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Zusammenfassung. Quantitative Beziehungen zwischen 
enzymatischer Brfiunung von Lebensmitteln und den 
verantwortlichen Inhaltsstoffen (z. B. Phenoloxidase, 
phenolische Substrate, Inhibitoren) werden diskutiert. 
Dartiber hinaus wird tiber die Effekte ~iul3erer Fakto-  
ren (z. B. Klima, Diingemittel, Phytohormone,  Pestici- 
de, 7-Bestrahlung, Lagerzei t  und -temperatur) auf  die 
Brfiunung berichtet. 

Summary. Quantitative relationships between enzy- 
matic browning of  foods and the responsible food con- 
stituents (e.g. phenol oxidase, phenolic substrates, in- 
hibitors) are discussed. Attention is also given to the ef- 
fects of  extrinsic factors (e.g., climatic factors, fertil- 
izers, phytohormones,  pesticides, y-irradiation, storage 
time and temperature) on the rates of  browning. 

Enzymatic browning following mechanical injury of plants is a seri- 
ous problem during handling, storage, and processing of many 
foods. In the manufacture of some foods (e.g. tea, cacao, raisins, 
dates, cider) it is an essential part of the process. 

The fundamental step in enzymatic browning is the oxidation of 
phenolic compounds to o-quinones in the presence of oxygen. This 
oxidation is brought about by the catalytic action of phenol oxidase 
(EC 1.14.18.1). The o-quinones then condense to form brown or 
black pigments. 

Different cultivars of many fruits and vegetables at the stage of 
maturity are known to differ in their rates of browning. Changes in 
the rates of discoloration have been" observed during development, 
during storage, and upon various treatments of fruits and vegetables. 
It is generally believed that differences in the rates of browning are 
caused by quantitative rather than qualitative differences of the re- 
sponsible plant constituents. However, recent observations also indi- 
cate qualitative differences between phenol oxidases from different 
apple cultivars [1, 2]. 

Excellent reviews on the properties of plant phenol oxidases, the 
phenolic compounds involved in browning, and the control of 
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browning by various treatments are available [3-8]. This review dis- 
cusses the quantitative relationships between the rates of browning 
and the responsible factors in various foods. Effects of extrinsic 
factors on the rates of browning are also reported. 

Intrinsic Factors Contributing 
to the Rate of Browning 

The rate of  browning depends on the following factors: 
(a) concentration and substrate specificity of  phenol 
oxidase(s), (b) concentration and type of phenolic com- 
pound(s), (c) concentration of naturally occurring in- 
hibitor(s), (d) concentration of  oxygen, (e) pH of the 
tissue, (f) temperature of  the tissue, and (g) (as reported 
for potatoes, see below) concentration of lipid com- 
pounds. 

Ascorbic acid probably is the most  common natu- 
rally-occurring inhibitor of  enzymatic browning in 
fruits and vegetables. It  reduces the initial oxidation 
products, the o-quinones, back to the o-diphenols until 
it is quantitatively oxidized to dehydroascorbic acid. In 
addition to this effect, ascorbic acid is reported to in- 
hibit the enzyme directly [9-11]. The latter effect is con- 
tradicted by Duden and Siddiqui [12] who conclude 
that the observed "inhibition" during the action of  
phenol oxidase in the presence of  ascorbic acid is due 
to exhaustion (reaction-inactivation) of  the enzyme. 

Other naturally-occurring inhibitors, e.g. com- 
pounds containing sulfhydryl groups such as cysteine 
or glutathione, may act by reducing the o-quinones as 
described for ascorbic acid and/or by inhibiting the en- 
zyme directly by blocking the copper of  the active site. 
In addition, there are several reports on polypeptide in- 
hibitors of  phenol oxidase activity in the literature [7]. 

Relationships between Rate of Browning 
and Single Parameters 

Phenol Oxidase. The quantitative relationships be- 
tween the concentration of  phenol oxidase and the rate 
of  browning has been studied in apples [13-22], apri- 
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cots [18, 23], avocados [24-27], bananas [28-30], chillies 
[31], eggplants [32], macaroni [33], mangos [34], olives 
[35], peaches [36,37], potatoes [38-57], snap beans 
[58, 59], sweet potatoes [60, 61] and wheat [62, 63]. The 
samples analyzed include fruits and vegetables during 
development and ripening [13, 14, 19, 20, 22, 30, 39- 
41], several cultivars of fruits and vegetables at the 
stage of maturity [13, 16-19, 21, 23-27, 31, 32, 34, 36, 
42-46, 48, 50-55, 58, 59, 62, 63], different tissues of one 
fruit or tuber [13, 24, 43, 51, 53, 54], several cultivars 
of fruits and vegetables during storage at various tem- 
peratures [15, 17, 38, 40, 41, 46, 48, 51, 54, 56, 57, 61], 
fruits and vegetables treated with growth regulators 
[37, 60] and gamma-irradiation [28, 29, 34, 47], potato 
tubers of different specific gravities [49] and flour dur- 
ing pasta production [33]. 

Positive correlations [13-21, 24-29, 32-34, 36-47, 
60, 62, 63] and no correlations [15, 18, 22, 23, 30, 31, 
35, 38, 50-59, 61] have both been found. In the case of 
potatoes, negative correlations have also been reported 
[40, 41, 48, 49]. 
Phenolic Compounds. Attempts were made to correlate 
the rate of browning with the concentrations of total 
phenols, o-diphenols, catechins, chlorogenic acid, caf- 
feic acid, tyrosine and dopamine. 

Relationships between total phenol content and 
browning have been studied in apples [14, 19, 22], avo- 
cados [24], bananas [64], chillies [31], mangos [34], 
peaches [65-67], pears [68], potatoes [38, 39, 41, 42, 44, 
47-49, 54, 56, 69], snap beans [58, 59], strawberry pre- 
serves [70], sweet potatoes [60] and wheat [63]. The 
samples analyzed include fruits and vegetables during 
development and ripening [14, 19, 22, 39, 41], several 
cultivars of different fruits and vegetables at the stage 
of maturity [19, 24, 38, 42, 44, 48, 54, 58, 59, 63, 66-68, 
70], different tissues of one fruit or tuber [24, 54], sever- 
al cultivars of different fruits and vegetables during 
storage at various temperatures [38, 41, 42, 48, 64, 69], 
fruits and vegetables treated with ethylene [47, 60] and 
gamma-irradiation [34], potato tubers of different spe- 
cific gravities [49], and potato tubers after virus infec- 
tion [56]. 

Positive correlations [22, 24, 34, 39, 41, 47, 49, 56, 
58-60, 63, 65-70] and no correlations [14, 19, 31, 38, 41, 
42, 44, 48, 54] have both been found. During storage of 
bananas, a negative correlation was found [64]. 

Relationships between browning and o-diphenol 
content were studied in apples [13, 15-18], apricots [18, 
23], avocados [24], olives [35], and peaches [36, 37]. The 
samples analyzed included one apple cultivar during 
fruit development [13] or during storage at various 
temperatures [15, 17], several cultivars of different 
fruits at the stage of maturity [13, 16-18, 23, 24, 35, 36], 
different tissues of avocado fruits [24], and one peach 
cultivar treated with various growth regulators [37]. 

Positive correlations [13, 15-18, 23, 24, 36] and no 
correlations [15, 17, 18, 24, 37] have both been report- 
ed. 

No correlation between browning and cateehin 
content could be detected in one apple cultivar during 
fruit development [20] and in several apple cultivars at 
the stage of maturity [21]. By contrast, a positive cor- 
relation has been found in several pear cultivars at the 
stage of maturity [68]. 

Relationships between browning and chlorogenic 
acid content were studied in apples [15, 17, 19-21], 
chicory [71], peaches [36], pears [68], potatoes [38, 42, 
50-53] and sweet potatoes [61,72]. Samples analyzed 
include several apple cultivars during fruit develop- 
ment and ripening [19, 20], several cultivars of different 
fruits and vegetables at the stage of maturity [15, 17, 19, 
21, 36, 38, 42, 44, 50-52, 68], different tissues of potato 
tubers [51-53], several cultivars of different fruits and 
vegetables during storage at various temperatures [15, 
17, 38, 42, 51, 72] and chicory treated with gamma-irra- 
diation [71]. 

Positive correlations [-15, 17, 19, 20, 36, 61, 68, 72] 
and no correlations [-15, 21, 38, 42, 44, 50-53, 71] have 
both been reported. It is remarkable that in all studies 
performed on relationships between concentration of 
chlorogenic acid or caffeic acid and the rate of brown- 
ing of potatoes [38, 42, 44, 50=53], no correlations 
could be found. 

The concentration of dopamine has been reported 
to be positively correlated with the rate of browning of 
bananas during ripening [30]. 

Relationships between browning and tyrosine con- 
tent were studied in flour during macaroni produc- 
tion [33], several wheat cultivars at the stage of maturi- 
ty [63], and in potatoes including several cultivars at 
the stage of maturity [43-45, 50-55, 73], different tis- 
sues of one tuber [43, 51-54], and several cultivars dur- 
ing storage at various temperatures [51, 54, 57]. 

Positive correlations [33, 43, 50-54, 63, 73] and no 
correlations [44, 45, 55, 57] have both been found. 
Aseorbic Acid. The quantitative relationships between 
ascorbic acid content and rate of browning have been 
studied in apples [14, 19, 20, 22], bananas [30], mangos 
[34], peaches [37], potatoes [44, 74], strawberry pre- 
serves [70], sweet potatoes [72] and tea [75]. The sam- 
ples analyzed include several cultivars of apples [14, 19, 
20, 22] and bananas [30] during fruit development and 
ripening, several cultivars of apples [19], potatoes [44, 
74], and tea [75] at the stage of maturity, one cultivar of 
sweet potatoes during storage [72] and several fruits 
treated with various growth regulators [37] and gam- 
ma-irradiation [34]. In most cases, the concentration of 
ascorbic acid was negatively correlated with the rate of 
browning [14, 30, 34, 44, 70, 72, 74, 75]. In some cases, 
no correlation could be found [19, 20, 22, 37]. 
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Lipid Compounds. Relationships between enzymatic 
browning and lipid content have only been studied in 
potatoes. The negative correlation reported [56, 76-79] 
was interpreted to mean "within the cell, polyphenol 
oxidase enzymes located in the mitochondria are sepa- 
rated from their phenolic substrates located in the 
vacuole by lipoprotein membranes and any alteration 
of these membranes may result in greater susceptibility 
to darkening" [79]. 
pH and Temperature. The pH and temperature of the 
plant tissues may have considerable effects on the rate 
of browning. Of the foods listed in Table 1, only the tis- 
sue pH of potatoes, plums, and sweet potatoes coincide 
roughly with the pH optima of the corresponding 
phenol oxidases. In other foods, even little changes in 
the tissue pH greatly influence the enzyme activity 
(Table 1), and consequently the rate of browning. Us- 
ing the same phenolic substrate, the pH optima of iso- 
lated enzymes do not necessarily coincide with the pH 
optima as measured in the corresponding plant homog- 
enates (Table 1). 

Considerable work has been reported on the ther- 
mal inactivation characteristics of phenol oxidases at 
high temperatures [80, 121, 122]. However, little is 
known on the temperature optima of the enzymes 
(Table 2), although these data may be of great interest 
in chosing storage or processing conditions to minimize 
browning reactions. 

Relationships Between Rate of Browning 
and More Than One Parameter 

Since the rate of browning depends, in some cases, 
mainly on the concentration of phenol oxidase, in other 
cases mainly on the concentration of phenolic com- 
pounds, and since the concentration of reducing sub- 
stances (ascorbic acid) is also important, attempts were 
made to correlate more than one parameter with the 
rate of browning. 

Weurman and Swain [14] demonstrated a positive 
correlation between the ratio of total phenols/ascorbic 
acid and browning of apples during fruit development. 

Vamos-Vigyazo et al. [18] failed to show an appar- 
ent relationship between the ratio ofphenol oxidase/odi- 
phenols and browning of apples. For both apples and 
apricots, however, they found that, if the numerical 
values of the ratios are below 20, the rate of browning 
is a linear function of the enzyme concentration. If the 
numerical values of the ratios exceed 35, the rate of 
browning is a linear function of the o-diphenol concen- 
tration. The authors assume "that in the first case, the 
amount of substrate present in the fruit is sufficient for 
the formation of reaction products in a concentration 
high enough to inactivate the enzyme during the reac- 
tion before the substrate is depleted. In this case, en- 

zyme inactivation is the limiting factor of the reaction. 
In the second case, even complete transformation of 
the substrate might not yield reaction products in a 
concentration sufficient to inactivate the enzyme. Con- 
sequently, substrate depletion must be the limiting fac- 
tor of the reaction" [18]. 

With factorial analysis and multiple regression 
analysis, Schaller and Amberger [45] demonstrated 
that enzymatic browning of potatoes is essentially in- 
fluenced by the concentrations of phenol oxidase, total 
phenols, basic amino acids, dry matter, chlorogenic acid, 
andflavonols. The influence of the basic amino acids 
on the rate of browning could not be explained. 

Of the two main phenolic compounds in potatoes, 
chlorogenic acid and tyrosine, the latter is thought to 
be the major substrate in the browning reactions. Al- 
though chlorogenic acid is readily oxidized by potato 
phenol oxidase, its oxidation products are yellow or 
yellow-brown, whereas tyrosine yields dark brown and 
subsequently black pigments [52, 53, 130]. Based upon 
kinetic studies of the reactions catalyzed by potato 
phenol oxidase [131], a positive correlation between 
calculated tyrosine turnover and enzymatic browning of 
potatoes could be demonstrated [44, 132]. For this cal- 
culation, the concentrations of phenol oxidase, 
tyrosine, chlorogenic acid, and ascorbic acid have been 
considered. 

Extrinsic Factors Contributing to the Rate 
of Browning 

Enzymatic browning of fruits and vegetables is in- 
fluenced by extrinsic factors, such as climatic factors, 
fertilizers, plant growth regulators (phytohormones), 
antibiotics, pesticides, nucleotides, gamma-irradiation, 
time and temperature of storage, and oxygen concen- 
tration in the storage or processing atmosphere. 
Climatic Factors. Of the climatic factors (e.g. rainfall, 
sunshine, temperature), the effects of rainfall on enzy- 
matic browning and on its responsible factors were 
studied. Increasing amounts of rainfall (or irrigation) 
increased the rate of browning of potatoes, which was 
paralleled by increases in phenol oxidase and substrate 
concentrations and by a decrease in ascorbic acid con- 
tent [51-53, 133-136]. Increasing rainfall also de- 
creased the ascorbic acid content of turnips [136], 
gooseberries [137], red currants [137] and strawber- 
ries[137,138]. The reverse was found for rose 
fruits [139]. No clear effect of rainfall on the ascorbic 
acid content of apples, cherries and pears could be 
found [137]. 
Fertilizers. The effects of fertilizers on the rate of 
browning have been studied extensively in potatoes. 
Fertilization with nitrogen (applied as Ca(NO3)2, 
KNOa, NH4NO3, or urea) is generally correlated posi- 
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Table 1. Tissue pH of some fi'uits and vegetables and pH optima of the corresponding phenol oxidases 
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Food Tissue pH pH optimum of 

Purified or partially Vegetable or 
purified enzyme fruit homogenate 

Enzyme activity % 
at tissue pH 

Reference 

Apple 

Grape 

Mango 

2.8~4.0 

3.4 

2.9-3.2 (preclimacteric) 
4.2-5.2 (ripe) 

Orangejuice 4 
Peach 3.4~4.2 
Pear 3.9 

Potato 5.6-6.4 

Plum 3.8 
Red beet 6.2 
Sweet potato 5.5 7.0 

5 . 0  a 

5.1 and 7.0-7.3 a;b 

5.0 with a shoulder at 7.3 b 
5.9~6.3 c 
5.7 d 

6.5_7.0 o, e, f 
7-8 g 
5.9-7.2 e 

4.0 a 
6.2 ° 
7.0 ° 

5.0 with a shoulder at 7.0 a 
4.3 with a shoulder 

at 5-7 "'h 
4.0-6.0 b 
5.0 b 
6.0 with a shoulder 

at 4-5 b 

7.0 c,i 
4.5-8.0 c 
5.8 c 
6.5-7.5 f 
4.5-6 g 

6.1-6.6 a 

6.0-7.0 a 
8.2 i 

~50 

0 
30 

25 
0-9 

85 
30 

~50 

4.3 ° 90 
6.5-7.0 ° 

6.0-7.0 h 
4_5 c 

[14, 80-82] 
[85] 
[86-883 
[20, 83] 
[893 
[90] 
[89-91] 
[91] 
[34, 92] 
[34, 923 
[34, 93] 
[94] 
[37, 80, 95-97] 
[803 
[983 
[99] 
[100] 
[43,44,82, 101-105] 
[106] 
[107.108] 

[108] 
[109] 
[110,111] 

[112,115] 
[107,108] 
[113] 
[114] 
[107] 
[83] 
[116] 
[117] 
[118] 
[613 
[1193 
[120] 

a chlorogenic acid, b 4-methylcatechol, ° catechol, d pyrogallol, e dopamine, f p-cresol, g D,L-dopa, h caffeic acid, ~ L-tyrosine 

tively with the rate o f  browning [46; 51-53, 76, 133, 
140]. This is paralleled by increased concentrat ions o f  
phenol  oxidase [51, 53, 116, 141], chlorogenic 
acid [133], and tyrosine [51-53, 133], and by a decrease 
in ascorbic acid content  [136, 142]. Potassium fertil z 
ization (KC1 or  K2SO4) is generally correlated nega- 
tively with the rate o f  browning of  potatoes  [46, 52, 69, 
116, 129, 141,143]. This is paralleled by decreased con- 
centrations o f  phenol  oxidase [46, 51, 129, 144], total 
phenols [69], o-diphenols [116, 141], chlorogenic 
acid [145], and tyrosine [52, 116, 141], and by increased 
ascorbic acid content  [129]. Phosphorus (applied as 
N a 2 H P O  4 or CaHPO4/Caa(PO4)2)  was correlated 
positively with the rate o f  browning and the tyrosine 
content  o f  potatoes  [51]. The ascorbic acid content  was 
increased by phosphorus  fertilization [143], but  the el- 

fect on  phenol  oxidase was not  clear [51, 116, 141]. The 
tendency of  po ta to  tubers to darkening decreased when 
manure  + N" P" K fertilization was used, expecially 
when potassium was applied as KC1 [143]. Recom- 
mended N:  P:  K or N:  K ratios to minimize enzymatic 
browning of  potatoes are 1"1.25"1.61146] or 
1" > 1 [147], respectively. On the other hand,  fertiliza- 
t ion with an N :  P :  K ratio o f  1 : 0.75 : 0.45 produced the 
highest ascorbic acid content  in the tubers [148]. Chlo- 
rine fertilization (applied as CaC12 or  NH4C1 ) resulted 
in decreased po ta to  browning [133] and decreased 
chlorogenic acid content  [145]. The effect o f  copper 
(Applied as CuSO4, or  C u - E D T A )  on pota to  discolor- 
a t ion is not  clear. Positiv correlations [116] and no cor- 
relations [149] have both  been found.  The o-diphenol 
content  increased and the tyrosine content  decreased 
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Table 2. Temperature optima of phenol oxidases 

Food  Temperature opt imum, °C 

Purified or partially Vegetable or 
purified enzyme fruit homogenate  

Reference 

Apple 40" 

Apricot 
Banana 37 a 
Barley 65 ~ 
Beet 25 a 
Grape 25 30 a 
Mush room 42 a 
Peach 37 ~ 
Potato 22" 

Plum 25-30" 

El23] 
2 5 3 0 8  [831 
25 b [83] 

[1243 
[125] 
E1263 
[89] 
E127] 
[97] 
[113] 

>35  ° - [128] 
50 d [129] 
55 e [116] 
30 f [116] 

[117] 

catechol, b chlorogenic acid, c pyrogallol, d substrate not  indicated, 
potato slices without added exogenous substrate, f L-tyrosine 

with increasing amounts of copper application [116], 
the ascorbic acid content was enhanced [150]. Boron 
fertilization decreased enzymatic browning of 
potatoes [78]. Magnesium (applied as MgSO4) de- 
creased [46] or did not affect [151] potato discolor- 
ation. No effects on phenol oxidase [116, 141], o-di- 
phenols [151] or tyrosine [151] could be found. Ascor- 
bic acid concentration was enhanced [152]. Molyb- 
denum and zinc fertilization also increased the ascorbic 
acid content of potatoes [150,153], the effect of 
manganese (applied as MnSO4) on ascorbic acid was 
not clear [152]. 

I am not aware of information on the effects of 
fertilizers on the rate of browning of fruits and veg- 
etables other than potatoes. However, there are several 
reports dealing with the effects of fertilization on the 
responsible food constituents. Nitrogen application 
had a decreasing effect on the concentrations of phenol 
oxidase in cherries [154], total phenols in rice [155], and 
ascorbic acid in apples [156, 157], cantaloupes [136], 
grapefruit juice [136] and pepper [136]. Potassium de- 
creased the ascorbic acid content of turnips [136]; no 
effects on lettuce and peas could be found [136]. 
Manganese fertilization enhanced the ascorbic acid 
content of tomatoes [158], but no effect on spinach was 
noted [136]. Molybdenum and zinc applications failed 
to show an appreciable effect on the ascorbic acid con- 
tent of lettuce and peas [136], but zinc enhanced the 
ascorbic acid concentration in tomatoes [136]. 
Phytohormones. The effects of phytohormones on en- 
zymatic browning have been studies in peaches, 
potatoes and sweet potatoes. A negative correlation 
was found between the application of gibberellic acid 

(GA-3), ethylene (applied as 2-chloroethane phospho- 
nic acid), or Alar and the discoloration of peaches 
[37, 159]. All three phytohormones did not affect the 
concentrations of o-diphenols [37] and ascorbic acid 
[37, 160]. Ethylene (applied as gas) was correlated posi- 
tively with the rate of browning of sweet potatoes [60]. 
This was paralleled by increases in the concentrations 
of phenol oxidase [60, 161], total phenols [60], and 
chlorogenic acid [162]. 2,4-Dichlorophenoxyacetic 
acid (2,4-D) decreased the browning tendency of 
potato tubers, although no effect on phenol oxidase ac- 
tivity could be found [163]. Maleic hydrazide (MH) 
was found to increase potato discoloration [79]; GA-3, 
kinetin, and indole acetic acid (IAA) lowered the ascor- 
bic acid content of potatoes [164]. 

I am not aware of further information on the ef- 
fects of phytohormones on enzymatic browning of 
food. However, there are a number of reports on the ef- 
fects of phytohormones on the concentrations of 
phenol oxidase, ascorbic acid, and total phenols. 2,4-D 
decreased the phenol oxidase activity of ar- 
tichokes [165] and tomatoes [166], but had no effect on 
wheat phenol oxidase [167, 168]. GA-3 stimulated the 
monophenol oxidase [169] but not the o-diphenol oxi- 
dase activity [168, 169] of wheat phenol oxidase; the ef- 
fect on barley phenol oxidase was not clear [170]. GA-3 
increased the ascorbic acid content of cherries [171- 
173] and grapes [174]. In the latter case, this increase 
was only observed after 5 and 10 days; after 30 days~ 
a decrease was found. The total phenol content of gra- 
pes remained unaffected by GA-3 [174]. When applied 
as a gas, ethylene did not affect the phenol oxidase ac- 
tivity of carrots [161], parsnips [161], and turnips [161], 
and increased the ascorbic acid content of 
tomatoes [175]..When applied as 2-chloroethane phos- 
phonic acid, the effect of ethylene on dwarf pea [176] 
and wheat [168] phenol oxidase was not clear; the 
ascorbic acid content of cherries remained unaf- 
fected [171]. D aminozide and kinetin did not affect the 
ascorbic acid content of cherries [171] and the phenol 
oxidase activity of wheat [168], respectively. Abscisic 
acid (ABA) was found to decrease the o-diphenol oxi- 
dase of wheat phenol oxidase [168]. 
Antibiotics. The influence of antibiotics on enzymatic 
browning was studied in potatoes. The positive correla- 
tion between chloramphenicol or streptomycin and the 
rate of browning was paralleled by increased phenol 
oxidase concentration [177, 178]. Cycloheximide in- 
creased the monophenol oxidase activity [169] but 
decreased the o-diphenol oxidase activity [179] of 
wheat phenol oxidase. Actinomycin D also increased 
the monophenol oxidase in wheat [169], but the o- 
diphenol oxidase remained unaffected [179]. The latter 
effect was also found for cordycepin (3'-deoxyadeno- 
sine) [179]. 
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Fungicides, Insecticides, and Nematocides. A negative 
correlation was found between the application of the 
fungicide pentachloronitrobenzene (PCNB) and the 
tendency to darkening of potato tubers [54, 73]. This 
was paralleled by a decrease in the tyrosine content, 
whereas phenol oxidase activity remained unaffected 
[54, 73]. The effect of PCNB on total phenols was not 
clear [54, 73]. 

Application of the insecticide Tritox against the 
Colorado beetle resulted in increasing rate of browning 
of potato tubers [180]. 

Conspicious browning of potato tubers was ob- 
served when contacted with the nematocides 1,3- 
dichloropropane/1,2-dichloropropane (D-D), 1,2-di- 
bromoethane (EDB), or 1,2-dibromo-3-chloropropane 
(DBCP) [181,182]. The phenol oxidase activity did not 
change during the first 6 hours; thereafter, it was 
gradually reduced [181]. 
Nueleotides. ATP was found to prevent enzymatic 
browning of potatoes [183-186], apples [184], avo- 
cados [184], mushrooms [184], and peaches [184]. The 
concentration of phenol oxidase was not affected [184] 
nor did ATP inhibit the color formation from cat- 
echol by purified phenol oxidase [183]. NAD + and 
NADH had the same effects on enzymatic browning of 
potatoes as ATP [186]; ADP, AMP, and NADP ÷ had 
little or not influence [186]. The results are consistent 
with the hypothesis that NADH is formed in slices of 
fruits or vegetables treated with ATP and/or NAD +, 
and that NADH is probably the reducing compound 
responsible for color inhibition [168]. 
y-Irradiation, y-Irradiation was found to be positively 
correlated with the rate of browning of bananas 
[28, 29], mangos [34], and potatoes [47]. This effect is 
associated with increased concentrations of phenol oxi- 
dase in bananas [28, 29], mangos [34], and 
potatoes[47], total phenols in mangos [34] and 
potatoes [47, 105, 187, 188, 189], chlorogenic acid in 
potatoes [187, 190], and tyrosine in potatoes [191]. It is 
also associated with decreased ascorbic acid content in 
mangos [92] and potatoes [187, 192]. No effects [187, 
188, 193] as well as no clear effects [189, 193, 194] of 
gamma-irradiation on the browning of potatoes and 
responsible potato constituents have also been reported. 
The total phenol content of irradiated sweet potatoes 
increased, whereas the phenol oxidase activity was not 
affected [188, 195]. The discoloration of prepacked cut 
endive, chicory and onions was slightly intensified by 
irradiation [71,196, 197]. During storage, however, the 
discoloration remained stable, whereas browning of 
non-irradiated samples worsened [196]. Phenol oxidase 
and chlorgenic acid concentrations of chicory were not 
affected by irradiation [71,196], the ascorbic acid con- 
tent of endive was lowered [196, 197]. In an extensive 
study on gamma-irradiation of subtropical fruits no 

appreciable effects of irradiation on ascorbic acid con- 
tent of mangos, papayas, litchis and strawberries could 
be detected [198-200]. 
Storage Time and Temperature. A survey of the litera- 
ture on the effects of storage time and temperature on 
enzymatic browning of foods and its responsible 
factors shows a number of papers dealing with apples 
[15, 17, 19], beets [201], carrots [201], dates [202], horse- 
radishes [-201], mangos [34], mushrooms [203]; 
potatoes [38, 40, 41, 47, 48, 51, 54, 69, 105, 128, 144, 
190, 194, 204-213] and sweet potatoes [60, 61, 72, 214]. 
Much of the evidence is confusing or contradictory. 
Both increases and decreases in the discoloration and 
the concentration of responsible plant constituents 
have been reported for the same storage time and/or 
storage temperature. However, two general con- 
clusions may be drawn from the literature data. 

Firstly, storage time seems to have a greater influ- 
ence on changes of the browning tendency than storage 
temperature. For example, storage of apples at differ- 
ent temperatures for 6 months resulted in a decrease of 
browning tendency during the initial 4 months, fol- 
lowed by an increase thereafter (this was noted irre- 
spective of storage temperature) [15,17]. Also," the 
susceptibility of potato tubers to browning increased in 
most cases during 6 months storage irrespective of stor- 
age temperature. 

Secondly, the changes in the rates of browning are 
difficult to correlate with the changes in the concentra- 
tion of a single plant constituent, e.g. phenol oxidase or 
phenolic substrate. 
Oxygen. A positive correlation between oxygen con- 
centration of the processing or storage atmosphere and 
enzymatic browning has been demonstrated for snap 
beans [59, 215]. 

Conclusions 

Ascorbic acid, sulfur dioxide and heat treatment are 
frequently used in industry to control enzymatic 
browning of foods. The use of ascorbic acid increases 
the cost of food processing, sulfur dioxide may give rise 
to undesirable off-flavors, and some phenol oxidases 
are relatively heat stable (e.g. apple phenol oxidase 
with a half-life of 12 rain at 70 °C [6]). During the past 
two decades some novel procedures have been sug- 
gested that do not appear to be economic for large scale 
use, e.g. the use of o-methyltransferases to convert o- 
diphenols to the corresponding methoxy-derivatives 
(that do not serve as substrates for phenol oxidase) or 
the use of 3,4-dioxygenases, which catalyze the ortho- 
or meta-fission of aromatic rings, thereby destroying 
the phenol oxidase substrates. 

The availability of fruit and vegetable cultivars with 
slow rates of browning seems highly desirable to avoid 
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or  minimize postharvest  b rowning  o f  foods. As already 
pointed out,  enzymatic  browning is influenced by vari- 
ous factors such as cultivar, climate, and cultural 
conditions. Thus,  one m a y  obtain fruits or  vegetables 
with susceptibility to enzymatic  browning  of  varying 
degree dependent,  a t  one extreme, on whether a high- 
browning cultivar is grown at a h igh-browning center 
in a h igh-browning year, or, at the other extreme, 
whether a low-browning cultivar is grown at a low- 
browning centre in a low-browning year. The question 
arises as to whether it is possible to breed fruit or  veg- 
etable cultivars with slow rates o f  browning  irrespec- 
tive o f  the growing centre and growing year. 

Since enzymatic browning o f  pota toes  is mos t  ex- 
tensively studied, we m a y  draw some conclusions f rom 
these results. Of  the po ta to  constituents responsible 
for discoloration,  phenol  oxidase and ascorbic acid 
appear  to show strong cultivar dependencies, whereas 
the content  o f  phenolic substrates depends mainly on 
location and /or  climatic factors [42, 50, 51, 53, 134, 
216, 217]. Therefore,  it should be possible to breed 
po ta to  cultivars with low enzyme and/or  high ascorbic 
acid concentrat ions.  These cultivars should have slow 
rates o f  browning irrespective o f  growing center and 
growing year. Wild po ta to  species are known  to con- 
tain more  ascorbic acid than cultured species, and some 
subspecies o f  wild potatoes  have already been consid- 
ered to be suitable for breeding edible po ta to  species 
with high ascorbic acid content  [218]. As already re- 
por ted  above, fertilization also greatly influences the 
rate of  browning.  High  levels o f  potass ium decrease 
and high levels o f  ni trogen increase the browning ten- 
dency of  the tubers. Thus,  po ta to  cultivars with low 
phenol  oxidase and/or  high ascorbic acid concen- 
trations could be cultivated with high potass ium and 
low nitrogen fertilization to yield tubers with slow rates 
o f  browning.  Whether  the above conclusions are also 
valid for  fruits and for  vegetables other  than potatoes  
remains to be clarified. 
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