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Summary 

This paper describes "design charts" which can be used to quickly predict the 
size and shape of the failed rock regions caused by the excavation of a deep tunnel, 
and the induced closure for cases of non-uniform in-situ stress fields. Through a 
simple graphical construction, the design charts can also be used to evaluate the 
performance of a support system. 

Introduction 

The redistribution of stress that accompanies the excavation of a deep 
tunnel may induce failure of the rock. Under such circumstances, the role of 
the support system may be understood as controlling the extent of the failed 
region around the tunnel, and, hence, limiting closure of the tunnel walls to an 
acceptable amount. The selection of a support system required to meet such 
performance criteria is generally based on application of the concept of the 
ground reaction curve (GRC). The latter can be briefly described as the rela- 
tionship between the pressure exerted by a support system and the corre- 
sponding excavation induced displacement of the tunnel wall. 

To calculate a GRC, it is postulated that support forces equivalent to the 
pre-excavation stresses are applied at the instant of excavation, thereby inhib- 
iting any deformation of the rock. The support forces are then relaxed, and 
the corresponding induced displacement of the tunnel is calculated. Because 
of the analytical simplicity, calculation of the GRC has been performed 
widely for the case of a circular tunnel under a uniform initial stress field. In 
those calculations, the rock is generally treated as an elastoplastic material 
characterized by a cohesive-frictional yield strength and by dilatation during 
plastic deformation. Brown et al. (1983) provide an exhaustive list of refer- 
ences of such simple analytical models, and discuss different characteriza- 
tions of the annulus of failed rock around the tunnel. 

* Previously of J. F.T. Agapito and Associates, U.S.A. 
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A recent analytical development ( D e t o u r n a y ,  1985, 1986a) has 
facilitated the generalization of  the GRC concept for some cases of non- 
uniform in-situ stress fields ( D e t o u r n a y  and F a i r h u r s t ,  1982). As an 
application of that development, this paper describes design charts that 
provide a powerful means of  performing parametric analyses of tunnels 
subject to non-uniform loading. The design charts consist of contour maps 
of  the induced tunnel wall displacement in the direction of the principal 
in-situ stresses. These contour maps, which are calculated for the case of an 
unsupported tunnel, allow a user to quickly predict the minimum and 
maximum closure experienced by the tunnel during excavation unloading 
of  the rock mass. Also, a simple geometrical construction can be used to 
assess the influence of ground support on tunnel closure. 

This paper starts with a brief discussion that is intended to establish 
the utility of the design charts. The theoretical basis for the charts and the 
calculations upon which they rely are then described in sufficient detail for 
a user to understand the scope and limitations of their application. Finally, 
a practical example of the use of one of the charts is provided, with 
particular attention paid to the method of evaluating the influence of  
internal pressure provided by a ground support system. An appendix 
contains a series of charts that cover the range of properties likely to be 
encountered in many practical circumstances. 

The Design Chart 

The mode of  behavior of  the rock mass around a circular tunnel can 
be depicted graphically in a normalized stress diagram with axes Po/q and 
So/q, (Po and So denote, respectively, the in-situ mean stress and stress 
deviator in a plane perpendicular to the tunnel axis, and q designates the 
uniaxial compressive strength of  the rock). Such a graphical construction is 
illustrated by Fig. 1, in which the following four regions are identified: 

�9 Region I, within which the rock mass behaves as a linear elastic material, 
since the state of  stress does not exceed the strength at any point; 

�9 Region IIa,  within which failure of  the rock around the tunnel will 
extend in a direction perpendicular to the more compressive principal 
applied stress, but not completely engulf the tunnel; 

�9 Region l ib ,  within which the tunnel will be completely surrounded by 
an oval-shaped failure zone; and, 

�9 Region III, within which a butterfly-shaped failure zone may develop. 

The above rules provide a very simple means of  immediately identi- 
fying the general behavior of the rock mass around a tunnel. (Note that 
figures similar to Fig. 1 must be prepared for a specific friction angle.) If 
the stress state plots within Regions I and II, then the methods described in 
this paper can be used to calculate the displacements of  the tunnel wall due 
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Fig. 1. Re la t ionsh ip  be t ween  the initial s tress state and  fai lure m o d e s  for  an  u n s u p p o r t e d  
circular  

to excavation. On the other hand, if the stress state lies in Region III, then 
a numerical modeling technique, such as one based on the finite difference 
or finite element methods, will have to be used to investigate the defor- 
mation of  the rock mass around the tunnel. Note that Region III is 
bounded by three lines: one is the boundary  between II and III (its defini- 
tion is deferred to a later section); the second, labelled Po-So = 0, corre- 
sponds to a uniaxial in-situ stress field; the third delimits the in-situ stress 
according to the Mohr-Coulomb limit equilibrium line (i.e., it is assumed 
that the in-situ stress corresponds to an elastic state for the rock). 

It has been stated above that the behavior of  an unsupported tunnel 
can be related, for a specific value of  the rock friction angle, to the 
normalized values Po/q and So/q of the mean and deviatoric stresses. 
Closure of  the tunnel during plastic deformation is related to those same 
quantities. It will subsequently be shown that actual closure can be natu- 
rally normalized by the quantity a q/2 G, in which a is the tunnel radius and 
G the shear modulus of the rock; and that the normalized closure for an 
unsupported tunnel depends only on Po/q and So/q, provided that the 
friction angle, #, the dilatation angle, ~b*, and Poisson's ratio, v of  the rock 
are fixed. The normalized radial displacement at the tunnel wall along 
diameters perpendicular and parallel to the major in-situ stress Po + So can 
thus be displayed in the form of contour lines in the stress diagram (Po/q, 
So/q). (See Fig. 2, where, by convention, the solid line refers to the radial 
displacement perpendicular to the major in-situ stress direction, the dashed 
line to the displacement parallel to that direction). 
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D E S I G N  C H A R T  
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Fig. 2. Design chart for a material characterized by friction angle of 30 ~ dilatation angle of 
15 ~ and Poisson's ratio of 0.25 

The user of the design charts first selects a chart for the appropriate 
set of rock properties (~b, ~*,v). From the initial state of stress and the 
uniaxial compressive strength of the rock mass the normalized mean and 
deviatoric stresses are calculated, and the corresponding point is plotted on 
the design chart. If  the point lies anywhere within zone II, then the 
normalized radial displacement of the wall of the tunnel (measured at 
points on the diameters of the tunnel parallel to the major and minor 
in-situ stresses) can be interpolated from the displacement contours. The 
displacement can then be transformed to the physical values by multi- 
plying by the factor aq/2 G. An example serves to illustrate this process. 

Consider the following set of conditions: 

in-situ vertical stress 30 MPa 
in-situ horizontal stress 22 MPa 
Tunnel radius 2.5 m 
Rock Mass Shear Modulus (G) 800 MPa 

Poisson's ratio (v) 0.25 
Uniaxial Strength (q) 10 MPa 
Friction Angle (~b) 30 ~ 
Dilatation Angle (~b*) 15 ~ 
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From these data the normalized mean and deviator stresses are 2.6 and 
0.4, respectively. Those values define Point 1 on Fig. 2. Hence behavior 
type I Ib  is expected, and the normalized values of the displacement are 
10.3, from the solid contours and 6.7 from the dashed contours. The 
normalization factor on the closures is 1.56 cm, so the calculated displace- 
ments are approximately 16.1 cm and 10.5 cm. The larger value was asso- 
ciated with the solid contours and is, therefore, the displacement perpen- 
dicular to the direction of the major in-s i tu  stress. Additional information 
about  the extent and shape of  failure and the influence of any ground 
support can also be obtained from the design chart. However, discussion of 
those refinements is deferred until after presentation of the relevant theo- 
retical basis. 

The Elastoplastic Model of a Deep Tunnel 

Consider a long cylindrical tunnel of  radius a in an infinite rock mass 
subject to a non-uniform in-s i tu  stress. It is assumed that the long axis of  
the cavity is parallel to one of  the principal in-si tu stress directions and that 
the tunnel is deep enough so that the gravity force can be neglected. The 
rock is assumed to behave as an elastic perfectly plastic Mohr-Coulomb 
material; i.e., it is characterized by a yield envelope 

0-1 - / ~  a3 - q = 0, (1) 

where K s is the passive coefficient defined as Kp = (1 + sin ~ ) / ( 1 -  sin ~b) 
and 0-1 and o-3 are the major and minor principal stresses in the plane 
perpendicular to the tunnel axis. (Compressive stresses are taken as 
positive throughout this paper). Further, it is assumed that dilatant 
behavior during plastic flow is controlled by the flow rule, 

d e  p = - K * d e ~ ,  (2) 

where K* is the dilatation factor, K~ = (1 + sin ~b*)/(1- sin ~*), ~b* is the 
dilatation angle, with 0 < ~b* < ~b, and dg~ and de~ are the principal compo- 
nents of  the incremental plastic strain tensor. 

The in-s i tu  stresses can be expressed in terms of the mean and devia- 
toric components,  previously identified as Po and So. Since the rock obeys 
the Mohr-Coulomb yield criterion, the deviatoric invariant So must be less 
than the limiting value Sto given by, 

K , +  1 Po+ , (3) 

which is the equation of the limiting equilibrium line depicted in Fig. 1. 
This constraint on the in-si tu stress can similarly be expressed by imposing 
that the obliquity, m, of  the in-si tu stress, defined as 

m = So /S 'o ,  (4) 
be less than 1. 
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We are concerned with prediction of  tunnel closure caused by exca- 
vation unloading of  the rock mass. In two-dimensional models, excavation 
unloading is simulated by removing the traction forces that were acting 
across the tunnel boundary prior to excavation. This load history has to be 
precisely defined since the solution of  elastoplastic problems is generally 
dependent on the load path. In the present case the load trajectory selected 
involves first an elastic stage during which the boundary of  the tunnel is 
unloaded until there is a uniform internal pressure Pe, at which the elastic 
limit of the rock is reached. The internal pressure is then reduced until the  
tunnel boundary becomes stress-free. Note that this load history is feasible, 
only provided that rn< 0.5. Indeed, if m <  0.5, it can easily be proven, on 
the basis of K i r s c h ' s  solution, that there exists an interval of internal 
pressure values for which the rock remains elastic. 

For the sake of  convenience, we designate by 1 and 2 the points on the 
tunnel wall which are located on diameters respectively perpendicular and 
parallel to the major principal in-situ stress (see Fig. 1). The limiting 
internal pressure, pe, is given by 

2S'o ( mKp-1) q (5) 
P~ Xp-1 1 + 2  Kp+l K,-I" 

If the internal pressure, p, is decreased below this elastic limit, two isolated 
plastic regions will develop on either side of the tunnel in the vicinity of 
points 1, i.e., in a direction perpendicular to the maximum compressive 
in-situ stress. These two zones will eventually coalesce to form a unique 
yield region around the tunnel. 

Extent and Shape of the Plastic Region 

The mathematical analysis for determining the shape and extent of the 
failed rock region is based on the a-priori hypotheses that during exca- 
vation unloading of  the rock mass: 

1. The rock, once it has yielded, does not return to an elastic state (i. e., no 
elastic unloading). 

2. The position of  the boundary between intact and failed rock is statically 
determined by the internal pressure p and the in-situ stress. 

These two assumptions, which are met in the uniform loading case, 
imply that the progressive removal of  the preexisting traction forces on the 
boundary of  the tunnel is accompanied by a progressive growth of the 
failed rock region; and, that the shape and extent of  that region depends 
on the yield parameters (the friction angle ~b and the unconfined com- 
pressive strength q), but not on the elasticity parameters G and v and the 
dilatation angle ~b*. 

The two a-priori hypotheses further imply that the stress field in the 
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plastic zone is completely determined by the shape of the tunnel boundary, 
and by the stress conditions on that boundary. The stress field in the yield 
zone is thus characterized by a radial symmetry. Its solution is well-known 
(e. g., S a 1 e n c o n, 1967 ; N e w m a r k, 1970) and given by 

art = p +  q q Kp-l' 

aoo= Kp p+  q q 
K p  - "l ' 

O'rO = 0 .  (6) 

With the stress in the yield zone known, the position of the elasto- 
plastic interface is controlled by the condition that all stress components 
must be continuous across it (K a c h a n o v, 1970). 

The problem of determining the position of the elastoplastic interface, 
once the tunnel is completely surrounded by failed rock, is related to the 
problem solved by G a l i n  (1946) (see also P r a g e r  and H o d g e ,  1968, 
and H i l l ,  1967) for the case of  an incompressible frictionless Tresca 
material. As in the original solution of  G a l i n ,  determination of  the 
interface can be reduced to the problem of finding a mapping function, by 
using the M u s k h e l i s h v i l i  (1962) complex variable method for solving 
plane elastic boundary value problem ( D e t o u r n a y ,  1985, 1986a). The 
elastoplastic interface is found to be an oval characterized by a mean 
radius a Ro, where 

l 
] 1/(Kp- 1) 

_ q ~  

2 Po4 K p - 1  (7) 
Ro= Kp+l  q ' 

P+ Kp-1  

and by a major to minor axis ratio given by 

M a j o r -  axis = { 1 + rn] 2/(Kp+ a) 
M i n o r -  axis \ ~ ]  " 

(8) 

The major axis of the interface is always perpendicular to the major 
compressive stress (Po+ So) at infinity, and the mean radius of  the plastic 
zone corresponds to the radius of  the circular interface that would be 
obtained by neglecting the deviatoric component  of the in-situ stress. From 
Eq. (8) it is apparent that the shape of the interface is controlled by only 
two parameters; the obliquity m and the friction angle r Further,  because 
the shape of  the plastic region is independent of p, the interface grows in a 
self-similar manner as the pressure is monotonically reduced below a 
minimum pressure Pl 
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2 Sto (1 - m) 2(Kp-1)/(Kp+I) q 
[ K , - 1 1 2 m 2  K p - l '  (9) P ' - K p ~  1 +  [ K p + l j  

that corresponds to the condition when the interface is tangent to the 
tunnel boundary. This self-similar growth implies that there is indeed no 
elastic unloading, which is consistent with the first a-priori hypothesis. The 
other assumption --  that the problem is statically determined --  is met, 
provided that the obliquity m is less than a critical value m*, which is a 
function of the friction angle 4- Table 1 lists the critical obliquity m* that 
was calculated by considering the condition for which one of the slip-lines 
becomes tangent to the interface (D e t o u r n a y, 1986 a). If the obliquity is 
greater than m* (but less than 1), the location of the elastoplastic interface 
is statically indeterminate. In that case, the stress field in the plastic zone is 
no longer given by Eq. (6), thus requiring a much more complicated 
process of solution (because of the need to simultaneously solve for the 
incremental stress and displacement fields for a small variation of the 
boundary conditions along the loading path). As a consequence, the 
location of the elastoplastic interface for obliquity greater than m* depends 
also on the deformation characteristics of the rock, as well as upon the 
state of stress. Specifically it will be influenced by the shear modulus G, the 
Poisson's ratio v, and the dilatation angle ~b*. 

Table 1. Critical Obliquity m* 

~b 0 10 ~ 20 ~ 30 ~ 40 ~ 

m* 0.414 0.437 0.466 0.500 0.542 

Relationship Between in-situ Stress and Failure 

From the previous analysis, it is possible to develop the picture of the 
relationship between the in-situ stress and modes of failure around the 
tunnel that was presented at the beginning of the paper. The relationship 
was depicted graphically in Fig. 1, which illustrated the nature of any 
failed rock region around an unsupported tunnel for various combinations 
of in-situ deviatoric and mean stresses. The figure identified the four 
different types of behavior discussed earlier, and it suffices here to note 
that Region II on the figure corresponds to statically determinate cases, 
and Region III to statically indeterminate ones. The boundary between II 
and III is the line of critical obliquity m*. (This line, like any other line of 
constant obliquity passes through the intersection of the M o h r -  
C o u l o m b  yield envelope with the mean stress axis.) As noted earlier, 
statically determinate cases can be solved semi-analytically (at least in 
Region IIb), while statically indeterminate conditions must presently be 
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solved by means of  numerical techniques. Within this paper, discussion is 
confined to the statically determinate cases that can be analyzed using the 
design charts. 

Closure of the Tunnel 

With the problem of evolution of  the failed rock region resolved --  at 
least for mode II --  calculation of  the tunnel closure during excavation 
unloading can be undertaken. This computation involves first determi- 
nation of  the elastic displacement at the failed-intact rock boundary,  then 
integration of  a system of two hyperbolic partial differential equations 
governing the displacement in the plastic region (D e t o u r n a y and F a i r- 
h u r s t ,  1987). 

Calculation of  the displacement at the elastic boundary can be carried 
out analytically, by simple application of  M u s h k e l i s h v i l i ' s  theory, but 
integration of  the equations governing the displacement in the plastic 
zone must be performed numerically by the method of characteristics 
(M a s s e a u ,  1899). These governing equations are obtained on the basis of 
the following argument. Since the principal stress directions in the plastic 
zone are radial and tangential --  due to the statically determinate nature of 
the problem --  the principal directions of the incremental plastic strain 
tensor remain oriented along the radial and tangential directions. The flow 
rule (2) can thus be integrated to yield 

+ Kp = 0; = 0.  (10) 

The partial differential equations for the displacements are then 
derived from (10), using the decomposit ion of the strain into plastic and 
elastic parts and the strain-displacement relationship (the elastic strain can 
be found explicitly from Eq. (6) for the stress in the yield zone). 

The lack of  solution for the elastoplastic boundary in the early stage of  
rock failure (when the internal pressure p is in the range pl<p<pe) does not 
preclude calculation of  tunnel closure for P < P t .  Closure of  the tunnel in 
the early stage (P~<P<Pe) can be assessed by interpolating quadratically 
from the closure computed at Pe and Pt, noting also that the rate of  closure 
with p at the elastic limit can be calculated from Ki  rs ch ' s  solution. 

If the evolution of tunnel closure as a function of the internal pressure 
is desired (Ground Reaction Curve), the methodology of  calculation of the 
displacement does not need to be repeated for a series of values of the 
internal pressure. In other words, there is no need to solve a sequence of 
C a u c h y  problems for each new position of the elastoplastic interface. 
Indeed, the self-similar growth of the interface, for internal pressure less 
than pc, implies that as in the uniform loading case ( D e t o u r n a y ,  1986b), 
the differential equations for the displacement field can be solved in a unit- 
plane; which is defined by dividing all physical lengths by the character- 
istic size aRo of the plastic zone. In the unit plane, the interface occupies a 
fixed position which separates an interior plastic region from an exterior 
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elastic one; the image of a physical point in the unit plane moves along a 
radial line, towards the origin, as the interface is growing. As a conse- 
quence, the general expression for the displacement field in the plastic 
zone is 

/ 

a g  o n ~ , -  _u=-~-~t%ytp, 0; m, r r v). (11) 

The field _fi is only a function of the coordinates (p, 0) of  the unit plane 
(p = r/a Ro), and depends on four parameters m, r r and v. Once _ff has 
been calculated, the physical displacement at any point, and at any stage of  
the loading, can be retrieved by a simple scaling operation. In particular, if 
only closure in the vertical and horizontal directions is of  interest, then _~ 
needs to be calculated along the x and y axes in the unit plane; and the 
boundary displacement at points 1 and 2 as a function Ro is then given by 
(11), taking p = 1/Ro and with 0 = 0 ~ or 90 ~ We can thus formally write 
the displacement, Ua and U2, at points 1 and 2 respectively, as 

aq 
U,. = ~--~ U*, i = 1, 2 (12) 

where the normalized displacement Ui* is a function of  the form 

l 

g,* = ~ s m: r r v). 
-7.50 

2G 
~Ur 
aS o 

- 6 . 25  _ 

-5.00 

- 5 . 7 5  

-2.50 

0 

0.75 

-1.25 

2 

- -  I 

. . . .  2 

m = 

m = C  

= 0 . 2  

(13) 

4'.00 I:z5 1:50 ,'.75 z.oo 
Ro 

Fig. 3. Normalized Radial Displacement as a Function of  the Mean Radius of the Plastic 
Z o n e .  (Kp = 3,  K ~  = 1 . 4 2 ,  v = 0 . 2 5 )  
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Note, however, that since the method of  characteristics is a discrete 
method, the function 0 can only be calculated at some discrete points of 
the unit-plane, and therefore closure can only be computed for discrete 
values of the internal pressure. 

Figure 3 depicts the variation of the tunnel wall displacement 
(normalized here by a $1o/2 G) as a function of  the characteristic size Ro of 
the failed rock region for an in-situ stress characterized by m = 0 (uniform 
loading), rn = 0.1 and rn = 0.2. This figure illustrates that with the existence 
of  a deviatoric component  (So>0) in the initial stress field, the circular 
tunnel becomes oval during closure accompanying excavation-unloading 
of  the rock mass. The directions of minimum and maximum closure will 
always be parallel to the principal directions of  the in-situ stress field; 
however, the direction of maximum closure may be either parallel or 
perpendicular to the major principal stress. In the early stage of failure, the 
induced radial displacement is maximum at Points 2; but if rock failure 
propagates deep enough into the rock mass, closure becomes greater along 
the diameter passing through Points 1. 

The average displacement corresponds to the displacement U* cal- 
culated for uniform loading Po. This displacement is given by (e.g., 
N e w m a r k ,  1970; D e t o u r n a y ,  1986b) 

__q , Z + 2 K p + 2 K ~  (Rl+rff 1)+ 
S, ~ Uo = 1 + (K~ +1) (K* + Kp) ' -~ - 

Z (RIo-Kp -- 1), (14) 
(Ks - 1) + 

where 

= ( K  s - 1) - 1) + (1 - 2 v)  (Kp + 1) + 1).  (15)  

(Displacement U* is taken positive towards the center of the tunnel). 

Let us examine now the construction of the design charts. Taking into 
account Eq. (7) with p = 0 and Eq. (4), the general expression (12) for the 
induced boundary displacement U, can be rewritten as 

z t~aq ( Po So, v) U,=x-~U* ; ~b, ~b*, , i =  1,2.  (16) 
q q 

Thus by imposing the friction angle ~b, the dilatation angle ~b* and the 
Poisson's ratio v, the normalized displacement U* and U* can be 
contoured in the stress space defined in Fig. 1. A typical example was illus- 
trated in Fig. 2 (note that both contours are labeled at their common root, 
which corresponds to a uniform in-situ stress state). 

The locus of  the non-uniform in-situ stress sates, that would result in 
uniform closure of the tunnel, is also displayed in the normalized stress 
diagram (Po/q, So/q). This locus is determined by the intersection of two 
contour lines that originate from the same point on the Po/q axis. To left of 
that locus, closure is greater in the direction of  the maximum in-situ stress; 
to the right, closure is greater in the direction of  the minimum in-situ stress. 
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Support Pressure 

The effect of  a uniform support pressure p can be taken into account 
by means of  a simple geometrical construction. According to Eq. (13), 
closure of the tunnel is fundamentally controlled by the position of  the 
elastoplastic interface. It thus follows from Eqs. (4) and (7) that closure of  
a tunnel subject to an internal pressure p in a far-field stress characterized 
by a mean stress Po and a deviatoric stress So is proportional to the closure 
of  an unsupported tunnel in an in-situ stress field of the same obliquity, but 
characterized by a mean stress P'o = Po-A Po with 

A e o -  ' 

in which the factor of proportionality is given by Slo/S'o ~, and S "~ is the 
limiting in-situ stress deviatoric corresponding to P'o. The effect of  an 
internal pressure can thus be accounted for by shifting the initial stress 
point (PoZq, So/q) along a line of  constant obliquity (the support pressure 
line), by an amount -APoZq, measured along the horizontal axis; and 

,~l /S '  t This multiplying the measured displacement by the factor - o - - o -  
procedure is applicable provided that the new stress point (P'o/q, S'o/q) 
remains within Region II. The internal pressure, which moves the stress 
point (P'oZq, S'o/q) to the boundary between Regions I and II, represents 
the support pressure required to prevent any yielding of  the rock and can, 
therefore, also be derived from Eq. (5). 

Two other items of information have been displayed on the design 
charts, of  which Fig. 2 is a typical example. First, the normalized mean 
radius, Ro, of  the plastic zone is marked along the upper margin of  the 
frame; second, the obliquity of the in-situ stress is indicated along the 
right-hand edge of  the figure. The latter can be used in conjunction with 
Eq. (8) to calculate the eccentricity of  the failed region. 

The earlier example of the application of the design charts considered 
the case of an unsupported tunnel. Displacements of 16.1 cm and 10.5 cm 
at the springline and at the crown were calculated from the normalized 
closures interpolated from Fig. 2. The effect of ground support can be 
assessed by first constructing the constant obliquity line through point 1, 
which was defined by the normalized in-situ stresses Po/q and So/q. The 
correction to the normalized mean stress for a support pressure p and the 
parameters of  this problem are from Eq. (17): 

A Po 3.1 p/q  (18) 
q 0.5 +p/q" 

Hence, for a case of  heavy rockbolting, providing an internal support 
pressure of 0.34 MPa (Hoek and Brown, 1980), the corrected normalized 
mean stress is 2.4. This value and the "support pressure line" define point 2 
at which the springline and crown displacements are respectively 13.3 cm 
and 9.0 cm, for an unsupported tunnel. Correcting these values by the 
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factor Sto/S'o 1, here equal to (3.8/3.7), the springline and crown displace- 
ments are thus equal to 13.7 cm and 9.2 cm. Points 3 and 4 correspond to 
much higher support  pressures, such as might be provided by closely 
spaced steel sets (p = 2.4 MPa) and a 30 cm concrete liner (p = 3.4 MPa). 
Note that the tunnel closure is nearly uniform for the case of the thick 
concrete liner, even though an oval plastic region has developed. 

Conclusion 

The design charts described in this paper constitute a powerful 
engineering tool for estimating the support requirement and the closure of  
a deep cylindrical tunnel for cases for which the problem is statically 
determinate. Besides providing a rapid means to calculate the support 
pressure required to limit closure to some specified amount, the design 
charts also display information on the extent and shape of  the plastic zone. 
The latter information is particularly important in the design of  rockbolted 
tunnel sections. The use of dimensionless quantities enables the design 
charts to be generated for only three independent material parameters, 
~b, ~b*, and v. The design charts can be prepared easily and rapidly on a 
micro-computer equipped with a pen-plotter. 

Appendix: Selected Design Charts 

This appendix comprises nine design charts prepared for a range of  
material properties. As noted in the paper, the data on the charts is 
presented in normalized form, but  must be prepared for specific values of  
the friction angle, dilatation angle, and Poisson's ratio. Since the displace- 
ments are least influenced by Poisson's ratio, emphasis has been placed on 
providing charts for a range of  friction and dilatation angles. A single value 
of  Poisson's ratio for each friction angle was selected on the basis that 

1 - 2 v <  sin ~, 

for the out-of-plane stress to remain intermediate (D e t o u  r n a y ,  1986 a). 
The charts presented in this Appendix were prepared using a 

F O R T R A N  program which can be executed on an IBM-PC or compatible 
microcomputer.  The program writes data files that directly drive a Hewlett 
Packard 7475 A (or similar) pen plotter. 
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D E S I G N  CHART 
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D E S I G N  CHART 
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D E S I G N  C H A R T  
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DESIGN CHART 
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