighted, This would occur with a behavior pattern characterized by in- 
creased age, some verbal and imaginative skills (communication of pain, 
gesture, social interaction, intonation/understanding, and imagination), 
weak nonverbal social skills (eye contact, empathy/facial expression), mini- 
mal tactile defensiveness, and weakly emphasizing some perseverative lan- 
guage (verbal and topic perseveration) and stereotyped behavior. This 
behavior pattern is reminiscent of Wing and Attwood's (1987) "Passive 
Group." 

Almost all of the inputs to Hidden Neuron 15 were positively (and 
strongly) weighted except for age, gesture, verbal and topic perseveration, 
and stereotypy with very weak connection weights for gesture, verbal, and 
topic perseveration. Therefore, this neuron would yield a negative output 
with a behavior pattern characterized by increased age, very limited verbal 
and imaginative skills (communication of pain, social interaction, intona- 
tion/understanding, and imagination), very weak nonverbal social skills (eye 
contact, empathy/facial expression), minimal tactile defensiveness but with 
stereotyped behavior, and, to some extent, perseverative verbalization (ver- 
bal perseveration). This behavior pattern is reminiscent of Wing and 
Attwood's (1987) "Aloof Group." 

About one half of the inputs to Hidden Neuron 16 were negatively 
weighted except for communication of pain, gesture, social interaction, 
imagination, and verbal perseveration. Therefore, this neuron would yield 
a negative output with a behavior pattern characterized by increased age, 
the presence of some social and verbal skills (eye contact, intonation/un- 
derstanding, and to a weak extent, empathy/facial expression), a reduced 
degree of other nonverbal and imaginative skills (communication of pain, 
gesture, social interaction, and imagination), but with sophisticated persev- 
erative language (topic perseveration), tactile defensiveness, and stereo- 
typed behavior. This behavior pattern is reminiscent of Wing and Attwood's 
(1987) "Active-but-Odd Group." 

All of these prototypes have in common a core pattern of poor re- 
ceptive and expressive nonverbal and imaginative skills along with persev- 
erative behavior (verbal or nonverbal). 
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DISCUSSION 

These results are encouraging and clearly require replication. They 
suggest that when provided with relevant information such as that gener- 
ated by the ABI, neural network models can be more powerful than more 
traditional models in their ability to categorize and generalize a behavior- 
ally defined syndrome. The fact that shrinkage in predictability was not a 
problem for the networks suggests that they were more tolerant of variation 
in the input data than the discriminant analyses. It should be noted, how- 
ever, that our results are based on a relatively small sample and our ob- 
servations on the emergent characteristics of the hidden neurons are likely 
to be unstable and, perhaps, sample- and rating-scale-dependent. For a net 
to learn the range of variability to be expected in caregiver reports of per- 
sons with autism versus persons with retardation, at a given age, sex, or 
etiological diagnosis, requires substantially more cases. It remains to be 
seen if other investigators can achieve similar classification results using 
other subjects and/or assessment materials. 

We point out that the particular network anatomy and algorithm cho- 
sen in the present study is not the only type available. Rather than arriving 
at a category by plurality agreement among hidden neurons, some networks 
allow these neurons to compete with one another (winner take all) in terms 
of their success in making accurate classifications. These include Learning 
Vector Quantization networks (Cauditl & Butler, 1992) and Grossberg's 
Adaptive Resonance models (cf. Carpenter & Grossberg, 1991) and may 
also be useful in identifying unique subgroups under the umbrella term of 
autism. 

If our results can be replicated with the same or other anatomies, 
neural network methodology may help to resolve some important diagnostic 
issues: 

1. Do different investigators really emphasize different features in 
classifying persons as having autism? Comparison of the ability of a variety 
of networks to classify and generalize classification of persons as autistic 
based on clinical judgments of a variety of different experienced investiga- 
tors along with the emergent characteristics of their hidden neurons may 
help to determine if these theoretical impressions are more apparent than 
real. 

2. Are there observable core characteristics of autism that can be re- 
liably identified? Even though the networks were not presented with pro- 
totypical subgroups of autism, it was of some interest that the emergent 
characteristics of the hidden neurons in this sample bore some similarity to 
Wing and Attwood's (1987) subtypes. Analysis of the emergent characteristics 
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of neural networks based on a large sample of persons with autism using 
a variety of experts to assist in diagnosis may help to elucidate this issue. 
The ability of such networks to generalize to new samples will test the 
stability of these core characteristics. 

3. Can inexperienced investigators and clinicians accurately diagnose 
autism using currently available assessment tools? If a subset of persons 
can be agreed upon by a number of experts as clearly autistic and other 
relevant and agreed upon diagnostic groups can be identified (e.g., mental 
retardation not associated with autism, PDDNOS), then a network could, 
theoretically, be trained to make this discrimination given an appropriate 
assessment tool(s), such as the ABI. The trained and tested network could 
then be saved as a simple program. Any clinician or investigator could use 
the recommended assessment tool(s) to input data to the network and the 
network program could then provide a probability of assignment of that 
person to the relevant diagnostic category. Further, having identified 
unique patterns of behavior associated with a variety of disorders may also 
help to classify those borderline cases that do not appear to fit into one 
pattern or the other. 

4. Do persons with autism show different and predictable behavior 
patterns depending on their developmental level, etiology, sex, drug state, 
or concurrent psychiatric or neurological disorder? Assuming enough sub- 
jects could be obtained for training and testing, this question could be an- 
swered with a theoretically high level of reliability. If valid patterns are 
evident, behavioral features may therefore be readily predictive of other 
important factors. 

We have argued here that the diagnostic process is more akin to pat- 
tern recognition than it is to adding together a group of symptoms as in 
a rule-based expert system. As such, it may be necessary to use systems 
that mimic this process, such as neural networks, in order to provide stable 
and comprehensive descriptions of behavioral types and subtypes for both 
clinicians and researchers. In short, we feel that  neural network modeling 
of the diagnostic process has validity for identifying and understanding per- 
sons not only with autism but with any condition in which a unique behav- 
ioral pattern is expected (e.g., learning disability, schizophrenia, tic 
disorders). The generality of this statement is, of course, an empirical issue. 
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