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Langevin-Like Equation with Colored Noise 
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Consider a stochastic differential equation of the form of a Langevin equation, 
but in which the noise source is not white. If it is nearly white, i.e., its 
autocorrelation time is short, a systematic approximation method is known. It 
leads to a Fokker-Planck equation with successive higher order corrections. To 
obtain the coefficients more explicitly, a secondary expansion may be employed. 
The validity of the resulting double series approximation is discussed and 
confronted with the various results given in the literature. In addition, an alter- 
native approximation method is obtained using the technique for eliminating 
fast variables. It produces the same terms in a different sequence. 

KEY WORDS: Colored noise; stochastic differential equations; elimination 
of fast variables. 

1, I N T R O D U C T I O N  A N D  C O N C L U S I O N S  

The subject of this study is the stochastic differential equation 

= ~o(x) + ~(x) ~(t) (1) 

where ~o and 4/ are given functions of x, and r is a given stationary 
stochastic process with zero mean. If r is Gaussian white noise, the 
equation is equivalent to a Fokker-Planck equation for the probability 
density P(x, t) of x at time t, that is, an equation of type 

P = ~ee  (2) 

with the linear operator 5 ~ given by 

~ : - ~ 0 + ~  ~x ~, (3) 
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Now suppose that ~(t) is not white. [For  intrinsic noise one does not 
expect this to occur without the simultaneous appearance of a memory 
kernel in (1), but for external noise there is no inconsistency. ] For this case 
a number of authors (1-8) have derived equations similar to (2) and (3) 
which describe the process x(t) defined by (1) approximately. The ensuing 
debate has been reviewed in ref. 9. The present paper is an attempt to 
clarify the situation. The conclusions are here summarized. All results refer 
to the case that ~(t) is colored but has a short autocorrelation time r,. and 
may therefore be called "off-white." 

(i) For off-white ~(t) the standard treatment of stochastic differen- 
tial equations leads to an equation (2) with an expansion for 2'.  This I 
shall call the primary expansion. Its first two terms have the form (3) of a 
Fokker-Planck equation, but the coefficients ~0, 0 in it are not quite the 
same as those in (1). 

(ii) To write these new ~o, 0 explicitly, a secondary expansion may be 
used. To lowest order one gets the same ~0, ~ as those in (1); this is the 
white noise approximation. 

(iii) Both the primary and the secondary expansion involve 
ascending powers of zc. The white noise result is the limit zc ~ 0 .  The 
importance of the higher terms in the primary expansion does not depend 
on zc alone, but also on the P considered. For the stationary solution P" it 
is in general inconsistent to ignore them while including higher terms of the 
secondary expansion. 

(iv) An alternative treatment, based on the general method for 
eliminating fast variables, is possible when ~(t) is a Markov process. The 
resulting expansion reproduces the terms of the above double series, but 
arranged according to their power in re- 

(v) The approximate equation obtained in either way may be 
regarded as defining a Markov process 2(t). This process presumably 
approximates the actual non-Markovian process x(t) in some sense, but 
the precise character of this approximation is not known. 

2. T H E  I N P U T  N O I S E  ~ ( t )  

The process r is supposed to have an average zero and an 
autocorrelation function ~: 

(~( t ) )  = 0  ( ~ ( t ) ~ ( t ' ) ) = K ( t - t ' )  

It is also supposed that there is an autocorrelation time zc such that ~:(z) is 
negligible for Iz[ > zc. More strongly, it is supposed that one may treat ~(t) 
and ~(t') as statistically independent for It - t'] > zc. 
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As a measure for the magnitude of ~ I use ~, defined by ~2= (~(t)2) .  
Another relevant quantity is 

fo ~ 
D O = lc(z) dz ~ co-z,. 

A special example of such a r is the Ornstein Uhlenbeck process, i.e., 
the Gaussian Markov process with 

K(Z) = o~2e I~t/~,, D O = ~2r,. (4) 

This becomes Gaussian white noise in the limit 

zc --* 0, ~2 __, 0% Do = const (5) 

3. THE M A R K O V  A P P R O X I M A T I O N  

Equation (1) defines uniquely a stochastic process x(t) for t~>to 
provided one adds an initial condition; we take x ( 0 ) =  Xo with a fixed, non- 
random Xo. To specify a stochastic process, one needs the entire hierarchy 
of distribution functions ~1o,1J ) 

Pl(x~ , t l ) ,  P2(Xl, t l ; x2 ,  t2), P 3 ( x l , t l ; X 2 , 1 2 ; x 3 ,  t3) .... (6) 

Our initial condition is expressed by 

Pt  ( x l ,  to) = 6 ( x ,  - Xo) (7) 

and the aim is to find an appropriate equation of type (2) for the function 
Pl(x,  t). 

I f  x(t)  were a Markov process, the entire hierarchy (6) would be 
known once one knows P~ and P2. In lieu of P2 one may also take the 
transition probability 

Pe(xl ,  ti ; x2, t2) 
P(x2, t2 [ Xl, 11)= (/o < t I ~< t2) (8) 

PI(x l ,  tl) 

Moreover, for a Markov process one would have P l ( X l ,  t l )  = 
P(Xl,  tl I Xo, to). Hence an equation (2) for P1 would be at the same time 
an equation for P(x2, t2 I X l , t l ) - - w h i c h  is the "master equation. ''(11) 
Hence, for a Markov process an equation for P1 is tantamount to a full 
specification of the process. 

However, x(t)  is not Markovian, since r is not white. The equation 
for P1 does not carry over to P(x2, t2 I x l ,  t~). The reason is that t 1 is not 
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on the same footing as to, since only at to is it true that the value of x is 
uncorrelated with the value of 4. Moreover, the transition probability does 
not suffice to construct the hierarchy. (12'13) So why bother about an 
equation for P~? 

It seems to me that commonly the motivation is the following/~4) 
Suppose one has found for P~ an equation of type (2). Suppose also that, 
with some approximation, 2 '  turns out to be independent of x0 and to. 
Then this equation has the same form as a master equation. Ignoring the 
special role of to, one proceeds to interpret it as if it were a master 
equation, thereby defining a Markov process 2(t). The tacit assumption is 
that this 2(t) is an approximation to the actual process x(t) determined by 
(1). It is not the purpose of this paper to investigate this assumption, but 
merely to review the approximation methods used for obtaining an 
equation (2) for Pl(X, t). 

The first-passage time of a Markov process is important in the theory 
of chemical reactions, etc. For non-Markovian processes it is not clear 
whether there exists a single quantity with a similar role, nor that it is 
approximately equal to the first-passage time of 2(t). This problem and the 
related problem of escape over a potential barrier are not considered here. 

4. REDUCTION TO A SIMPLER EQUATION 

Equation (1) may be simplified by transforming x to a new variable u, 

u= I dx q~(x)_f(u) 
O(x)' O(x) 

The new form of the equation is 

fi --- f (u)  + ~(t) (9) 

Throughout I shall work with (9) rather than (1) to simplify the algebra 
without losing generality. The only restriction is that 0(x) must nowhere 
vanish, as is the case in most applications. If it does have a zero, serious 
difficulties arise, which require special treatment/15) 

Incidentally, Eq. (9) is often called the "additive" case to distinguish it 
from the "multiplicative" case (1). This distinction is spurious since they 
can be transformed into each other. The term "additive" makes sense only 
when ~o(x) is linear; for then the case 0 = const has a special significance, 
namely that the effects on x(t) of the separate fluctuations in ~(t) add up. If 
there are more variables, our simplifying transformation is not possible in 
general, which causes complications. (3) 
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5. S O L U T I O N  BY T H E  C U M U L A N T  E X P A N S I O N  M E T H O D  

Equations (1) and (9) are stochastic differential equationsfl The con- 
struction of an approximate equation (2) was achieved by Stratonovich. (16) 
An explicit form is given in ref. 17. I shall refer to this method as the 
cumulant expansion of  stochastic differential equations. ~3'18'19) It produces an 
operator  5 ~ in the form of an expansion. For  the simplified version (9) the 
first two terms turn out to be 

aP(u, g) ~ G 32 
0~-[-- - Ou f(u)  P + ~ D(u) P (10) 

where the coefficient D(u) is given by 

D ( u ) = f o  & ~ c ( r ) ( d u - ~  -1 (1i)  \ d u /  

This is the answer to the problem of finding an approximate solution 
of  (1). The last factor in (11) has the following meaning. On solving the 
deterministic equation 

5 = f ( u )  (12) 

one obtains for each fixed t a mapping of the initial u onto the value u' at t. 
The derivative of this map taken at t = - ~  is du-Vdu. 

Actually the calculation leads to (11) with an upper limit of 
integration t - t o .  That  makes (10) explicitly dependent on the initial time 
to and hence unfit to be interpreted as master equation for a Markov  
process if(t). However, the integrand of (11) is practically zero for r > r c  
and the error made by extending the limit to oe is negligible provided that 
t -  t o > re. This is where the as yet uncontrolled Markov  approximation is 
made. 

The solution of (12) is given by 

fu ' d r  
t =  (13) 

If u varies, and u' varies with it while t is constant, 

du' du 
O - - - -  

f (u  t) f (u)  

2 This name is often confined to the case that ~(t) is Gaussian white noise, but I use it for any 
differential equation whose coefficients are random with given stochastic properties. 
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Hence (11) may be written alternatively as 

D(u) = fo f(u) (14) to(z) dz f (u -~)  

6. T H E  S E C O N D A R Y  E X P A N S I O N  

In order to find D(u) explicitly, it is necessary to solve (12), that is, to 
invert the integral (13)--at least for times up to zc. This can always be 
done by expanding in powers of t. Thus, in addition to the primary expan- 
sion, whose first two terms are (10), we now make a secondary, optional 
expansion to facilitate the calculation of D(u). 

Solve (12) to second order in t, 

u t = u + tf(u) + �89 f (u )  + O(t 3) 

Hence, with fixed t, 

dut/du = 1 + t f ' +  1t2(f'2 + f f " )  + O(t 3) 

Set t = - z  and take the reciprocal, 

( d u - V d u )  -1 = 1 + z f '  + �89 '2 - i f")  + O(z 3) 

Substitute in (11), 

D ( u ) = D o + f '  z x ( z ) d z + � 8 9  ") z2K(z) dr+O(z3c) (15) 

These are the first three terms of the expansion of D(u) in powers of zc. 
The higher powers become rapidly more complicated. Much of the 

literature is concerned with finding a general expression for them (Appen- 
dix C). Yet this question seems to me of secondary importance inasmuch as 
it concerns only the secondary expansion of the function D(u); its exact 
form is known anyway [see (11)], while the higher terms in the primary 
expansion are still unknown. 

To be honest, however, one must confess that the secondary expansion 
is not just a substitute for the exact expression. It may happen that the 
integral in (11) diverges even though ~c(z) decreases exponentially. Yet in 
that case the separate terms in (15) are still convergent integrals; the 
primary expansion is strictly speaking meaningless, but after the secondary 
expansion has been carried out the result has at least a formal meaning. It 
is hoped that this formal result still produces a sensible approximation. 
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7. HIGHER T E R M S  IN THE P R I M A R Y  EXPANSION 

The primary expansion is an expansion in (~z~). ~7-~9~ The 
Fokker-Planck approximation (10) comprises the first and second terms. 
The general nth term is of order 

a(avc)"- 1 r~,/2~.n/2- 1 (n = 2, 3,...) 

The higher terms involve higher derivatives as well, in general up to 
(~/~u)". This is why (10) with (11) has been called "the best 
Fokker-Planck approximation"-- the lesser ones being (10) with some 
approximate expression for D(u). 

In each term the coefficients may be subjected to a secondary expan- 
sion in powers of ~, as in Section 6. The result is a triple series of terms 
proportional to 

I-)n/2"rn/2--l+m P (n>~2;m~>0; 0 ~ < k ~ < n - 1 )  (16) 

This is the general case. If ~ is even, the only nonzero terms are those with 
even powers of a, that is, with even n. If ~ is Gaussian, the terms with 
k = 0, m = 0 also vanish; see Appendix A. 

A first conclusion is that in the white noise limit (5) one is left with the 
Fokker-Planck equation (10) with D ( u ) = D o .  In terms of the original 
variable x it has the form (3), which is the Stratonovich result. 

Incidentally, the fact that this equation appears strictly as a limiting 
case explains why the Fokker-Planck equation has a mathematically exact 
meaning by itself as the master equation of a well-defined Markov process 
~(t). It is true that It6 did not need this limit since he assigned a meaning 
to (1) by decree. That also led to an equation (2) for a Markov process, 
although with s slightly different from (3). As his decree is not what one 
gets for ~c ~ 0, but applies exclusively to Tc = 0, that is, to exactly white 
~(t), it has no meaning in physics. 

A second conclusion from (16) is that the magnitude of the successive 
terms is not determined by the parameters Do and z~ alone, but also by the 
function P under consideration. This is the subject of the next section. 

8. ESTIMATE OF THE T E R M S  IN THE P R I M A R Y  EXPANSION 

Whoever wants to improve on the white noise approximation should 
not just improve the expression for the coefficient D(u) in the Fokker -  
Planck equation, but also estimate the higher terms of the primary expan- 
sion, beyond Fokker-Planck.  The expansion parameter ~ c  ~ (Dorc)l/z may 
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be called "the jump size," i.e., the amount by which u is perturbed by 
during one autocorrelation time z,. of 4. Moreover, each successive term 
contains an additional O/Ou, which represents a factor 1/A, where A is the 
distance over which P varies appreciably. Thus, the principal expansion is 
based on the smallness of  the jumps compared with the variation length of  the 
P considered: 

(Do%)I/2 ~ B  (17) 

This condition is already apparent in Planck's original derivation/2~ We 
consider three types of P. 

First, when P is a delta function or some other sharp peak, the 
condition (17) is violated. Hence, one cannot really solve (1) with initial 
condition (7) using the Fokker-Planck approximation. Yet, after an initial 
transient time A2/r p will have broadened sufficiently for (17) to hold. 
That is good enough for the purpose of computing averages of functions 
that vary little over a distance A. A similar situation is well known: the 
ordinary diffusion equation is customarily solved with initial delta function, 
although obviously the equation is not valid on a scale smaller than the 
mean free path. Yet the result is good enough for any observer who cannot 
distinguish such small-scale phenomena. 

Second, suppose one wants to utilize (10), (11) to obtain the 
stationary distribution ps. Let (12) have a single attractor, say u =0:  

f ( u )  = f ' (0 )  u + O(u 2) = --U/Zm + O(U 2) (18) 

The stationary solution produced by (10) is roughly 

P'(u) ~ const- exp(-u2/2Dozm) (19) 

Hence A ~ (Do'era)  1/2 and the successive terms of the primary expansion are 
of order 

D~/2Tn /2 -  1Al - n  ~ g m ( Z c / g m ) n / 2 -  1 

The condition for the validity of the Fokker-Planck approximation is 
therefore 

z~, ~ z m (20) 

Note that Zm ~ u/ f  (U) ~ l / f  '(U) is an estimate of the time scale of the deter- 
ministic motion. The condition (20) states that the autocorrelation time of 
~(t) must be small compared to it. 

Of course other attractors are possible, such as a critical point: 
f ( u )  = -Tu 3. They can be discussed in a similar way. 
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Third, suppose f has the form (18) but u starts at some Uo far away. In 
order that the entire approach toward the ultimate P" can be described by 
the Fokker-Planck equation, the condition (20) is certainly necessary. It 
will also be sufficient (at least after the initial transient) if one knows that 
the width A of P(u, t) is at all times of the same order as the width of ps(u). 
This will be the case if f (u) is attractive in the relevant interval of u; more 
precisely, f(u)/u should be negative. If, on the other hand, f (Ul)= 0 at some 
Ul between u = Uo and u = 0, then there is an unstable equilibrium point of 
the deterministic equation (12). Such points require special treatment even 
in the case of white noise; for literature see ref. 21. 

Conclusion. There is no universal criterion for the validity of the 
Fokker-Planck approximation, but (20) is necessary and sufficient for 
computing how an initial value approaches the equilibrium when there are 
no unstable or critical points. 

9. ESTIMATE OF THE T E R M S  IN THE S E C O N D A R Y  
EXPANSION 

The funct ionf(u)  has a variation length ~ ~ If/f'l. The time ~'m needed 
for u to change by this amount  is c~/[fr ~ ]f'f-1. Thus, the time scale pc m of 
the macroscopic motion is the time in which it becomes apparent that the 
motion is not uniform. It appears from (15) that in the secondary expansion 
the mth term is of order (Tc/Tm) m (m = 0, 1, 2,...). This expansion provides a 
good approximation if Zc/Zm'~ 1. It was found in (20) that this is also the 
condition for applying the Fokker-Planck approximation to the stationary 
solution near an attractor. Hence, for finding the equilibrium, the so-called 
best Fokker-Planck equation is no better than the white noise approximation. 

This is true in general, but for special forms of ((t)  the situation may 
be somewhat more favorable. In fact, if ~(t) is Gaussian, the terms with 
n = 3  in (16) vanish and also the term with n = 4 ,  m = 0  (Appendix A). 
Hence the corrections to (10) are of order z~ and it is permitted to include 
in D(u) the first correction, which is of order z c- 

Is P" for nonwhite noise broader or narrower than for white noise? 
This question makes sense only if one takes for ~(t) a specific form in 
which ~c enters as a parameter. I take Ornstein-Uhlenbeck specified by (4) 
and vary rc as in (5). It is then justified to use (10) with 

D(u) = Dol l  + zc f ' ( u ) ]  = D0(1 - zc/~m) 

It follows that ps is narrower than for white noise to first order in vc- To 
order ~ one must include the term with n = 4  and therefore a fourth 
derivative of P. As a consequence, ps is no longer Gaussian and a com- 
parison of widths is moot. 
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10. ALTERNATIVE T R E A T M E N T  BY EL IM INAT ING THE FAST 
VARIABLE 

So far I have utilized the results of the cumulant expansion of 
stochastic differential equations. It is also possible to treat ~ as a fast 
variable and utilize the known method for eliminating fast variables322'23) 
This method, however, works only if ~(t) is itself a Markov process obey- 
ing some master equation. I take for 4(0 the Ornstein-Uhlenbeck process 
(4). On eliminating 4, we shall find an equation of the form (2), in which 

is obtained as a series in powers of %. 
To cast the problem in a suitable form, write the equation for the joint 

probability F(u, 4, t) of u and 4, 

OF 0 1 / 0  D 02x\ 
Ot = O u [ f ( u ) + 4 ] F + ~  ~ - ~ + ~ - ~ ) F  (21) 

For small rc the fast variable 4 may be eliminated so as to obtain an 
equation for 

j F(u, 4, t) d~ = P(u, t) 
However, the result in ref. 23 does not carry over straightaway because 
there the limit % ~ 0  was taken with constant ~, whereas we are now 
concerned with the limit (5). In this limit ( 4 2 ) s ~  Do~% is large. Hence, 
we have to rescale 4 by setting 4 -- q(Do/%) 1/2 in order to exhibit the powers 
of Zc: 

OF ~--u (D~ OF 1 ( 0 02) 
& =  f(u) F - \ - - ~ /  ~t~u+ ~ -~q~1+-~5~2 F (22) 

The calculation is now straightforward; see Appendix B. The result is 

0P 0 02P 0 2 
Ot = - O u  f(u) P + Do ~u 2 + zcDo ~ f '(u) P (23) 

One recognizes the white noise approximation and the order-% correction 
to D(u) according to the secondary expansion (15). To this order of ~,. no 
contribution from the primary expansion appears because we have chosen 
~(t) to be Gaussian. 

APPENDIX  A. THE C U M U L A N T  EXPANSION 

The higher order terms of the primary expansion can be found by 
applying the recipe given in refs. 18 and 19; see also ref. 3. First construct 
the Liouville equation associated with (9), 

Op(u, t) & Op 
Ot - Ou f(u) p -- ~(t) O--u 
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It is again a stochastic differential equation, but linear in the unknown. 3 
The linear operators Ao and A~ in ref. 18 are in the present case 

Ao = -Vf ,  A~(t)= - ~ ( t )  V 

where V stands for O/Ou acting on everything to the right of it. The average 
(p(u, t ) )  is identical with the probability density P(u, t) of u. (24) 

The cumulant expansion of linear stochastic equations can now be 
applied and gives to second order in ~(t) 

E L P = A o + e  tA~ (V( t )  V ( t -  r ) )  dr .e  -tA~ (At) 

The operator etA~ is determined by its action on any test function g(u): 

e'a~ = e 'Wg(u) = g(u- ' )  - f ( u - ' )  g(u - ')  
f(u) 

V(t) is the time-dependent stochastic operator defined by 

V( t ) = ~e- tA~ ~ ( t ) e ''~~ --r dVf V e -  'VS 

Acting on any g(u), it gives 

V(t) g(u) = -~( t )  V du , . , f (u)  
du--- 7 g(u) = --r v f - ~  g(u) 

By applying these identities repeatedly, one obtains 

e'A~ V ( t -  z) e-ta~ 

= {(t) {(t -- Z) ge-*VfVe~Vfg(u) 

= ~(t) ~(t -- v) Ve-*Vfg f (u~)  g(u ~) 
f(u) 

= ~ ( t ) ~ ( t - z ) v d u  ~ d f (u)  
du_~ f(u_--~) g(u) 

~(t) 2 f ( u )  g(u) 
= ~ ( t - * ) V  f (u  *) 

Substitution in (A1)yields (10), (11). 

(A2) 

3 The name "stochastic Liouville equation" has been used for this equation but also for the 
entirely different type of equation (21). 
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The term in LP of order ~4 is given by the ordered cumulant (indicated 
by triple brackets (18'19)) 

f etA~ V(tl) V(t2) V(t3)))) e -'A~ dtl dt2 dt3 (A3) 

The integral extends over t > t~ > t2 > t3 and the ordered cumulant is (in 
abbreviated notation) 

<<< VV1 V 2 V3 ))) = ( VVl  V 2 V 3 ) - ( VV1 ) < V2 V 3 ) 

- ( vv2>(  Vl v 3 ) -  < vv3)( v, v2) 

We set t i=  t - z i  and use similar tricks as in (A2). The integrand of (A3) 
becomes 

( ( ~ 1 ~ 2 ~ 3 ) - -  < ~ 1  ) < ~ 2 ~ 3 > )  V 2 -  - -  - -  
d d du 

du ~1 du-~2 du-~3 

d d du 

du-~: du-~ du-~  

d d du 
- -  ( ~ 3 > ( ~ 1 ~ 2 > V  2 -  - - -  (n4) 

du-~  du-~ du-~2 

On expressing all derivatives in terms of V, one obtains a plethora of terms, 
which together constitute the next order in the primary expansion beyond 
the Fokker-Planck approximation. Rather than writing them all down, I 
select a few simple cases. 

First consider the secondary expansion of (A4). To zeroth order in z,. 
one has u - ~ ' =  u -~2= u - ~ =  u, so that one obtains 

~?P cq ~32 634p (A5) 
Ot - "~ufP +-~u2 D(u) P + D* ou ' 

D * =  f'-o~ dr1 f"oo dt2 ft2_o ~ dt 3 (((~(t)~(t~)~(t2)~(t3)))) (A6) 

The order of D* is 4 3 2 o~ z e ~ Doze, so that the correction term is of the form 
(16) with n = 4 ,  m = 0 ,  k = 0 ,  as expected. It is readily seen that all higher 
order terms of the primary expansion, each taken at the lowest order of its 
secondary expansion, are constructed in the same way from the ordered 
cumulants of ~(t). 

Second, if ((t) happens to be Gaussian, all its cumulants beyond the 
second vanish and D * =  0. I make the stronger assumption that ~(t) is an 
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Ornstein-Uhlenbeck process, and compute the next order of (A4) in the 
secondary expansion. One has 

d = f ( u )  V f ( u )  V = ( I + r l / ' ) V + O ( C )  
du ~i f ( u - ~ )  f ( u ) - z l f ( u ) f ' ( u )  

Thus, (A4) is, to first order in the z's, 

(r  (~1 r ) V2(g2 -- "gl )(Vf'  V - f ' V  2) 

"+ (~r162  V 2 [ ( g l -  1:3) f ' v 2 +  (Z'2--'Cl) v f ' v +  (I"3 - r2) V2f ')]  

In both lines the factors involving { are ~4 e x p [ ( z l -  z 2 -  z3)/zc]. Perform- 
ing the integration over z3 > z2 > r~ > 0, one obtains 

r , ,v  i-vf' v + �89 ,. t aa  - � 8 8  

That gives to order z 2 

~3P 0 2 1 2 2 + f " P  (A7) ~t fe+-~-~u2D(u) P + ~ D o % - ~ u 2  3f"  

The new term is the one in (16) with n =4 ,  m = 1, k =  1, 2. 

APPENDIX B. THE ELIMINATION OF THE FAST VARIABLE 

Decompose (22) according to the powers of %, 

F =  (Tc 1'~0 + Tc 1/2~1 ~- ~2) F (B1) 

The largest term is the one with Le o and we therefore select the projection 
operator ~' = 1 - . ~  defined by 

~F(u ,  11) = m(~l) f F(u, 11') d~l', 

Then 

re(q) = (2~z) - ' /2 e -"2/2 

  =Le2r 

Equation (B1) may be split into two coupled equations for N F  and .~F: 

O ; ~ F =  ~ 2 ~ F +  % - 1 / 2 , ~  1 ~ F  

0 ~ ~ F  = Le2 ~ F  + z ~ 1/2 ~ 1 .~ F + z ~- l/2 ~Le L ~ F  + z ~- ~ ~ o  ~ F  

822/54/5-6-13 
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The first one can be written 

a ,P(u ,  t ) =  Sf2P + r,. ~/2 f dtl ~q'~w (B2) 

while w = .~F is the solution of the second one, 

63, w(u, tl, t) = 5r w + r c 1/25fl m ( q )  e + r~- 1/2.~s w + r j- 1.~s o w 

Expand w = r~/2Wl + r,.w 2 + ,3/2,A, 1/2 ~,. ,v3, so that to order r c 

r 1/2.~ , = "c l /2 ,~  2 w 1 -4- r e. 1 / 2 ~  1 m P  + -~q~l w l + "c~/2~,O-~l w2 c utw1 

-]- r c  1 /2~,~0 w 1 -[- ~ t ~ o  w 2 -~- rl/2~,~Oo w 3 

The terms of order % 2/2 give 

W l = - S f  o l S~l m P = ~LP o 1 D ~ / 2 q m -~u 63 P = - tl m D ~ / 2 a P63.___u 

On inserting this into (B2), one finds the first two terms of (23). 
Continuing in this way, we obtain 

W2 = _ _ ~ O 1 ~  ( ~ I W I  = __~OO1 Do~u (q2 _ 1) m 
aP 

63u 

1 02P 
= ~ D o ( q  2 -  1)m 63u2 

It does not contribute to (B2). Furthermore,  

2'oW3 = - ~ w 2  - ~ w l  + 63,wl 

-- 1 03 /2 ( .  3 633p 1'2 ~__~__f63P D~/2qm 63 63P (B3) 
- - ~  o ,'f - q ) m - f f - - u 3 - - D o /  qm 63 u 63u 63t 63u 

There is no need to solve this for w3, because all that is required in (B2) is 
the integral 

• f dtl ~"~1 W3 = -D~ /2  drl ~ o  ' R  ( B 4 )  

where R is the right-hand member  of (B3). The integral can be evaluated 
by applying the adjoint of s  to the factor q, which gives - t / ,  so that one 
gets for (B4) 

63 e 634p 632 63p 632 0P 
D~/2~u J tl dtl R =  D2--~u4 - Do ~u2 f -~u - Do 63u2 63t 
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For OP/Qt one may insert the lowest order expression given by the first two 
terms of (23). The third and fourth derivatives cancel out and the result is 
(23). The sole correction term of order r ,  has the form (16) with n = 2 ,  
m = 1, k---0, 1. Of course (23) agrees with (A7) to first order in T c. 

A P P E N D I X  C. C O N F R O N T A T I O N  W I T H  T H E  L I T E R A T U R E  

Results will be quoted in our notation and adapted to the simplified 
version (9). It is of course easy to transform all equations back to the 
original x if so desired. 

Sancho et al. ~2) obtained (10), with 

D(u) = Dol l  + r~ f ' ( u ) ]  (c1) 

This agrees with (14) to lowest order beyond Fokker-Planck. An estimate 
of the size of this correction is Dozcf'/A 2= (Do/A 2) "rc/z m. The fourth term 
of the primary expansion for non-Gaussian ~(t) can be estimated by 
O2"cc/z] 4. The relative size of both terms depends on the P considered. In 
equilibrium zl2= Dorm and both terms are equally important. It is therefore 
inconsistent to use (C1) for computing P" without improving on the 
Fokker-Planck approximation--as mentioned in Section 9 and in ref. 24. 

Fox ~7) obtained (10) with 

D ( u ) = D o [ 1 - % f ' ( u ) ] - '  (c2) 

which also agrees with (14) to order rc. The higher orders do not agree, 
but they are meaningless anyway because of the neglected higher orders of 
the primary expansion. 

Some authors ~6'26~ have simplified such equations by replacing the 
functions of u that occur in the coefficients with their averages. In this way 
(C2) becomes an as yet unknown function of t, 

D ( u ) ~ D o [ l _ % ( f , ( u ) )  ] 1 

This has the effect that the equation becomes nonlinear in P and that the 
local rate of change of P depends on the value of P everywhere else. It is 
clear that this cannot be correct for very flat P, let alone for a P consisting 
of two peaks. But even for a single peak this leads to incorrect higher 
orders. (27) 

For  the case that r is Ornstein-Uhlenbeck it was shown by Sancho 
eta/. (2) that the function D(u) obeys 

E1 - r~ f ' (u ) ]  D(u) + %f(u) D'(u) = 1 (C3) 
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This is easy to verify with ~he aid of the exact expression (14) and of 
course (4), 

io ~ d f (u )  D'(u) = o~ 2 e "/~' dr du f ( u  -~) 

= a2f'(u) e ~/~" dr -- ~2f(u) 
f (u -~)  

_Y~u)) D(u) 
- ~ )  D(u) o~ 

+ o~2 Io 

e_~/~ dr f ' ( u -* )  
f (u -* )  

e ~/~" " f ' (u -~)  du -~ 
a ~  du 

1 d 
e-~/zc dr f (u-T)2 ~ f ( u  ~) 

d~ 
e - ~/zc 

f ( u -  ~) 
_ f ' ( u ) D ( u ) _ ~ 2 e  ~/~c 1 : c~2f0~ 

f (u )  f ( u  -~) - r~'--~ 

,ff~)) ~2 1 
- D(u) Jr f(u~) .ccf(u ) D(u) 

This is the same as (C3). Note that ~ does not need to be Gaussian, it is 
sufficient that its autocorrelation function is exponential. 

It is possible to write (C3) in the form 

D(u) , , d D(u) 1 (C4) 
f (u)  ~- z, f t u )  ~ f (u )  = f ( u )  

and to deduce from this 

D(u) = f ( u )  1 + roY(u) f (u )  

This form was proposed by Lindenberg and West. (4) Its expansion in 
powers of rc provides the correct series, namely (15) in which x(t) is taken 
from (4). It is true, of course, that (C4) determines D(u)/f(u) only up to a 
solution of the homogeneous equation, but such a solution has a factor 
e-1/% and therefore does not contribute to the expansion. 

A P P E N D I X  D. A N  EXAMPLE 

As an example, consider the process u defined by 

= - u  + ~ ( t ) ,  u ( O )  = Uo (D1) 
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where r has zero mean and autocorrelation function (4). The equation is 
linear and additive and can therefore be solved exactly in the way of 
Uhlenbeck and Ornstein. The result is, for the first two moments, 

(u(t) )=uoe-t ( D 2 )  

( u ( t )  2 ) = ( b / ( t ) ) 2  _{_ _ _  ( D 3 )  
~ -----0~227c e -  2t 292T2 e -  t -  t/,~ 

1 + %  1 - %  + ~ _ ~ 2  

For later comparison note that these moments obey the equations 

a , ( u ( t ) >  = -(u(t)) 

20t2rc e-t-'/~c) 
8 ' (u( t )2)  = - 2 ( u ( t ) 2 )  + 1-~r~ (1 - 

(D4) 

(D5) 

In the same way one finds the autocorrelation function 

2t -C ( ~z2rc ) ~X2Zc e 
(u( t )  u ( t + r ) ) = e  u 2 i - - ) - ~ / +  1 _--~2 

2 2 
Cr r e e _ r / ~ c  ~2Z e 

2 + ~ (e-3 + e ~/~") e - '  '/~ 
1 - % 

Here r >~ 0 and of course t ~> 0. It obeys the equation 

~162 e ' '/~) 8,(u( t )  u(t + r) ) = - ( u ( t )  u(t + r) ) + ~  ( 1 -  e-~/zc 

Now apply the cumulant expansion to this example. It leads to the 
Fokker-Planck equation (10) with coefficient (11): 

OP(u, t) ~ o~2 82p 
= - - u P +  - -  

8t 8u 1 + 1/% 8u 2 (D6) 

From this one finds again (D4) and therefore also (D2). The second 
moment now obeys the equation 

8,(u( t )  2) = --2(u( t )  2 ) - t - - -  
2cr 

(D7) 
1 + %  

It coincides with (D5) after an initial transient time of order %. Also, after 
this transient time the exact second moment (D3) is a solution of (D7). 
Yet this is not what one would get by solving (D7) with the correct initial 
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condition (u (0)2)=u~.  For, the initial slip during the transient time 
creates an error in ( u ( t ) 2 ) ,  

2~2z~ @-2t -,-,/~,) 
~ --e 

which dies out only at the macroscopic relaxation rate of the system (D1). 
This indicates already that after the transient time the Markov process 

5(t) defined by (D6) does not coincide with the actual process u, not even 
as far as their second moments are concerned. Their autocorrelation 
functions remain different even at large t. The exact expression is, for z > 0, 

( -~2Zc-f- "~ O~2Zc e_ T 
( u ( t )  u ( t + z ) ) = e  -2t  " u 2 1 _ % j + 1 . - ~ 2  

2 2 0{292 
a z c e z/z. c - z +  e ' t/~c 2 + ~ (e e -*/~c) (D8) 

1 - z  c 

which obeys with respect to z the differential equation 

e2zc ,-,/~.) -T/~ (D9) O , ( u ( t )  u ( t + z ) ) =  - - ( u ( t )  u ( t + ' Q ) + ~ - - ~ % ( 1 - - e  e 

On the other hand, the autocorrelation function of 5(0 obeys of course the 
same equation as ( 5 ) ,  

a , (5( t )  5(t + r ) )  = --(5(t)  ~(t + r ) )  

The missing last term of (D9) does not disappear for large t, but there 
remains an error proportional to e */*~. One may also compare the explicit 
expression (D8) for the exact u with 

(flU) 5(t + z) ) = e - 2 ' -  ~u ~ _ 1-'~%) + 1 + % 

for the Markov process defined by (D6). Even for large t there remains a 
difference proportional to e -L  

Equation (D6) is the first term of the primary expansion. Its diffusion 
coefficient is 

0~2"fc Do 
D(u)  = - (O10) 

1 + %  1 + %  

The secondary expansion consist in expanding this in powers of %. The 
question of whether it is consistent to include the higher powers of % while 
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terminating the primary expansion can be investigated for the case that ~ is 
Ornstein-Uhlenbeck. In that case Eq. (A7) is valid to order z~; since in our 
linear example the last term of (A7) vanishes, it follows that (D6) is correct 

2 .  to order %. 

~Pot f-u uP+D~ G+ 2 -z---r c32P _ _ ~c) u_ + o ( ~ 3 c )  

But of course this is a very special case in that the equation is linear and 
the noise Ornstein-Uhlenbeck. 

Consider the same equation (D1) but with a two-valued Markovian 
~(t) ,  

~(t)= _+~, (~( t ) )  =0 ,  (~(tl)  ~(t2)) =~2e-lt~ ,21/~, 

It has the property that for an even set of successive times 

(~(tl) ~ ( t 2 ) . . .  ~(t2p) ) 

= ~(tl) (( t2))(~(t3) ~ ( t4 ) ) - "  (((t2p-1) ~(t2p)) (D l l )  

The first two terms of the primary expansions are again given by (D6), 
because that equation only involved the autocorrelation function of ~(t). 
To determine the next term (A3) we write it again in the form (A4). In 
the present example u ~=ue ~, so that on each line of (A4) the factors 
involving the derivatives reduce to 

e - - r l - -  z 2 -  z 3 V 4  

Moreover, it follows from (Dl l )  that the first line of (A4) vanishes. To 
evaluate the second line, one needs the integral 

oc~ o~ 3 

fo dTI fz dT2fz dTae z2/zce-(z3-rD/Z~e Z l - ~ 2 - z 3 _  _ Tc 
, 2 2(1 +%)2 (1 + 3zc) 

The integral on the third line gives the same. Consequently, we find 
[comp. (D6) and (D10)] 

~P 0 D O 02P DEz~ 04P 
--~=~u uPq l+%Ou 2 ~ ( l+z~)Z(l+3%)Ou 4 

The new term is of type (16) with n = 4, m = 0, k = 0. 
The stationary solution is roughly P~,,~exp(-u2/2Do), so that 

d = DU 2. Hence for this P~ the latter two terms are of order (t + %)-~ and 
z,., respectively. Thus, for the present example it is not consistent to take 
the factor (1 + %)-~ in the second term seriously while neglecting the third 
term. 
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