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Summary :  General conditions for continuous expression of heterologous genes from PL 
promoter in two fermenters connected in series have been established. The induction 
time of the bacterial cells is calculated as a function of the retention time in the 
inducing reactor. Using this model, it is possible to adapt fermentation parameters to 
the particular behaviour of any specific recombinant clone. 

INTRODUCTION 

The strong PL promoter of bacteriophage lambda is one of the most useful genetic 

elements for the controlled expression of heterologous recombinant proteins in 

Escherichia coIi (de Boer and Shepard, 1983). tf the host strain or the vector 

contains the ci857 gene, encoding a thermosensible repressor of PL (Casadaban, 1980), 

the production of the desired proteins can be carried out by thermal induction of the 

culture (Rossenberg et al., 1983). Under non inducing conditions, transcription from 

PL is repressed. This fact allows to maintain stable plasmid clones for the production 

of toxic proteins. Thermal induction has also the advantage of being independent of 

the addition of inducing genotoxic substances such as nalidixic acid, which are 

required in CI + strains and have to be carefully removed during the downstream 

processing of the products. 

In swains that retain the recombinant proteins inside the cell, the maximum yield is 

reached transiently during a period of time after the temperature shift. The duration 

of this period is specific for each particular clone, and depends on the toxicity of 

the product, its degradation rate, the ability of the host strain to grow at 42~ and 

probably other undefined variables. The production of such proteins is usually done by 

batch fermentation procedures (Okita et al., 1989 and references therein). 

In this work we have developed a fermentation model for the continuous expression of 

PL-COntrolled genes in a ci857 strain using two reactors in series. A computer 

simulation based on this model predicts an efficient and constant production of 

recombinant proteins. 
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MODEL DESCRIPTION 

The system consists of two fermenters connected in series. In the first one, at 30~ 

the culture is maintained in a steady-state, with the cells at the optimal metabolic 

conditions. The flow is to be adapted to the particular conditions of the strain. In 

the second reactor at 42~ cells are thermally induced during their residence. The 

volume of this reactor needs to be established, according to the strain-specific 

optimal induction time as described below. Our purpose was to determine the variation 

of  the induction time of each elementary volume unit of  the culture during the 

fermentation. This information allows to assess the system by predicting the product 

yield in a continuous fermentation of a strain in which the induction time is a 

critical factor. 

The model focuses on the parameters of the inducing reactor and is based on several 

assumptions: 

1) The second, inducing, fermenter is considered as "perfectly mixed", and product and 

cell concentration in the outlet are identical to its concentration in and 

throughout the fermentation broth (Bailey and Ollis, 1986). 

2) Each unit volume of the incoming non-induced culture is considered an individual 

source of the desired product, irrespective of the cell concentration and of the 

number of cell divisions occurring during the induction. 

3) The cells reach the temperature of 42~ immediately after entering the second 

fermenter. Thus, the induction time is considered to be equal to the residence 

time. 

When the steady-state is reached in the first reactor, the second one begins to be 

filled. In circumstances in which it were advantageous to alter the input rate of the 

culture during the fermentation, the flow would be 

_ dv(t) (1) 
F ( t ) - '-d-i-- 

If V is the volume and 0 the retention time in the inducing reactor, the following 

relationship is satisfied, 

0 
V = v(O ) = ] F(t) dt (2) 

J 0 

and the average induction time "t(t), when the induced broth starts to flow from the 

full reactor, is 

0 
"t(O) = "Tz a [ t F(t) dt (3) 

0 
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Thereafter, in time t after the retention time, the variation of the average induction 

time caused by the entering of an elemental volume of culture dv will be 

"r dv dt + (V-dv) (x+dt)  
= v (4 )  

By simplifying the foregoing equation and taking into account Eq.(1), we get the 

following linear differential equation, 

dz - ~ ) x  1 0 (5) i]2-+ - = 

whose solution, by integration, is 

v ( t )  v ( t )  

'C(t) = e --v-[ f e--V-dt+C ] (6) 

where C is a constant to be calculated from Eq.(3). 

Induced culture density function 

At a time T > 0 during the fermentation (after the complete filling of the inducing 

reactor), it is possible to know the volume of culture NT(t ) that has been induced 

during a time from t to t+dt. At an instant x~ (0,T), the same volume of culture F(x) 

enters and emerges simultaneously. Thus, during the interval of time from x to x+dx 

and for any time t < x, the volume Nx(t ) will turn into the new volume Nx+dx(t+d~), 

induced during the subsequent lapse of time, excluding the proportional fraction of 

the volume that has left the reactor during this lapse of time. Therefore, the 

diminution of the volume Nx(t ) in the reactor will be 

F(x  ) dx 
N+dx(t+dt) - N ( t )  = - N ( t )  - - - -V - -  (7) 

Moreover, since this evolution is done being dx--dt, that is, by keeping constant the 

difference s=x-t, we can rewrite Eq.(7) depending only on the variable x: 

d N  = N ( x - s )  = -  - - v - -  (8) 

In order to solve this equation, we must distinguish two cases: ( a )For  s > 0 then 

t < T-0 is deduced. In this case we consider a certain volume of culture NT(t ) that 

entered after the complete filling of the inducing reactor. Thus, the integration of 

Eq.(8) from x=T-t to x=T with an initial volume F(T-t) gives us the following 

solution: _ v(T) - v(T-t)  

NT(t) = F(T-t) e V ; t < T-t? (9) 

In this case, the induced culture density function is proportional to a decreasing 

exponential function depending on the relative volume that has entered during a period 
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of time t just before the time T. 

(b) For s < 0 then t >_ T-0 is deduced. In this other case we consider a volume of 

culture NT(t) that was already present before the complete filling of the inducing 

reactor. Thus, Eq.(8) has to be integrated from x=0 to x=T with an initial volume 

F(T-t): _v(T) V 

NT(t  ) = F(T-t) e V ; t > T-O (10) 

In this case, the induced culture density function is proportional to a decreasing 

exponential factor depending on the relative volume that has entered after the filling 

of the inducing reactor. 

Induced culture distribution function 

At a time T > 0, the volume of culture MT(t ) induced up to time t is 

1 
MT(t) = ~0 NT(u) du (11) 

They are again two possibilities: (a) For t < T-0, obviously we have 

v(T) - v(T-u)  v(T) - v(T-t)  

MT(t  ) = F(T-u) e du = V 1 - e (12) 
0 

(b) For t >_ T-0, in the integration of Eq.(l l) ,  we must use Eq.(9) for u < T-0 and Eq. 

(10) for T-0 < u < T. Thus, 

v ( T ) - V    _ 0 F ( r _ u  ) v(r)- v(r-u) ---V--- 
MT(t  ) = e V du + F(T-u) e du = 

T-O 
v ( T ) - V  

I7 
= V -  v(T-t) e (13) 

Note that MT(T) = V. 

CONTINUOUS FERMENTATION WITH CONSTANT FLOW 

We apply the model to a particular case in which the input flow is constant: 

F(t) = O (14) 

Then, the volume of the second reactor is, according to Eq.(2), V=QO and the average 

induction time when the first sample of induced culture emerges is, according to 

Eq.(3), x(0)---0/2. From Eqs.(1) and (14), by integration we obtain v(t)=Qt and Eq.(6) 

becomes t 

1 e-tJ ,(t) = O  [ 1 - 2 ] (15) 
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Hence, the average induction time varies from the half retention time to the retention 

time in a exponential way. Moreover, for the density function corresponding to Eq.(9), 

in the first domain, we get the following decreasing exponential 
l 

NT(t) = Q e t3., t < T-O (16) 

and for Eq.(10), in the second domain, we get the constant function 

T-0  

NT(t) = Q e -~ ; t > T-O (17) 

which is a simple prolongation of Eq.(16). Finally, according to Eqs.(12) and (13), 

the distribution function is transformed into 

t 

M T 0 ) = V  1 - - 0 -  e "t_>7"-0 (19) 
) 

Thus, the induced culture distribution function is a continuous function with a first 

domain depending also on an exponential law and a second domain depending on a linear 

function of time. 

Previous equations demonstrate that it is possible to set both average induction time 

and induced culture distribution, by modifying the volume of the inducing reactor or 

the input flow. 

PRODUCT YIELD DURING A CONTINUOUS FERMENTATION 

To test the usefulness of our two-stage system we have performed a numerical 

simulation based on the model described above. The simulation predicts the product 

yield at the outlet during a fermentation of an hypothetical CI857 bacterial strain, 

in which a g e n e  of interest has been cloned downstream of the PL promoter. From data 

obtained in a discontinuous culture experiment, we can estimate the units of protein 

p(t) that will be detected by processing one ml of culture at a time t during the 

fermentation. Hence, the total yield of protein P(T) at time T will be calculated as 

T I 
fo p(t) NrO) dt (2o  P(T) = v 

We have defined a working case in which the period of detection of the product after 

the induction is very short (Table 1). Within this period, we have selected 100 min as 

retention time. If the flow to maintain the steady-state in the first reactor is 

20 ml/min, then we will need a 2 l volume inducing reactor. The numerical integration 

253 



of Eq.(20) predicts a nearly constant yield of the protein from 150 min after filling 

the second reactor (Fig. 1). Thus, we conclude that our design based on two fermenters 

connected in series is a useful tool to continuously express proteins in a PL-CI857 

bacterial system, even when the recombinant strain exhibits a very critical induction 

time. The applicability of this two-stage design to the large-scale production of 

recombinant proteins needs to be further evaluated. 

time p ( t ) 
(min) (units/ml ) 

0 < t -< 15 

15 < t -< 45 

45 < t -~ 90 

90 < t -~ ii0 

ii0 < t -< 155 

155 < t <- 185 

185 < t 

0 

0.50 

0.75 

1 

0.75 

0.50 

0 

Table 1 

Product yield after induction 

in a discontinuous culture. 

0.5 

0.4. 
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Figure 1 

Product yield at the outlet in a 

continuous fermentation. 

NOMENCLATURE 
F(t) =flow at time t [ml/min] 
pNM~((0 =culture induced, at time T of fermentation, during a period up to t [m/] 

) =culture induced, at time T of fermentation, during a period from t to t+dt [ml] 
=product yield in a discontinuous culture [units/ml] 

P(t) =product yield at the outlet of the fermenter [units/ml] 
v(t) --volume of culture entered into the inducing reactor up to time t [m/] 
V =volume of the inducing reactor [m/] 
Greek letters: 
0 --retention time in the inducing reactor [min] 
x(t) =average induction time at time t [min] 
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