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Summary 

The phenomenon of rock burst occurs when the static stability conditions of 
the rock mass are violated and the dynamic failure process proceeds starting from 
the equilibrium state. In view of the difficulties in determining numerically the in- 
stability point, an alternative approach is advocated here: after solving the initial 
static problem the mode and onset of dynamic failure are studied by superposition 
of dynamic disturbances. In this way quantitative analyses of rock burst phenomena 
may be handled in a relatively simple manner. 

1. Introduction 

The phenomenon of rock burst occurs when static stability conditions 
of rock mass are violated and the uncontrollable dynamic failure process 
proceeds starting from the equilibrium state. A portion of rock mass is then 
usually in the damaged state represented by the unstable branch of the 
stress-strain relation, whereas the remaining portion is in the elastic or elasto- 
plastic hardening state. The stability conditions for the rock excavations 
were discussed in general terms by P e t u k c h o v  and L i n k o v  (1979), and the 
stability of a set of pillars was considered by S a l a m o n  (1970), and C r o u c h  
and F a i r h u r s t  (1974). The mechanisms of dynamic fracture of rock were 
analysed by B i e n i a w s k i  (1968) and B u r g e r t  and L i p p m a n n  (1981). 

Although it is fairly easy to derive stability conditions, the numerical 
determination of the instability point is rather difficult in view of the neces- 
sity of incremental static analysis for varying geometric parameters of ex- 
cavation. An alternative dynamic approach seems more effective in this case. 
In fact, assuming this approach, the study is made of a subsequent motion 
following the dynamic disturbance superposed upon the initial equilibrium 
state. At the instability point, the small initial disturbance is greatly am- 
plified and the whole dynamic failure process can be numerically studied by 
departing from an initial state close to the instability point. The aim of this 
paper is to apply the dynamic approach in the study of rock burst processes. 
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In Section 2 the stability and instability conditions will be briefly dis- 
cussed and the problem formulation will be presented. In Section 3 the 
numerical procedure and the type of finite elements used in our study will 
be described. Finally, in Section 4 the instability conditions and the modes 
of failure of one or several pillars will be studied numerically. 

2. Instability Conditions and Modes of Failure 

Fig. l a  presents schematically the typical stress-strain diagram of a rock 
material under uniaxial compression and tension. After reaching the maximum 
stress values (re or (rt in compression or tension, the material exhibits un- 
stable post-critical response, usually accompanied by a localized deforma- 
tion along shear bands or by opening and propagation of cracks. The residual 
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Fig. 1. a) Typical stress-strain diagram for rock; b) simplified piece-wise linear diagram 

stress (rr in compression corresponds to frictional resistance of broken ma- 
terial when the lateral pressure is applied to the specimen. Fig. l b  presents 
a simplified diagram composed of linear portions exhibiting characteristic 
values (re, (rt, (re~, (rtr and both the elastic and softening moduli E, he, let. 
Since the elastic deformation is associated with friction sliding and progres- 
sion of cracks, the elastic stiffness modulus may decrease in the course of 
deformation. Hence, it may be assumed that E = E  (ei), where e l denotes 
the irreversible portion of strain, Fig. lb.  
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Consider first the case when the elastic stiffness modulus is constant 
and formulate the material stability and instability conditions. For the stable 
portion COA of the stress-strain curve, for any infinitesimal increment of 
stress and strain, there is 

CA: 
da'd~=da'd~e+d~.d~P>O (stability) (1) 

whereas for the unstable branches AB and CD, we have 

AB or CD: 
da.d~=dr (instability) (2) 

and the total strain increment is decomposed into elastic and plastic por- 
tions, thus de=d~e+dep. The usual small strain theory is applied and the 
dot between two vectors or tensors denotes their scalar product, thus 
f f  "~ ~ (Yiy 8iy.  

For finite stress and strain departures from the typical point S, the 
respective definition of stability is 

ST 
U ((rT -- as) = y (a -- as)" d ~ > 0 (stability) (3) 

as  

and similarly for the departure from A on the unstable branch, we have 

~P 
U (o 'p  - aA)  ---~ y (O" - -  O'A). d *  < 0 (instability) (4) 

8A 

where aT and ap are the stress values on stable and unstable portions of the 
stress-strain diagram. Since for the elastic strain increments there is usually 
da.d~e>O, the hardening (stability) and softening (instability) conditions 
can be expressed in terms of the plastic strain increment, namely 

hardening: da.da~)>O, softening: da.da~)<O. (5) 

The inequalities (1)--(5) can easily be interpreted in the uniaxial case pres- 
sented in Fig. 1. However, they can be applied as general definitions of stable 
and unstable material response for any stress state. 

The increments da and de are interrelated by constitutive relations 

da=Dd~, d ~ = C d a ,  C = D  -1 (6) 

where the incremental stiffness and compliance matrices D and C depend in 
general on the stress state and the loading history. For an elastoplastic de- 
formation process, such matrices depend on the type of hardening or soften- 
ing rule and on the form of the yield condition. In the case, when the plastice 
deformation and brittle rupture process are accounted for, the respective 
constitutive matrices have been discussed, for instance, by D r a g o n  and 
M r 6 z  (1979). 
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For purely elastic strain increments, there is 

der.d~:e=D ~ d~r162162 ~ d~r .da  =2U (d~ r >0 (7) 

where C e and D e are elastic incremental compliance and stiffness matrices. 

Consider now the stability conditions for any mining excavation shown 
schematically in Fig. 2. Assume the boundary conditions in displacements 
or in surface tractions to be specified on the portions Su and ST of the 
boundary and let the domain V occupied by rock be divided into two sub- 
domains 111 and V2 where the subdomain V~ is assumed to correspond to 
stable elastic or elasto-plastic behaviour satisfying (1) or (3) and the sub- 
domain V2 to be in the post-critical softening state satisfying (2) or (4). 
The state presented in Fig. 2 was attained in a quasistatic process of excava- 
tion which resulted in stress, strain and displacement redistribution from 
the initial state. This process is here controlled not by external loads or 
displacements but by geometric parameters such as a, d, specifying the con- 
figuration and size of excavation. 
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Fig. 2. Damaged zone V2 around excavation within elastic rock 

In order to examine the stability of a particular equilibrium configura- 
tion, let us introduce the disturbance into the system. This disturbance may 
be introduced in many ways but it always supplies the additional energy 
into the system. For instance, the disturbance can be thought of as an addi- 
tional impulse imposing the velocity field within the domain such that the 
boundary conditions are satisfied. The disturbance can also be conceived 
as an additional field of body forces, surface tractions, boundary velocities 
acting over specified period of time or as a sudden removal of the stressed 
material element. In mining operations there are many disturbances result- 
ing from dynamic deformation and burst of rock in neighbouring areas or 
from rock blasting. With each disturbance, the amount of energy supplied 
to the system can be associated, and the stability of subsequent motion will 
usually depend on this energy. 

Consider now the disturbance in a form of the dynamic impulse super- 
imposed at t=to upon the equilibrium state, so that fi0 (x)=v ~ (x) within V 
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at t = to and the kinetic energy of this impulse equals 

K0= S } ~ v  ~ ~ d V (8) d 

where ~ denotes the material density. Denote the stress, strain and dis- 
placement fields at the initial equilibrium position by a ~ ~0 and u ~ The 
subsequent values at t > to are respectively 

t t t 

a = a ~  ~=~~ u = u O + S f i d T  (9) 
to to to 

and the subsequent motion is compatible with the boundary conditions on 
ST and Su, that is T ~ = a . n  on St and u = u  b on S~. 

The increment of the elastic potential energy AI He and of the dissipated 
work A D equals 

B u U 

A H e = A H ~ + A D =  ,f [, a.d~ d V -  ,[ S Tb 'du  d S T -  S S f . d u  d V =  
go u o u o 

g E U u 

= S ~ (~-a~ dV  + 5 f. aO.d~ d V -  S S Tb"du d S T -  S S f . du  dV= 
go 80 no no 

=5 f. (a-a~ "dg dV, (10) 
go 

since by virtue of the virtual work principle for the stress state a ~ (x) satis- 
fying equilibrium and boundary conditions and the kinematically admissible 
field du, d~, there is 

S a~ d V = S  T&'du dS~,+S f . d u  dV. (11) 

Here T ~ denotes the specified surface traction vector on the boundary por- 
tion ST whereas u ~ is the specified displacement vector on the portion Su 
and f denotes the body force field. There is therefore d u = 0  on Su for the 
ensuing motion or for any kinematically admissible variation of the dis- 
placement field. 

In view of the principle of conservation of energy, there is 

A K0 = A Ht + A K (t), (12) 

where A K (t) denotes the kinetic energy at any subsequent instant t =to +/3 t. 
The divergence instability occurs when the kinetic energy of imposed 

motion will monotonically grow. To prevent this instability, the sufficient 
condition is 

g 

A I I t = j  f (a-a~ dV  >0 (13) 
~o 

for any kinematically admissible deformation path issuing from the equilib- 
rium position. In fact, if AIIt > 0, then A K (t) < A Ko, and the system set in 
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motion with the initial kinetic energy zl K0 will come to rest after some time 
or will execute repetitive motion around the equilibrium position. Let us 
note that the integrand of (13) coincides with the integrand of (3) represent- 
ing the material stability condition. For an infinitesimal departure from the 
equilibrium state along a regular path the condition (13) can be replaced 
by the incremental form 

1 1 1 
d H t = T S d a ' d a d V = x [ d a . d a e d V + T f ,  d~r 'ds~dV>O (14) 

and it is obviously satisfied for a stable portion of the stress-strain curve. 
Consider now the cyclic motion for which elastic unloading is followed 

by plastic deformation during successive motion reversals. For the k.-th re- 
versal, instead of (14), we now have 

A Ht(k)=A FIJ~) + X A D ( ~ ) = y U  (~) (d~ e) dV + -  X y (d~.d~)(O dV (15) 
i=i 2 i=1 

where U K (d~)=1/2 De dar ~ is the elastic specific incremental energy 
that may grow or decrease during the cyclic motion, whereas the second 
irreversible term represents the accumulated incremental plastic work. As- 
sume that dr ~ <0, that is the softening response occurs for each incre- 
mental plastic flow. Since the maximum value of AHt equals dK0, then in 
view of (15), the amplitude of elastic strain must grow in consecutive por- 
tions of motion, that is 

A H~(~) > A He.(I~-1). (16) 

Thus, there exists a possibility of cyclic instability for which the amplitude 
of superposed motion will grow due to repetitive plastic flow during each 
cycle. This model resembles much the flatter instability occurring in aero- 
nautical structures due to non-conservative loading of the airstream. Figs. 
3 b, c present schematically these two mechanisms of instability in the phase 
plane (u, fi), where u denotes the displacement of a typical point within the 
rock mass. It can also be conceived that a combined mode of instability will 
occur when after several cycles, the condition (13) or (14) is violated and 
the subsequent motion ensues with the unbounded kinetic energy, Fig. 3d. 
The activating energy for cyclic instability modes can be provided by waves 
reflected on inhomogeneities or rock layer interfaces. 

Consider now the case when besides the region V2 with a continuously 
varying displacement field, there exist isolated joint surfaces Sa where dis- 
continuities in displacements are related to contact tractions in a form of 
the incremental law 

where du~, due are the increments of normal and tangential discontinuity 
components and dT~, dT~ are the increments of contact tractions on Sa. 
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Similarly to (14), for the softening response we have 

dT.dFJ =d Tn .d  ~,~ + d Tt.d~2t < 0. (18) 

The stability condition (14) now takes the form 

1 1 
S d~r.d~ d V + ~  ~ d T . d u  dSj>O (19) 

where Sj denotes the area of the joint surface. 

So far, we have discussed the perturbation imposed by a dynamic im- 
pulse within the specified domain. However, similar stability conditions 
are obtained by considering perturbation of surface tractions or of surface 
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Fig. 3. Possible modes of dynamic instability 

displacements on boundary portions ST or Su. Assume that the traction in- 
crement d T  ~ is superposed during the time interval (to, tl) on ST and re- 
moved for t> t l .  Instead of (12), we now have 

t 
A W0 = S d T o. d u ~ d ST = ]" S (er - er~ �9 ~ d t d V + A K (20) 

to 

where du o denotes the displacement increment during the time period (to, tl). 
The identical inequality is obtained by imposing constant velocity perturba- 
tion on Su during the time interval (to, tl). The left-hand side of (20) can 
now be regarded as the incremental work A W0 of surface perturbation and 
it can be used as a measure of intensity of perturbation, similarly as the 
kinetic energy d K0 in (12). 

The stability condition can also be expressed in an alternative form 
equivalent to (14). Consider separately the subdomains V1 and V2 and as- 
SUme that the interface S~ separating these subdomains has attained an im- 
Posed displacement variation 3u c. Consider static solutions associated with 
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this variation in V~ and V% that is the fields c~a(x), ~u(~), ~e(~) and ~a(2), 
(3u (2), ~8(2) satisfying equilibrium, compatibility and boundary conditions 
on ST and Su, namely 

6a~j,j=O within V, (~a,jns=O on ST, 8u=O on Su, 

( $ u = c i u  c o n  S~. (21) 

The stability condition (14) can now be expressed as follows 

S Oa.Oe d V =  S ( 6T(2)-(~T(1))'~ue dS~>O (22) 

where 6T (1)= -6~(1).nc, 6T (2)---6a(2).n~ and n~ is the unit normal vector 
to S~ directed into the domain VI. This form of stability condition was 
analysed by P e t u k c h o v  and L i n k o v  (1979) and applied by S a l a m o n  
(1970) to study stability of a set of pillars. The instability condition is ob- 
tained by changing the inequality sign in (22). 

There is a simple geometrical visualization of the condition (22) in the 
case when 5ue=~uCnc where u c is the constant modulus and ne is the unit 
vector. Then (3T.~u~=~Tuciu~ where ~Tu is the component of traction 
variation along uc. The instability condition is then expressed as follows 

(8 f(2) _ ~ f(1)) . ~ u c < 0 (23) 
where 

r3T (1) = f  cSTu (1) dSe, dT (z)= f ~Tu (~) dSc (24) 

are the integrated traction variations d Tu over the surface S~. Plotting T (1) 
and f(2) versus u c for specified boundary conditions depending on one load- 
ing or displacement parameter, the equilibrium curve ~(1)(u c) = f(2)(u c) is 
obtained corresponding to variation of this parameter, Fig. 4. Imposing now 
variation (3u~ on Sc and constructing solutions in V2 and V1 satisfying (20), 
that is corresponding to a fixed value of loading parameter, the instability 
occurs when the (~T(1)-Iine lies above the (~T(~)-line, cf. point B in Fig. 4. 

rT2  
/2~176 

O ~  ",~uc 
Fig. 4. Determination of static instability point B 

For monotonically growing ~u c, the equilibrium lines for V1 and V2 are 
now BCD and BCE and the dynamic deformation process may occur start- 
ing from the limit equilibrium point B. 
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The energy of burst associated with the dynamic process can be mea- 
sured by the integral 

Ur ~:r 

Et= S S ( T ( : ) - T (  2)) .ducdSc= 5 S (a--aB).d8 dV  (25) 
o o 

represented by the dashed area in Fig. 4. Here ur and ~r denote the dis- 
placement and strain at the equilibrium point C where T (1) = T (2). A more 
detailed discussion of dynamic failure modes in simpler simulation hyper- 
static systems will be presented by the authors in a separate paper, where 
the importance of Et is explored. In the next section, we shall present a 
numerical approach to study rock burst processes treated as problems of 
dynamic instability. 

3. Numerical Simulation of Rock Burst Processes 

Consider a mining excavation shown in Fig. 2 and a sufficiently large 
domain of a surrounding rock mass. Assume that static solution has been 
determined for a specified configuration. This solution may correspond to 
elastic or elasto-plastic state. The incremental process can be conceived in 
which the size of the excavation is step-by-step increased until the instability 
point is reached. Using the finite element discretization, we can write 

K d ~ = d F (26) 

where K denotes the global stiffness matrix, d~ are the increments of nodal 
displacements and dF are the increments of nodal forces. At each step of 
the variation of excavation size, a new incremental solution is obtained. 
The instability point is then specified by the condition 

det [K] = 0 (27) 
o r  

[. dcr.d~ dV  = 0. (28) 

The condition (27) was applied in determining instability point by static 
analysis but it turned out that variation of det [K] becomes vary rapid dose 
to instability point and very small increments of excavation dimensions 
should be taken. This makes the procedure very lengthy and expensive from 
the point of view of computer cost. Furthermore, there is no information on 
post-critical behaviour and on failure mode since the static solution proce- 
dure terminates at the instability point. 

The dynamic approach was therefore considered as more natural and 
economic, providing information not only on the onset of instability but 
also on the whole dynamic failure process. Instead of static equilibrium 
equations (26), consider now the equations of motion 

K a + Ca } + M ~ = F (t) (29) 

where K denotes the stiffness matrix, Ca is the damping matrix and M is 
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the mass matrix. The static solution is first obtained for a specified con- 
figuration and within the elastic-plastic range this solution is constructed 
incrementally by imposing small variations in excavation dimensions. At 
some stage, a small dynamic disturbance is introduced into the system. This 
may be achieved by specifying either initial velocity field v0 (x) of prescribed 
total kinetic energy K0 or by initiating a dynamic process by sudden removal 
of portions of rock, which may be compared to step loading in structural 
mechanics. The subsequent dynamic solution will indicate whether growth 
of the kinetic energy occurs within the system, and if so, the associated 
failure mode can be investigated. If, however, the initial disturbance is not 
amplified, a further increase in excavation dimension may be imposed and 
the corresponding static solution may be constructed. Alternatively, a greater 
dynamic disturbance may be imposed until the unstable process occurs. 
Fig. 5 a, b illustrates schematically this procedure in the P - u  diagram 
where P is the external load and u is the associated displacement. After 
constructing static solution at 1, the dynamic impulse is imparted to a struc- 
ture of kinetic energy K0 which is greater than the dashed area 1-A-2 in 
Fig. 5 a. Under fixed value of P, the ensuing dynamic process 1--2 passes 
through the stable domain 1-A-2 and enters the unstable domain in which 

P 
A 

m, 
U 

P 

U 

a} b) 

Fig. 5. Dynamic instability; applying at 1 
a) initial impulse of the kinetic energy K0> Ex or  b) step loading A P, the subsequent 

motion under fixed value of P proceeds into unstable domain 

further growth of kinetic energy and of displacement occurs until the second 
equilibrium point is reached. Fig. 5b presents the situation when a step load- 
ing A P is applied at 1, such that the area 1-2-3 is greater than the area 3-A-4. 
The corresponding dynamic process 2-3-4 passes into unstable domain though 
the total load P1 +z~ P is smaller than the maximal load PA. 

3.1 Finite-Element Discretization 

In carrying out dynamic analysis of rock, any finite element discretiza- 
tion can be applied. However, it was found out that this analysis is con- 
siderably simplified when special rigid elements are used and both elastic 
and plastic properties are lumped into a set of interaction node~ lying on 
element interfaces. It can be conceived that the adjacent elements are inter- 
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connected at these nodes by a set of tangential and normal springs whose 
forces are related to relative displacements of adjacent nodes. 

Referring to Fig. 6, consider a set of rectangular rigid blocks whose 
mass is lumped at their centres. The motion of each block and its position 
are specified by translation vector, rotation angle and their rates at its 
centre, ux, us, co and kz, ku, cb. We limit our analysis to plane deformation, 

,:1" i . I .  " ~ 

--| ,~H uy | 

/ 
:t: 

Q} 

L_b - T ._2i . . . .  3-" 
: ." o~ 

b) 

Fig. 6. Contact finite elements interacting through side and corner nodes: 
a) elastic interaction; b) post-critical frictional interaction 

so the nodal displacement vector for each block ~r (u ,  i, u d ,  co~) is referred 
only to the con f igura t ion  node  (centre) and is specified by three components. 
The displacement of the typical interaction node D between two elements 
equals 

up i = u ~ + o ~  A (rD - r d ) ,  
(30) 

UD J ~- UJ + (D3" A (rD -- to J), 

and the relative displacement at the interaction node equals 

6D = UD j -- UD i (31) 

where r0 t and r0: are position vectors of configuration nodes of two ele- 
ments i and j, rD is the position vector of the interaction node D, u ~, u:, 
r and o~: are the translation vectors and rotation angles at the configura- 
tion nodes, and the symbol A denotes the vector product. Decomposing ~D 
into normal and tangential components 6,w and 6tD, the elastic energy at 
each interaction node is expressed as follows 

1 
Ua = T (Kn &D 2 + Kt  (~tD 2) (32) 

where K~, and Kt are the normal and tangential node stiffness. Summing up 
the elastic energies at all interaction nodes and using (30), the total elastic 
energy of the system can be expressed in terms of the nodal displacements 
gi, that is 

1 
Ut = T 6  T - Kt~ (33) 

where K denotes the global stiffness matrix. The static equilibrium equa- 
tions K g = F  or the equations of motion (27) can now be generated in a 
standard way. 

19 Rock Mechanics, Vol. 16/4 
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The stiffness parameters Kn, Kt at the interaction nodes are next 
identified by requiring that the response of a representative macroelement 
composed of contact finite elements under uniform external strain, for in- 
stance, tension and shear, should correspond to actual response of the ma- 
terial. It turns out that in some cases the initial prestress at interaction 
nodes represented by an additional nodal force F i produces a considerable 
improvement in simulation. For instance, the lateral expansion of a com- 
pressed isotropic bar is well simulated by a set of rectangular elements 
when the initial prestress is introduced in lateral direction at the nodes, 
thus inducing the equilibrium equation K8 =F +FL Details of identification 
will be omitted here and are presented by Z u b e l e w i c z  (1982). 

Let us now discuss the plastic behaviour which is also lumped at the 
interaction nodes. Assume that the material satisfies a modified Coulomb 
criterion in which limit tension cut-off planes are introduced, Fig. 7 a. In 
terms of principal stresses this condition is expressed as follows 

1 1 (0., +0.~) /1 (0.) = 2 -  (0.~ - a~) + T 

1 1 (0.1 + 0.2) f2 (0.) = 2 -  (0.1 - 0.2) + 2 -  

f3 (0.) = 0.1 - 0.r = O, 

f a  (0.) = 0.2 - {~r - -  O, 

sin q~-c cos qJ = O, 

sin qJ-c  cos qJ = O, 

0"2 > 0.1) 

(0.1 > 0.2) 
(34) 

where c and ~0 denote the cohesion and the angle of friction for the Coulomb 
material, whereas 0.r is the rupture stress in tension. As the stress state 
within the element is not homogeneous, the mean stress components are 

, /  . - I q ,  o o 
0 lOz 

a} b} 

Fig. 7. a) Initial failure locus; b) post-critical contact gliding locus 

calculated within each quarter of the element, assuming linear distribution 
of contact stresses at the interfaces. Once the limit condition (34) is satis- 
fied, within a typical quarter-element, the rupture of the adjacent corner 
springs is assumed to occur and the subsequent interaction occurs only at 
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the remaining mid-side nodes. The limit contact condition for these nodes 
takes the form, Fig. 7b, 

[ (T, N ) = T + # N = 0  (35) 

where # denotes the contact friction coefficient, not necessarily equal to 
tg 9~. Thus, whereas (34) corresponds to brittle rupture of springs of corner 
nodes, (35) represents the subsequent post-critical response. The normal and 
tangential displacement increments at interfaces are governed by the relations 

dun=dune+dun ~, dut=dute+dut p, (36) 
and 

d N  d T  
dune-  Kn ' dun~=O' dud= Kt ' dut~=d2sgn(T) (37) 

where Kn and Kt are the elastic stiffness moduli of nodal springs and d2 
is an unspecified positive multiplier. Let us note that the limit condition 
(34) is expressed in terms of stresses rather than contact forces as it de- 
scribes the limit state within a particular quarter-element. However, this 
condition can also be expressed directly in terms of nodal forces. 

3.2 Example 1: Dynamic Rupture of Rode Pillars 

Consider a mining excavation shown in Fig. 8, with three rooms and 
two pillars at the depth hb=824 m. As only the region in the vicinity of 
excavation is considered, it is assumed that the upper neglected rock domain 
exerts a vertical pressure ~y=)'ht=-16.36MPa at the depth h t=800m,  
corresponding to the top confining surface. At the vertical confining sur- 
faces the horizontal displacements Ux are assumed to vanish whereas at the 
bottom horizontal surface passing through symmetry centers of rooms and 
pillars the vertical displacement uy is assumed to vanish. The solution do- 
main is therefore limited to the upper portion of pillars and the adjacent 
rock. 

The solution procedure consisted of two stages. First, the static solution 
was found for the assumed initial configuration of rooms and pillars. Next, 
the dynamic solution was determined by assuming subsequent sudden removal 
of particular elements of pillar I. The dynamic instability of the configuration 
was detected by studying variation of the kinetic energy within the solu- 
tion domain. 

The solution domain was divided into 189 rectangular elements assum- 
ing plane-strain conditions, Fig. 8. Elastic properties of rock mass were as- 
sumed as follows: E=51.19 GPa, ~--0.27 and the specific weight was as- 
sumed as ),=19.6 kN/m 8. The material parameters occuring in the limit 
condition (34) are: c=24.5 MPa, ~0=27 ~ # = t g  % and ae=3.92 MPa. The 
static solution was compared with the respective solution obtained for a 
standard finite-element mesh using the constant-strain triangular elements. 
This comparison enabled us to introduce proper correction to the stiffness 
matrix and to the horizontal forces f, introduced at the nodes 1--9 and 
181--189. 

19" 
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The explicit integration method was applied in integrating dynamic 
Eqs. (29) in which the viscous damping was neglected, Ca=0.  The time step 
was assumed as A t=0.2156.10 -4 secs and the elements 63, 62, and 72, 71 
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Fig. 8. Mining excavation with consecutive removal of pillar I 
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Fig. 9. Variation of the rate of kinetic energy /~ within the solution domain 
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of pillar I were consecutively removed at time steps equal to 3 3t .  The 
2 

central difference scheme was applied and the stability condition ~ t _ < - -  60max 
is satisfied by this step. Here, O)max is the maximum eigen-frequency of 
elements including interacting springs. Fig. 9 presents the rate of kinetic 
energy variation within the solution domain for consecutive time steps. It 
can be expected that rapid growth of/~k is associated with the phenomenon 
of dynamic rock failure. In fact, after removal of 2/3 of pillar I, the ensuing 
dynamic process is associated with the failure of remaining portion of pil- 
lar I and subsequently, the failure of pillar II proceeds which is manifested 
by the second rapid growth of /~k, Fig. 9. The pillar failure is accompanied 
by the intense cracking of roof rock and its fall into excavated domain. 
The calculation process was terminated at t~ =36 3 t. 
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Fig. 10. Failure modes of a) pillar I, and b) pillar II accompanied by roof failure 

Figs. 10 a, b illustrate schematically the failure mode at t l= t0+21  A t  
and t =to +t~=to +36 J t. Whereas for t=tx  the remaining portion of pillar I 
undergoes dynamic failure and intense cracking occurs within the roof do- 
main, for t= t~  the pillar II has failed due to tensile stresses in horizontal 
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direction and a significant port ion of roof rock is falling into the excavated 
domain. Fig. 11 shows the evolution of stress erx at the mid-sect ion/3- /3  of 
pillar II. It is seen that at some instant the horizontal  normal stress attains 
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Fig. 11. Evaluation of the horizontal stress ~x acting in the mid-section fl-fl of pillar II 
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Fig. 12. Crack orientation within the rock mass at t = t~ 

the rupture stress err and the vertical crack propagates within the pillar. 
Fig. 12 shows the orientation of cracks within the rock mass at t =t~. 

3.3 Example 2: Dynamic Failure o~ the Excavation Face Initiated by 
Plane Wave 

Consider a rock mass shown in Fig. 13. The  initial static state is ob- 
tained by imposing vertical and horizontal  displacements uy ~  cm and 
u~ ~ cm at upper horizontal  and left vertical boundaries. The  bot tom 



Numer ica l  Simulat ion of Rock Burst Processes 

u~ = 1.o om A 
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Fig. 13. Excavation face under initial static stress and acted on by plane dynamic dis- 
turbance on the boundary A - A  
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boundary is vertically constrained whereas the right vertical boundary  is 
horizontally constrained. The  elastic material parameters are E=1 5 .7  GPa, 
~=0.12 whereas the strength parameters are c = 3 1 . 4 M P a ,  Crr=1.57MPa, 

b) a) 

~u~ 

correspondingS~176 u z ~ I . . . . . . . . . . . . . . . . . . . .  ' 

to point 4 of RgY4 

Solution 
corresponding 
to point 6 of Fig. 14 

Fig. 15. Damaged zones within the rock mass at instants 4 and 6, marked in Fig. 14 

IG 

V=I m/seo 

uA 

Fig. 16. Velocity field within the damaged portion of rock at instant 6 marked in Fig. 14 

tg ~0 = #  = 0.2. At the initial instant t = to, the horizontal  dynamic disturbance 
is applied at the right boundary  A - A ,  by imposing the compressive dis- 
placement increment A uaz=O.O01 cm in one time step A t =0 .53 .10  -4 secs. 
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The subsequent dynamic process is studied and the variation of the kinetic 
energy rate within the solution domain is shown in Fig. 14. Whereas the 
initial kinetic energy was equal to Ek= 3.36.103 J, the value of Ee after 
time interval 0.01 sec was equal to Ee =3.50-104 J. 

Figs. 15 a, b show the damaged zones within the rock mass at point 4 
and 6 marked in Fig. 14. Due to tensile action the fractured rock is dis- 
integrated and is thrown into the excavation domain. Fig. 16 illustrates 
the velocity field within the damaged portion of rock. 

The present examp!e can be referred to a situation occurring at the 
rock face when the incoming plane wave produces dynamic failure and 
ejection of damaged material into the excavated room. 

3.4 Example 3: Burst o[ Inhomogeneous Rocta Into the Tunnel 

Consider a horizontal rectangular tunnel within the inhomogeneous 
rock mass. The stiff rock (E=50 GPa) is separated from soft rock (E= 
5 GPa) by a horizontal layer of intermediate stiffness (E=20 GPa). The 
floor of the excavated tunnel coincides with the interface between the layer 
and the stiff rock (Fig. 17). Consider the solution domain shown in Fig. 18, 

TUNNEL E=50G Pa 

=20GPa 

Fig. 17. Horizontal tunnel within the inhomogeneous rock mass. The dynamic failure mode 

where the initial static state corresponds to non-uniform vertical stress cxy 
applied at the upper boundary and horizontal displacement Ux=0.5 cm at 
right vertical boundary, whereas the bottom boundary is constrained. Con- 
sider the vertically moving dynamic disturbance Vdy =0.0075 cm/sec applied 
at the top boundary. The subsequent dynamic solution exhibits the rupture 
mode. Fig. 19 shows the variation of E~ whereas Figs. 20 a, b, c show the 
progression of damaged zones. The mode of failure is schematically depicted 
in Fig. 17. Due to tensile action, the delamination between the layer and 
the soft rock occurs with the associated energy release and rupture of the 
layer. The damaged material is pushed into the tunnel exhibiting the familiar 
effect of floor burst. 
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4. Concluding Remarks 

The presented examples illustrate clearly the main idea of this paper, 
namely: by solving initial static and subsequent dynamic problems, the 
dynamic mode of failure can be numerically studied for any specified confi- 
guration and initial conditions. Moreover, the onset of dynamic failure mode 
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Fig. 18. The solution domain and finite element mesh 
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can be determined by studying the variation of the kinetic energy rate with- 
in the solution domain. The application of contact finite elements simplifies 
the analysis and allows for disintegration of particular rock elements. 
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It is believed that the approach presented provides the possibility for 
systematic quantitative analysis of rock burst phenomena. Further applica- 
tions to study typical burst modes will be presented in a future. 
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Fig. 19. The variation o f / ~  within the solution domain 
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