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Summary 

For tunnelling in rock, the original stress field in the ground is changed consid- 
erably before a first lining is participating in stabilizing the opening. Depending on 
this stress release at the tunnel face, only a small portion of the primary stresses is 
acting on the lining. Only a three-dimensional approach is able to determine the 
stresses and the deformations of the ground and the lining realistically. The paper 
presents some results of elastic three-dimensional finite-element-analyses in consec- 
utive steps of the sectional excavation of circular and non-circular tunnels. From 
these results an equivalent two-dimensional approach is derived for technical appli- 
cations, given in diagrams. 

1. Introduction 

Figure 1 shows the characteristic difference of a simplified two-dimen- 
sional appraoch (plane strain model) and the actual development of  the 
crown deformations with excavation advance. If  the full primary stresses 
are applied to a plane system which includes also the full strength of  the 
supporting lining, the analysis yields stresses corresponding to w n L -  w 2d 

in Fig. 1, which are unrealistically large compared to those corresponding 
to w e of the three-dimensional analysis. In Fig. 1, w p + w p are the predefor- 
mations resulting from stress release ahead of the lining. The curves in 
Fig. I are, of course, different with the length of the open section l~, with 
the developing strength of the lining, and so on. 

The plane design model is an upper-limit model with respect to 
stresses in the lining. It may be more valid the softer the ground is, see e. g. 
the ITA Guide lines (1988). Yet, it is a lower limit model for analysing the 
ground. It does not cover the release of ground stresses radial to the tunnel 
lining and at the opening surfaces, which yields greater deviatoric states of 
stresses, hence more failure prone cases. Therefore, a three-dimensional 
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analysis is indispensable for tunnel excavations in rock and medium soft 
ground, where e. g. shotcreting and rock bolting is applied for first support. 
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Fig. 1. Relative displacement of the crown; left: two-dimensional model, right: development 
with excavation advance by applying a three-dimensional model, s. Erdmann (1983) 

However, a three-dimensional approach is in general not suited for the 
practical tunnelling engineer, because of too costly an analysis, and 
perhaps it may even be inconsistent with respect to the overall accuracy 
obtainable in view of usually rough estimates of important ground charac- 
teristics. Tunnelling practice is therefore asking for simpler technical 
approaches, as those applying only two-dimensional design models, see 
ITA-Guide lines (1988), also Duddeck and Erdmann (1985). That is the 
reason why the paper presented here is proposing a two-dimensional 
approach which nevertheless is covering the more relevant features of a 
three-dimensional theory. Although papers on three-dimensional, also 
non-linear analyses have been published before, see e.g. Baudendistel 
(1979), Semprich (1980), Berwanger (1985), Swoboda (1988), a renewed 
attempt is justified not only because of more computational facilities 
available in the meantime. The main results presented here are based on 
Kielbassa (1989). 

2. Three-dimensional Analysis for the Advancing Tunnelling Face 

In tunnelling, the ground responses to each round of excavation (e. g. after 
blasting) by a release of the stresses normal to open surfaces and by corre- 
sponding inward displacements. Assuming that the ground is sufficiently 
homogeneous along the tunnel axis, the effects of each blasting round add 
up to a state of stresses and deformations, which after some rounds has 
finally the same pattern for each advance step. 
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For covering this behaviour by a three-dimensional finite-element- 
analysis, it proved to be most efficient by following the advance by an 
element mesh as shown in Fig. 2. If  the vector of the stresses and deforma- 
tions is Z~ at the time or excavation phase t for the finite element e and an 
incremental change is AZ~, then the superposition due to the advancing 
mesh yields: 

Z~ = Z~;~ + AZ~, e = 1. . .(n - 1). (1) 
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Fig. 2. Numerical simulation of the excavation advance by a simultaneously advancing finite- 
element-mesh, where the length of  an excavation round is equal to the width of the 

corresponding finite element or a manifold of it 

For the elements which are presenting the lining, it is necessary to set their 
stresses equal to zero along that part of the tunnel at the face which is not 
supported by the lining, After some advance steps a stationary state will be 
the result. By repeating this procedure, as given in Fig. 3, also more refined 
tunnelling methods can be simulated numerically, as e.g. those for top 
heading, followed up in some distances by excavating the bench and 
farther at the invert. For more information see Kielbassa (1989). 

The characteristic pattern for the ring forces N in the lining at the 
invert and for the crown displacement w (and also their incremental 
increases A N or A w caused by one advance round) are shown in Fig. 4. 
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Fig. 3. Numerical  procedure with a follow-up finite-element-mesh for sectional excavations: 
here top heading (calotte) at Mc and bench excavation at MB. & F, E see Fig. 2, a is the area 

outside the travelling mesh 

Along the open section immediately at the face the A w-values show a 
typical maximum which has the result that the incremental ring forces N 
are maximum at the very edge of the lining (assumed in Fig. 4 as having 
immediate full strength) and that A N declines with the distance from the 
face. The pattern of sagging curves of the total displacements and ring 
forces is obtained after calculation of some excavation advances (nine in 
Fig. 4). This pattern results from the time dependent interactive behaviour 
of the ground-lining-structure (not caused by numerical oscillations). It is 
not recorded by in-situ-measurements, since usually only one reading 
device is installed within one advance field. Displacement measurements 
inside the tunnel cannot cover the preceding part of deformations. 
However, more refined measurements by Baumann (1988) have verified the 
hoop force pattern of Fig. 4. 

Fig. 4. Pattern of the ring forces N and the crown displacements after some advance rounds 
for a full face excavation of a circular tunnel  cross section 

Utilizing symmetry, the applied step by step progressing finite-element 
mesh has the dimensions like that in Fig. 5. For the three-dimensional 
finite element an isoparametric hexaedron of 20 nodes (quadratic shape 
functions) is chosen. For the numerical evaluation the FE-programme 
ADINA has been applied in an extended version including some features 
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specific to the tunnel advance problem. For the applications in section 4 of 
this paper, ground and lining are assumed to behave elastically although 
nonlinear algorithms are available in the programme. 

1 / I  

Fig. 5. Applied travelling FEM-mesh for a noncircular tunnel cross with invert concrete 
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Fig. 6. Distribution of the vertical stresses in the symmetry plane after top heading excavation 
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An example of the results is shown in Fig. 6. The mesh for the top- 
heading covers three horizontal layers of different ground and has 664 
elements with 3348 nodes and 8675 unknowns. The stress distribution of 
Fig. 6 very well shows the endangered section very close to the face. 

A more local view of the stresses close at the face is presented in 
Fig. 7. The stress release below the tunnel invert and the very local arch 
effect spanning the open section 1, are clearly visible, see also Fig. 4. The 
initial stress pattern is preserved throughout the following advance rounds, 
even if the lining is fully activated. However, this local pattern is evaluated 
only, when a more refined finite element mesh is chosen. Figure 8 shows 
the stress distributions in some horizontal lines below the tunnel invert of  
Fig. 7 for two different meshes. The arching effects close to the open 
section is showing up only when this section is divided into four elements 
(not, of course, when one round is equal to one element). Hence, the eval- 
uated stresses in the lining in longitudinal direction, especially those by 
bending of the lining, are also very much influenced by the chosen 
refinement of the finite-element-mesh. The stresses in the ring direction of 
the lining are less effected, see Kielbassa (1989), and their mean values 
over one round length calculated by differently refined meshes coincide 
well. 
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Fig. 7. Vertical  stresses (iso-lines) a r o u n d  the  open  face ( length t.) of  a circular  t unne l  in the  
lower  ha l f  of  the  vert ical  symmet ry  p lane  
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Fig. 8. Stresses along the lines 3 to 6 below the tunnel  invert for . . . .  one e lement  and 
- -  four  e lements  within the 2.5 m excavat ion round,  see also Fig. 7 

3. Comparison with Results of Two-dimensional Models 

Two-dimensional design models may be valid primarily only for soft soil 
tunnelling, e. g. for shielddriven tunnels, see ITA-Guide-lines (1988). Here 
it may be assumed that due to the rigidity of the shield machine rather 
small predeformations occur before the lining is effective. Yet, the straight- 
forward two-dimensional model yields deformations too small and lining 
stresses too large. For technical applications it is desirable to reduce a 
three-dimensional approach, which considers partial stress release at the 
tunnelling face, to a two-dimensional model. In Fig. 9 the very pronounced 
difference is explained by the convergence-confinement curves, here Iine- 
arized. The radial ground pressure may be released completely by inward 
deformations of w NL. The stiffness of the lining --  here by considering 
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Fig. 10. Ringforces N (left) and radial deformations w for a horseshoe-type tunnel cross 
section evaluated by a two-dimensional and a three-dimensional approach for a full face 

excavation, Kielbassa (1989) 

radial displacements only -- is determining the gradient of  the lining char- 
acteristic. A two-dimensional model, assuming that the lining is already 
present when the tunnelling deformations start, would yield, that equi- 
librium between ground pressure and lining resistance is reached, when 
inward deformations are w 2 d. In the example of  Fig. 9, 55% of the primary 
ground stresses are acting on the lining. However,  when predeformations 
of  wP are allowed prior to the lining reaction, then only 13% of the primary 
ground stresses are taken by the lining. In most real cases the curves in 
Fig. 9 are non-linear, which increases the effect considerably. 

For comparison Fig. 10 shows the different results for a two-dimen- 
sional approach (larger N-forces, smaller w-deformations) and for a three- 
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dimensional model (smaller N, lager w). The differences are even larger for 
bending moments. 
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Fig. 11. Effects of stress release for circular cross sections by Erdmann (1983) 

A first attempt to derive an equivalent two-dimensional problem via a 
three-dimensional theory has been made by Erdmann (1983). By applying 
a rotational three-dimensional model for circular tunnels reduction factors 
for some selected calculation results were derived. These factors, like those 
in Fig. 11, allow to reduce certain stresses from 2d-models to the smaller 
stresses of the 3d-model. The example in the figure shows a simplified 
model, considering only the constant part of  the radial pressure for two 
ring stiffnesses EsA and two lengths 1, of the open section at the face. The 
percentages given in Fig. 11 are belonging to a ground stiffness EK = 1000 
M N / m  2. Even in the unrealistic case when the full primary stress is applied 
simultaneously on the ground opening and the lining, only 55% of the 
stress is taken by the lining (see also Fig. 9); in the case E~A=2.250 
M N / m ,  only 38% is acting on the lining. If  an open face length lu = 0,25 of 
the tunnel diameter D is left without any support, then the lining takes only 
25% of the primary stresses, or even only 13% for lu = 0,5 D (see also Fig. 9). 
For E~A=2.250 M N / m ,  the values are even smaller, down to 9%. The 
work of Baudendistel (1979) presents only two values (see Fig. 11) inde- 
pendent from stiffness-relations of ground and lining. Schwartz and 
Einstein (1978) are also giving percentages only for special cases. 
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4. Two-dimensional Models Covering the Three-dimensional Approach 

In order to provide engineers for the practical design of tunnels with 
simpler approaches, the results of a consistent three-dimensional model 
(see Fig. 6) may also be obtained from an equivalent two-dimensional 
model. This is visualized in Fig. 12, where only the effective ground 
pressure is relevant for the design of the lining. 

( 
E e - -  

releasing (r) effective (e) 

= + 

E :oEI I 
e 

Fig. 12. The results of a complete three-dimensional approach are split into two parts: stress 
release (r) and effective ground pressure acting on the lining 

While conventional ("one step") plane models are applying excavation 
loads equal to the primary field of ground stresses: 

vertical: 
Pv = O'prim, 

horizontal: (2) 
Ph = O'~ rim = ko  " P v ,  

for "two step" plane models according to Fig. 12 these loads are split into 
two parts. Such models were published by Baudendistel (1979) and 
Schikora (1982) and used in practical applications as shown by Haberl and 
Haugeneder (1984), Baumann (1985) and other authors. Yet consistent 
splitting factors are unknown. In this paper four coefficients: s~, s~ and k~ 

k ~ are introduced: 

1" " e prim p r  = S v .  o - p r i m  p e  = Sv . O- v , ( 3 )  

p~ = k0r.p r, p~ = / ~ .  pS, (4) 

where the upper indices mark the stress release part (r) acting on the 
unlined opening, and the effective groundpressure part (e) acting on the 
composite system of ground and lining. 

For the evaluation of the coefficients from 3 d-results, first the average 
values of the stresses and deformations are determined along the length of 
one excavation round in the final steady state after the face has proceeded 
far enough, see Fig. 4. These values are assumed to be constant along the 
thickness of the equivalent plane strain model. Then, by evaluating that 
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part of the ground pressure corresponding to the hoop forces in the lining, 
those excavation loads (the effective part of the two-dimensional system) 
are determined which yield the same ring forces in the lining as the average 
values of the three-dimensional theory. 

The excavation loads for the releasing part (r) of the model are derived 
from the requirement that they cover the complementary deformations, so 
that the sum of both parts is equal to the deformations of the 3 d-model. 

This procedure is firstly applied to tunnels of circular cross sections, 
following the analysis of Ahrens, Lindner, Lux (1982). Hence, correspon- 
dence between hoop forces and effective primary stresses in the first step 
of the 2 d-model and between deformations and released primary stresses 
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Fig. 13. Primary vertical ground pressure, split up into one part (r) corresponding to stress 
release, and another part (e) for effective ground pressures 
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Fig. 14. Primary horizontal ground pressure, split up into a part (r) corresponding to stress 
release, and another  part  (e) for effective ground pressures 

in its second step is obtained by using the analytical model of  an infinite 
elastic plane with a reinforced circular opening in a primary field of 
constant stresses (for details see Kielbassa, 1989). Numerical calculations 
of non-circular tunnel cross sections proved that the reduction rates 
obtained by applying the procedure as shown in Fig. 12, can also be chosen 
for horse shoe type cross sections. The error is negligibly small. 

Elaborate calculations of many cases for different unlined lengths l,, 
lengths a of the excavation round, and different stiffness ratios fl, where 
each case also considers the development of stiffness of the shotcrete, are 
condensed in Fig. 13 for the equivalent vertical ground pressures and in 
Fig. 14 for the equivalent horizontal pressures. The horizontal axes of all 
diagrams represent the stiffness ratio 
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fl = EK R/EB A, (5) 

where EK = Young's modulus of the ground, 
E, = Young's modulus of the lining, 
R = radius of the upper tunnel cross section, 
A = effective area of the lining per unit length along the tunnel 

axis. 

It may be noted, that besides the dependency of fl, the diagrams for the 
vertical stresses (Fig. 13) are depending only on the unlined length l,, and 
the length a of an excavation round. Vice versa, the diagrams for the hori- 
zontal stresses (Fig. 14), if expressed by the lateral pressure ratio k0, are 
influenced only by the k0-value of the primary stress field and the Poisson's 
ratio (v) of the ground. 
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Fig. 15. Example of the application of the solution in equivalent two-step plane models 

5. Example Horse  Shoe Type Tunnel  

Figure 15 outlines an example for the application of the two-step model 
and the use of the diagrams. The following input data are chosen: 

thickness of lining: 
area of lining: 
radius of lining (centre line): 
unsupported length: 
length of excavation round: 
Young's modulus of concrete: 
Young's modulus of rock: 

layer mo2: 
layer tool  : 

specific weight of rock: 
height of overburden above 

the crown: 

d = 0.25 m 
A = 0.25 m2/m 
R = 6.85 m 
l,, = 1.70 m 
a = 1.70 m 
E~ = 15000 M N / m  2 

EK = 100 M N / m  2 
EK = 500 M N / m  2 
7 = 0.0245 M N / m  3 

H~ = 20m 
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Poisson ' s ra t io :  v = 0.2 
ratio of  lateral pressure k0 = 0.3 

For applying the diagrams of  Fig. 13 and  Fig. 14 the procedure is shown in 
Fig. 16. The following parameters  are needed:  

lining diameter:  
dimensionless  lengths" 

stiffness r a t i o  

chosen for design: 

D = 2 R + d  = 1 3 . 9 5 m  
l . /O  = 0.12 
a / D  = 0.12 
fl = E k R / E e A  = 0.19 for EK = 100 
fl = 0.93 for EK = 500 
fl = 0.40 for EK = 220 
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Fig. 16. User's help for diagrams of Fig. 13 and Fig. 14 applied to example in Fig. 15 
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The design value fl = 0.40 is chosen as an estimated average value by 
considering the ground layers in Fig. 15. From the diagrams in Fig. 16 it 
can be seen, that somewhat different values of fl do not change the factors 
much, because of small gradients of the curves. 

From Fig. 13 the factors s~ for the vertical pressures are obtained as 
shown in Fig. 16 for s~: at fl =0.40 the ordinates of  the three curves for 
a = l, are used to construct the dotted curve of an interpolation function at 

1,/D = 0.185, 0.37, 0.55, 

then at I,/D = 0.12, the required splitting factors s; --- 47% and s~ = 49% are 

found. Note that the sum s~ + s~ is always less than 100%, the "missing" 
percentage correspond to the participating strength of the tunnel face. 

The lateral pressure ratios k4, k0 r are obtained analogously from 

Fig. 14, as shown in Fig. 16 for k0r: firstly the influence of  Poisson's ratio is 
introduced by interpolating three times for v=0 .2  between the curves at 
v = 0.16 and v = 0.33. In these points, which correspond to lateral pressures 

6,0 7,1 8,4 

215 f_j._23,6 " ~  ......... 2d, 1-st. 
. . . .  2d. 2-st. 

3d 

Fig. 17. Downwards displacements of the ground between crown and surface for different 
design models. 2 d, 1 -  s t  = usual two-dimensional model, 2 d, 2 - s t  = proposed two-step 

plane model, 3 d = consistent three-dimensional  model 



130 S. Kielbassa and H. Duddeck: 

of k0=0.25, 0.50, 0.75 in the primary state, the dotted interpolation 
function is drawn which leads to k 4 = 0.45 for the releasing part and 

to /~ = 0.15 for the effective part of  the horizontal pressure. 
With these values the stresses of  the tunnel are evaluated according to 

Fig. 12 and Eqs. (3), (4) are evaluated as follows: In the first step the tunnel 
model without lining yields the predeformations and the stress release field 
given by 

r 0 7"= 7/" sv/lOOgo = 0.0245 �9 0,47 = 0.0115 M N / m  3, k~ = 0.45. 

The second step yields the stresses in the lining and the corresponding 
deformations. Therefore, the second model in Fig. 12 with a lined 
tunnelling opening is evaluated for a stress field of: 

7 e = 7 " s~/100% = 0.0245 �9 0.49 = 0.0120 M N / m  3, K~ = 0.15.  

Some of the results are shown in Fig. 17 and Fig. 18. For comparison the 
results of  a conventional one-step 2 d-model are also plotted. 

N in MN/m -2,5[ - G ' . "  
-2,0 ,~ ..... "~"" 

i . ~  

- 1 , .5  ,,, ~.~ 

- 1 , 0  .'" - - ~  
..'" /o,~. ~ 

-0,5 I 
0 

1 2 3 4 MD 

. . . . . .  2d,! -step 
- - - - -  2d,2- step 

3d 
I 

MD1 

i 

Fig. 18, Ring stresses in the tunnel lining at four cross sections MD1 to MD4 for different 
design models, see Fig. 16 

This example shows, that also for non-circular tunnels close to the 
ground surface the load splitting factors are applicable. In Table I the 
main parameters of  the 3d-model  and the two-step 2d-model  are 
compared. The considerable reduction of computer ressources (and also 
man power) by using an equivalent plane model instead of a three dimen- 
sional analysis is obvious. 

Table 1. Reduction of the computat ional  items of the 
numerical  analysis of the proposed two-step plane model 

via a consistent three-dimensional  approach 

2 d-model 3 d-model 

Maximum band  width 50 1605 
Mean band  width - -  957 
Number of unknowns 364 10 439 
Number  of nodes 182 4 369 
Number  of elements 294 808 
CPU time (see) 5 7 500 
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6. Concluding Remarks 

The determination of  stresses and deformations of  a tunnel structure is 
certainly a complex problem depending on many influences of  the ground 
as well as of the excavation procedure. A simplified two-steps plane model 
approach is proposed, derived from a complete three-dimensional model 
with advancing tunnelling face. Hereby, it is hoped that the most important 
effect of  stress release (before the lining resistance is activated) is at least 
approximately taken into account more realistically than hitherto. The 
approach is the more relevant the stiffer the ground is. 
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