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1. Introduction 

The failure criterion of a rock discontinuity is usually nonlinear. The angle 
of shearing resistance decreases as the level of normal effective stresses 
increases. At low normal stresses, motion takes place by climbing up the 
ridges and asperities which compose the rough face of the discontinuity. 
The result is a high apparent frictional resistance due to this effect of dilat- 
ancy. At higher normal stresses failure occurs in a very complex manner by 
ploughing, by shearing through the ridges and fracturing of the rock 
material adjacent to the contact. The contribution of dilatancy to the total 
shearing strength gradually decreases by the rise of stress level. If the 
normal effective stress is large enough, all dilatancy would be suppressed 
and the rock discontinuity would shear at nearly a constant volume. 

Empirical strength criteria in the form of power or logarithmic rela- 
tionship have been reported in literature. The main shortcoming of these 
proposals is the validity in the limited stress range and the lack of physical 
meaning. It is the author's opinion (Maksimovi6, 1979; 1988; 1989 a, b, c), 
that the function of hyperbolic type offers excellent possibilities for simple 
description of the nonlinear failure envelope within the widest possible 
range of stresses from zero to practical infinity for most non-cemented 
soils. In this note it will be shown that the same or similar failure law can 
be derived for rock discontinuities from a mechanical analog model of rock 
joint with non-rigid asperities. 

2. Mechanical Model for the Nonlinear Failure Envelope 

The expression, originally proposed for granular materials by Newland 
and Allely (1957), and for rock discontinuities by Patton (1966) and Gold- 
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stein et al. (1966), for relating the angle of shearing resistance, dilatancy 
and friction at the discontinuity between two planes with surface irregular- 
ities may be written as 

r = r + ~ (1) 

where ~b8 is a physical friction or "the basic angle of friction" and ty the 
angle of dilatancy, or the angle between displacement vector and the 
shearing plane. 

It is assumed that the rock discontinuity of certain small scale can be 
described by the mechanical model with rigid zones sliding upwards at q: 
over the slipping zones, separated by series of simple "pneumatic" mecha- 
nisms. These simulate the non-rigid behavior of asperities, implying the 
positive dilatancy only, as shown in Fig. 1. The mechanism in the zone of 
the discontinuity consists of the element unit, of the unit size, the simulated 
surface of the asperity linked to the dash pot governed by the Boyle's law. 

' a§ N 

Fig. 1. The mechanical analog model of dilatancy 

The mechanical analog model is such that, in an unstressed state, the 
angle between the planes x - x  and s - s  is equal to a value A ~ at the 
model ambient pressure PN, which also exists in a curved chamber closed 
by a rotating piston. When the normal stress increases to a value of o-,, the 
distance between two blocks decreases causing the rotation of planes s - s 
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with respect to x - x ,  which, connected to a piston, increases the value of 
the pressure by the same value of  the stress in such a manner that for some 
angle ~ between planes x - x and s - s the pressure increases to a value PN 
+ or,. 

In terms of  the model variables shown in Fig. 1, Boyle's law applied to 
a volume in a chamber segment can be written as: 

PN A ~ = (pN + crn) ~. (2) 

Solving (2) for gt: 

= + + , z , / p N ) .  (3) 

Substituting (3) into (1) a very simple form of the model equation for the 
angle of  the shearing resistance is obtained as: 

= ~B + A ~ / ( 1  + cr,/pN) (4) 

and the shearing strength of the rock discontinuity is 

r#= or, tan [~b~ + A~/(1  + cr,/pN)]. (5) 

The meaning of  each parameter is shown in Fig. 2. 

~B is the "basic angle of friction", the angle of the shearing ressistance 
mobilized at high normal stress levels at which all dilatancy effects are 
suppressed, as all the asperities are sheared off forming the smooth 
shearing plane. This angle could be approximately equal to the angle 
of  the physical friction between mineral grains. 

A ~  the "joint roughness angle", reflects the surface roughness of the 
discontinuity. The associated dilatancy effects at zero stress level and it 
can be described as the "angle of maximum dilatancy" which occurs 
on undamaged rugged surface. 

PN "the median angle pressure" is equal to the value of  the normal stress 
at which the contribution of  dilation is equal to one half of  the angle of 
dilatancy for the zero normal stress. It mainly reflects the deformability 
and the resistance of the asperities against crushing. 

The function of  the stress level, Eq. (3), which describes the rate of 
decrease of the second term in Eq. (4) as the stress level increases, has a 
property that decreases asymptotically towards zero with increasing 
normal stress. The total angle of  shearing resistance tends towards the 
lower constant limiting value defined as a "basic angle of friction" ~ .  The 
initial angle ~0, a tangent to the failure envelope in the origin, is simply the 
sum of the basic angle and the inclination of surface asperities (958 + A 4) 
as shown in Fig. 2. 

Expressions (4) and (5) are dimensionally consistent. Values of the 
angles ~B and A ~ can be taken in degrees or radians, and the description 
of  stresses is in the same units as the "median angle pressure" PN. 
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Fig. 2. Definition of parameters of  the nonlinear failure envelope 

3. Examples and Justification 

Example 1. Data by Barla et al. (1985) 

The results of  the direct shear tests on sandstone discontinuity are eval- 
uated. Six data points are processed, using the least square fit for the 
Eq. (4) with the method described in the Appendix, and a very good 
approximation with the proposed failure law obtained, as shown in Fig. 3. 
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Fig. 3. Sandstone discontinuity, data by Barla et al. (]985). 

~2 

a failure envelope, b secant angle of  the shearing resistance versus normal stress 

Example 2. Data by Nilsen (1985) 

To compare the proposed failure criteria with the power law, an example 
of interpretation of test results obtained on foliation joints in micaschist, 
with a portable shear machine will be presented. The failure law was 
described by power law rf = 0.87 o-~ ~ Applying the regression analysis for 
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Fig. 4. Foliation joints in micaschist, data by Nilson (1985) 
a failure envelope, b secant angle of the shearing resistance versus normal stress 

a proposed hyperbolic variation of the angle of shearing resistance using 
six points computed from the above given expression, taking ~b 

= arctanO-s/Cr,), failure envelope and parameters are obtained and 
presented in Fig. 4. As can be seen, the agreement is remarkable. 
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4. Concluding Remarks 

In a semi-logarithmic plot (Fig. 5), it can be noted that very good approxi- 
mation could be also obtained by using the linear relationship in the rather 
wide interval. Extrapolation of the straight line to small stress range would 
overestimate and extrapolation in the very high stress range would under- 
estimate the angle of the shearing resistance. 
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Fig. 5. Semi-log plot, secant angle versus normal stress. 
1 Sandstone discontinuity, data by Barla et al. (1985), 2 foliation joints in micaschist, data by 

Nilsen (1985) 

The power law in the form rj = A o -8 described the nonlinear failure 
envelope with parameters that depend on units and have no physical 
meaning. This law defines a vertical tangent to the failure envelope in the 
origin, suggests the angle r = 90 o, which makes it unusable in dealing 
with dilatancy at zero stress level. It lacks a reasonable asymptote and is 
therefore unable to define the basic angle of friction. 

Both examples shown in figures, which could be described by a loga- 
rithmic and power law, show excellent conformity with the simple form of 
the variation of the shearing resistance angle derived from the analogical 
model. The proposed model has significant advantages; parameters have 
physical meaning, law is valid from zero to infinity, and it is simpler from 
the mathematical point of  view, as it has only a few divisions and addi- 
tions. 
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Appendix 

Determination of Parameters from Experimental Data 

In order to cover the whole range of stresses with best accuracy, it is 
desirable to select normal stress levels for testing so that the angles of  the 
shearing resistance span the range from CB to r Spacing of  data points 
should be such that the whole range of A r  is filled with data in nearly 
equal intervals. The suggested normal stress levels, which will provide 
proper results both in the range of the high curvature, as well as in the 
range where the envelope is almost linear are expressed in terms of the 
median angle normal pressure, PN as shown in Table 1. Still, as the value of  
the median angle pressure PN is not known in advance, the initial estimate 
might be taken as Crc/35 as a preliminary guess, where ~c is the 
compressive strength. For the weathered joints, PN value can be signifi- 
cantly smaller. 

Table 1. Suggested stress levels for testing 

Number of Good stress levels for testing cr,,/pN 
stress levels Stress level number 

1 2 3 4 5 6 7 

5 < 1 / 5  1/2 1 2 >5 

6 < 1/6 2/5 3/4 4/3 5/2  > 6 

7 < 1/7 1/3 3 /5  1 5/3 3 >_7 

Two procedures for derivation of parameters will be outlined here 
under separate headings. The choice of the procedure will depend on the 
number of data points. 

Procedure No. 1. The regression analysis: 

More than three points 

o'~. i, r i = l , N ,  N > 3  

For the derivation of the proposed parameter from the results of the 
direct shear tests, in a form of N pairs o-n,i and r the Eq. (4) can be 
rewritten in the form 

a + b o-. = a , , / ( r  r (1-1) 

where 

b = 1/AO, a = pu/Ar and r -- CB + Ar  (1-2) 
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Coefficients a and b in a straight line Eq. (1-1) are obtained from solution 
of  the normal regression equations for the set of N data points : 

b = NXo-n,,(~b0 - ~b,) - (Xo-,,,,) (X(~b0 - ~b,)) (1-3) 
N Z  o-,2i - (Zcr,,, 32 

z ( r  r o,,, i 
a - N b ~ (1-4) 

The solution to the problem is the value of r that gives the smallest norm 
of error in the regression analysis. 

After calculating a and b, parameters of the nonlinear envelope can be 
derived by using relationships (1-2). 

Procedure No. 2. The perfect fit: 
Three points only, 

O'n,i, r , i =  1 ,2 ,3 .  

If results for only three stress levels are considered, (this being the 
least number of results required for the derivation of  parameters), the 
system of three equations can be solved for unknown parameters. The 
solution of three simultaneous equations for unknown parameters of the 
nonlinear envelope is: 

Q I , 2 -  Q2,3 
~bB- P1,2-  P2,3 (2-1) 

where 
Q1,2 = (~1 O-,,, 1 --  ~52 0<2)  (~53 -- ~2) ( 2 - 1 - a )  

Q2,3 = (~2  O-n, 2 - -  ~30"n, 3) ((~2 - -  ~1) ( 2 - 1 - b )  

P~,2 = (O'n, 1 - -  On, 2) ( r  - -  r  ( 2 - 1 - C )  

P2,3 = (o"t,, 2 - -  0",,, 3) ( r  - -  ~5]), ( 2 - 1 - d )  
and 

R1, 2 - R2, 3 
PN - P1, 2 - P2, 3 (2-2) 

where 
R1,2 = (~5 2 On, 2 - -  ~5 3 On, 3) (On, 1 - -  O'n, 2) ( 2 - 2 - a )  

R2,3 = (41 Err,, 1 --  ~52 Or,, 2) (G,,2 --  GT, 3), ( 2 - 2 - b )  

and the third unknown can be computed, for example, from 

A ~5 = (~1 - gSB) (1 + or,,, I/PN). (2-3) 

This method is called "the perfect fit method" as the error is equal to zero 
for given three data points. To achieve the highest accuracy in the wide 
range of  stress, the data points should be widely spaced. One stress level 
should be in the vicinity of PN value, the second should be preferably less 
then pN/3,  and the third larger then 3 p> 
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